Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material Preparation
3.1.1. Synthesis of ZIF-67
3.1.2. Synthesis of NiCo-LDH
3.1.3. Synthesis of NiCo-LDH(F)
3.1.4. Synthesis of the CoNiO2(B)/CoNiO2(F)
3.1.5. Synthesis of the S/CoNiO2(B) and S/CoNiO2(F) Composite
3.2. Visualized Adsorption of Li2S6
3.3. Assembly of Symmetric Cells
3.4. Nucleation of Li2S
3.5. Material Characterization
3.6. Assembly of the Li-S Batteries and Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, S.; Chang, C.; Manthiram, A. Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable. Adv. Funct. Mater. 2018, 28, 1801188. [Google Scholar] [CrossRef]
- Fang, X.; Peng, H. A Revolution in Electrodes: Recent Progress in Rechargeable Lithium-Sulfur Batteries. Small 2015, 11, 1488–1511. [Google Scholar] [CrossRef]
- Salama, M.; Rosy; Attias, R.; Yemini, R.; Gofer, Y.; Aurbach, D.; Noked, M. Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Lett. 2019, 4, 436–446. [Google Scholar] [CrossRef]
- Tu, S.; Chen, X.; Zhao, X.; Cheng, M.; Xiong, P.; He, Y.; Zhang, Q.; Xu, Y. A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries. Adv. Mater. 2018, 30, e1804581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, R.; Pang, Y.-C.; Chen, X.; Lang, J.; Xu, J.; Xiao, C.; Li, H.; Xi, K.; Ding, S. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.H. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2018, 5, 1700270. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, Y.; Ma, S.; Lian, Z.; Gu, X.; Li, J.; Li, Z.; Liu, Q. Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li-CO2 battery. Electrochim. Acta 2022, 419, 140424. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, J.; Liu, M.; Zhang, P. Sb nanosheet modified separator for Li-S batteries with excellent electrochemical performance. RSC Adv. 2021, 11, 6798–6803. [Google Scholar] [CrossRef]
- Yi, T.F.; Shi, L.; Han, X.; Wang, F.; Zhu, Y.; Xie, Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO2 @CeO2 Nanosheets. Energy Environ. Mater. 2021, 4, 586–595. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y. Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Adv. Energy Mater. 2014, 4, 1301473. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, S.H.; Zhang, Z.; Chen, Y.; Xiang, Y.; Liu, X.; Chen, J.S.; Chen, P. Naturally derived honeycomb-like N, S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery. Nanoscale 2020, 12, 5114–5124. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Guo, S.; Hou, Y. Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery. Adv. Mater. 2016, 28, 3167–3172. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lee, K.T.; Nazar, L. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Hart, C.J.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L.F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, J.; Lou, X.W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2015, 54, 12886–12890. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Guan, B.; Wang, D.; Liu, L.-M.; Lou, X.W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guan, B.Y.; Zhang, J.; Lou, X.W. A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Joule 2017, 1, 576–587. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Ye, Y.; Wei, M.; Sun, W.; Tang, Q.; Zhang, J.; Chen, X.; Li, H.; Xu, J. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 671–678. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, L.; Guo, C.; Li, D.; Vasileff, A.; Wang, H.; Qiao, S. A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2017, 27, 1702524. [Google Scholar] [CrossRef]
- Pang, Q.; Kundu, D.; Nazar, L.F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horizons 2016, 3, 130–136. [Google Scholar] [CrossRef]
- Peng, H.-J.; Zhang, G.; Chen, X.; Zhang, Z.-W.; Xu, W.-T.; Huang, J.-Q.; Zhang, Q. Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. Angew. Chem. 2016, 128, 13184–13189. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, Y.; Zhou, G.; Lv, W.; Sun, P.; Kang, F.; Li, B.; Yang, Q.-H. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 2017, 39, 291–296. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, Y.; Gao, S.; Lou, X.W. Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 10944–10948. [Google Scholar] [CrossRef]
- Qiu, W.; Li, G.; Luo, D.; Zhang, Y.; Zhao, Y.; Zhou, G.; Shui, L.; Wang, X.; Chen, Z. Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries. Adv. Sci. 2021, 8, 2003400. [Google Scholar] [CrossRef]
- Yuan, Z.; Peng, H.-J.; Hou, T.-Z.; Huang, J.Q.; Chen, C.-M.; Wang, D.-W.; Cheng, X.-B.; Wei, F.; Zhang, Q. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Lett. 2016, 16, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, H.; Li, Z.; Lou, X.W.D. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2016, 55, 3982–3986. [Google Scholar] [CrossRef]
- Zhang, L.; Wan, F.; Cao, H.; Liu, L.; Wang, Y.; Niu, Z. Integration of Binary Active Sites: Co3V2O8 as Polysulfide Traps and Catalysts for Lithium-Sulfur Battery with Superior Cycling Stability. Small 2020, 16, e1907153. [Google Scholar] [CrossRef]
- Freund, L. Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. J. Mech. Phys. Solids 2000, 48, 1159–1174. [Google Scholar] [CrossRef]
- Zhang, C.; Chu, W.; Hong, X.; He, Q.; Lu, R.; Liao, X.; Zhao, Y. Accelerating conversion of LiPSs on strain-induced MXene for high-performance Li-S battery. Chem. Eng. J. 2022, 439, 135679. [Google Scholar] [CrossRef]
- Li, J.; Qiu, W.; Liu, X.; Zhang, Y.; Zhao, Y. NiCo-Layered Double Hydroxide to Composite with Sulfur as Cathodes for High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2022, 9, e202101211. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Cheong, J.L.; Zaghib, K.; Trudeau, M.L.; Ying, J.Y. Nanoboxes with a porous MnO core and amorphous TiO2 shell as a mediator for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 4952–4961. [Google Scholar] [CrossRef]
- An, L.; Huang, B.; Zhang, Y.; Wang, R.; Zhang, N.; Dai, T.; Xi, P.; Yan, C. Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angew. Chem. Int. Ed. 2019, 58, 9459–9463. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y.; Zhao, M.; Luo, R.; Yang, Y.; Peng, T.; Yan, H.; Liu, X.; Luo, Y. Controllable Tuning of Cobalt Nickel-Layered Double Hydroxide Arrays as Multifunctional Electrodes for Flexible Supercapattery Device and Oxygen Evolution Reaction. ACS Nano 2019, 13, 12206–12218. [Google Scholar] [CrossRef]
- Li, Z.; Mi, H.; Guo, F.; Ji, C.; He, S.; Li, H.; Qiu, J. Oriented Nanosheet-Assembled CoNi-LDH Cages with Efficient Ion Diffusion for Quasi-Solid-State Hybrid Supercapacitors. Inorg. Chem. 2021, 60, 12197–12205. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.-R.; Xue, F.; Jia, Y.-J.; Ye, J.-C.; Bai, C.-D.; Zheng, M.-S.; Dong, Q.-F. Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries. ACS Nano 2017, 11, 6031–6039. [Google Scholar] [CrossRef]
- Chen, F.-F.; Chen, J.; Li, L.; Peng, F.; Yu, Y. g-C3N4 microtubes@CoNiO2 nanosheets p–n heterojunction with a hierarchical hollow structure for efficient photocatalytic CO2 reduction. Appl. Surf. Sci. 2022, 579, 151997. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Yu, Y.; Ahmad, M.; Sun, H. Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries. Electrochim. Acta 2014, 132, 404–409. [Google Scholar] [CrossRef]
- Rehman, S.U.; Wang, J.; Luo, Q.; Sun, M.; Jiang, L.; Han, Q.; Liu, J.; Bi, H. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 2019, 373, 122–130. [Google Scholar] [CrossRef]
- Mézin, A. Coating internal stress measurement through the curvature method: A geometry-based criterion delimiting the relevance of Stoney’s formula. Surf. Coatings Technol. 2006, 200, 5259–5267. [Google Scholar] [CrossRef]
- Sun, M.; Xiao, F.; Deng, C. Near-ideal strength in metal nanotubes revealed by atomistic simulations. Appl. Phys. Lett. 2013, 103, 231911. [Google Scholar] [CrossRef]
- Zhou, W.-P.; Lewera, A.; Bagus, P.S.; Wieckowski, A. Electrochemical and Electronic Properties of Platinum Deposits on Ru (0001): Combined XPS and Cyclic Voltammetric Study. J. Phys. Chem. C 2007, 111, 13490–13496. [Google Scholar] [CrossRef]
- Clavel, M.B.; Hudait, M.K. Band Offset Enhancement of a-Al2O3/Tensile-Ge for High Mobility Nanoscale pMOS Devices. IEEE Electron Device Lett. 2017, 38, 1196–1199. [Google Scholar] [CrossRef]
- Sun, W.; Liu, C.; Li, Y.; Luo, S.; Liu, S.; Hong, X.; Xie, K.; Liu, Y.; Tan, X.; Zheng, C. Rational Construction of Fe2N@C Yolk-Shell Nanoboxes as Multifunctional Hosts for Ultralong Lithium-Sulfur Batteries. ACS Nano 2019, 13, 12137–12147. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Bai, Y.; Luo, M.; Qu, M.; Wang, Z.; Sun, W.; Sun, K. Enhancing Polysulfide Confinement and Electrochemical Kinetics by Amorphous Cobalt Phosphide for Highly Efficient Lithium-Sulfur Batteries. ACS Nano 2021, 15, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, J.; Li, N.; Han, X.; Wang, J.; Deng, Q.; Zeng, Z.; Deng, S. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187–195. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, S.; Jia, Y.; Xiong, X.; Yang, H.; Liu, S.; Tang, J.; Zhang, J.; Liu, D.; Zheng, L.; et al. NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angew. Chem. Int. Ed. 2019, 58, 736–740. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Wang, J.; Sun, Z.; Cui, G.; Chen, Y.; Wang, T.; Zheng, L.; Zhao, Y.; Shui, L.; et al. Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. Angew. Chem. Int. Ed. 2021, 60, 2371–2378. [Google Scholar] [CrossRef]
- He, J.; Hartmann, G.; Lee, M.; Hwang, G.S.; Chen, Y.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, L.; Ye, H.; Hu, Z.; Liu, F.; Qin, L.; Zhang, Z.; Lai, X.; Zhao, Y.; Wang, L. Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries. Batteries 2022, 8, 262. https://doi.org/10.3390/batteries8120262
Chai L, Ye H, Hu Z, Liu F, Qin L, Zhang Z, Lai X, Zhao Y, Wang L. Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries. Batteries. 2022; 8(12):262. https://doi.org/10.3390/batteries8120262
Chicago/Turabian StyleChai, Lili, Huizi Ye, Zhengguang Hu, Fengliang Liu, Liyun Qin, Zhiqi Zhang, Xianxin Lai, Yong Zhao, and Li Wang. 2022. "Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries" Batteries 8, no. 12: 262. https://doi.org/10.3390/batteries8120262
APA StyleChai, L., Ye, H., Hu, Z., Liu, F., Qin, L., Zhang, Z., Lai, X., Zhao, Y., & Wang, L. (2022). Tuning the Architecture of Hierarchical Porous CoNiO2 Nanosheet for Enhanced Performance of Li-S Batteries. Batteries, 8(12), 262. https://doi.org/10.3390/batteries8120262