Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries
Abstract
:1. Introduction
2. Neutron-Based Characterization Techniques
2.1. Neutron Powder Diffraction (NPD)
Composition | Applications | Main Findings | Refs. | ||
---|---|---|---|---|---|
Neutron-Based Techniques | Abilities | SSE | Cell Investigation | ||
NPD | Examine the information contained in crystalline materials’ structures (space group, lattice constants, and atomic coordinates). | Li6PS5Cl | Li4Ti5O12:C:SSE/SSE/Li | The formation of Li7PS6 interphase at temperatures ranging from 80 to 150 °C during the synthesis of Li6PS5Cl crystalline argyrodite. | [27] |
LLZO | No data | During the heating process, a partial carbonate melt starts to decompose, which induced the formation of LLZO. | [32] | ||
LLZO-Al24, LLZO-Zn60 | No data | During the synthesis of Al24- and Zn60-doped LLZO, the Li source became non-stoichiometry, and the unreacted reagents caused the formation of La2Zr2O7 and Li2ZrO3 intermediate phases. | [34] | ||
NPDF | Investigated the local structure of amorphous or polycrystalline materials (pair distribution function, the nearest neighbor distance, and coordination). | No data | No data | No data | |
SANS | Provide the nanostructure information in bulk phases (nanoscale grain changes in volumetric and constants) of battery materials | Solid polymer electrolyte (SPE) | Li/SPE/LiFePO4 | The SPE lithium–metal batteries indicated no formation of dendrites and cell failure at 0.5 C and 80 °C but failed after more than 200 cycles when cycled at 0.7 C and 90 °C. | [35] |
NR | High resolution for structure, composition, and magnetism investigations of battery material’s surface and interfaces. | LixPOyNz (LiPON) | Si/LiPON/SLEI/LE | The interphase formed between LiPON and different LEs interfaces consisted of a lithium-rich outer layer and an insulating layer directly in touch with LiPON. | [36] |
NI | Contrast in neutron transmission (attenuation) to elucidate the bulk structure of materials visually. | No data | No data | No data | |
NDP | Investigate the depth-dependent distribution of particular elements in SSLBs. | Nitrogen-doped Li3PO4 (N-LiPON) | LiCoO2/N-LiPON/Li | In situ NDP disclosed the thin-film all-SSLBs’ lithium position and mobility. | [37] |
Li3PO4 | Si-Li3PO4-LiCoO2 | The lithium immobilization in SSE, originating from anode/SSE contact throughout the first charging, was the main source of Si-Li3PO4-LiCoO2 thin film batteries’ capacity loss. | [38] | ||
Li6.4La3Zr1.4Ta0.6O12 (LLZTO) | Li/LLZTO/Ti | The majority of lithium deposited in the Ti 3D electrode’s void space significantly inhibited the extension of lithium dendrite and the deterioration of the SSE/electrode interface. | [39] | ||
LLZO | Li/LLZO/Li, Li/LLZO/CNT | The poor physical contact caused Li ions to be only plated-stripped reversibly near the LLZO/CNT interface. | [40] | ||
LLZO | Li/LLZO/Cu | Due to the high electronic conductivity of LLZO, quick deposition of Li dendrites occurred within the bulk LLZO. | [41] | ||
Li3PS4 | Li/Li3PS4/Cu | Because of Li3PS4′s high electronic conductivity, Li dendrites were formed directly inside the bulk Li3PS4. | [41] | ||
LiPON | LiCoO2/LiPON/Cu | LiPON’s lack of dendrite growth was due to its low electronic conductivity. | [41] | ||
LLZO | NMC//CNT/Li6.75La3Zr1.75Ta0.25O12 (LLZTO)/Li | The LLZO’s reversible short-circuit characteristic was attributed to its low ionic conductivity and non-negligible electronic conductivity. | [42] | ||
INS | Probe the local structure of materials as well as their dynamical vibrations (phonon dispersion and the density of states). | No data | No data | No data | |
QENS | Examine the diffusional dynamics of battery materials (diffusion coefficient and atom jump length). | Li7P3S11 | No data | At 473 K, a signal for Li-ion self-diffusion was observed. | [43] |
2.2. Neutron Pair Distribution Function (NPDF)
2.3. Small-Angle Neutron Scattering (SANS)
2.4. Neutron Reflectivity (NR)
2.5. Neutron Imaging (NI)
2.6. Neutron Depth Profiling (NDP)
2.7. Inelastic Neutron Scattering (INS)
2.8. Second-Quasi-Elastic Neutron Scattering (QENS)
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-M. Building a Better Battery. Science 2010, 330, 1485–1486. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Banerjee, A.; Chen, Z.; Meng, Y.S. From Nanoscale Interface Characterization to Sustainable Energy Storage Using All-Solid-State Batteries. Nat. Nanotechnol. 2020, 15, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Pan, H.; Li, C.; Mu, X.; Du, Y.; Zhang, F.; Zhang, X.; He, P.; Zhou, H. An in Situ Solidifying Strategy Enabling High-Voltage All-Solid-State Li-Metal Batteries Operating at Room Temperature. J. Mater. Chem. A 2020, 8, 25217–25225. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, F.; Wang, X.; Zheng, L.; Yang, X.; Zhao, H.; Sun, Y.; Zhao, W.; Bai, Y.; Wu, C. An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling High–Voltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2022, 32, 2107764. [Google Scholar] [CrossRef]
- Zhao, E.; Ma, F.; Guo, Y.; Jin, Y. Stable LATP/LAGP Double-Layer Solid Electrolyte Prepared: Via a Simple Dry-Pressing Method for Solid State Lithium Ion Batteries. RSC Adv. 2016, 6, 92579–92585. [Google Scholar] [CrossRef]
- Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.; Kang, F. Challenges and Perspectives of Garnet Solid Electrolytes for All Solid-State Lithium Batteries. J. Power Sources 2018, 389, 120–134. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [Google Scholar] [CrossRef]
- Lu, W.; Xue, M.; Zhang, C. Modified Li7La3Zr2O12 (LLZO) and LLZO-Polymer Composites for Solid-State Lithium Batteries. Energy Storage Mater. 2021, 39, 108–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Guan, M.; Ding, B.; Yu, J.; Yan, J. Integrated Solid-State Li-Metal Batteries Mediated by 3D Mixed Ion-Electron Conductive Anodes and Deformable Molten Interphase. Chem. Eng. J. 2022, 442, 136227. [Google Scholar] [CrossRef]
- Yang, S.; Min, X.; Fan, H.; Xiao, J.; Liu, Y.; Mi, R.; Wu, X.; Huang, Z.; Xi, K.; Fang, M. In Situ Characterization of Lithium-Metal Anodes. J. Mater. Chem. A Rev. View 2022, 10, 17917–17947. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Cheng, Y.; Sun, X.; Yang, Y. Advanced Characterization Techniques for Solid State Lithium Battery Research. Mater. Today 2020, 36, 139–157. [Google Scholar] [CrossRef]
- Linsmeier, C.; Fu, C.; Kaprolat, A.; Nielsen, S.F.; Mergia, K.; Schäublin, R.; Lindau, R.; Bolt, H.; Buffière, J.; Caturla, M.J.; et al. Advanced Materials Characterization and Modeling Using Synchrotron, Neutron, TEM, and Novel Micro-Mechanical Techniques—A European Effort to Accelerate Fusion Materials Development. J. Nucl. Mater. 2013, 442, S834–S845. [Google Scholar] [CrossRef]
- Manke, B.I.; Marko, H.; To, C.; Kardjilov, N.; Grothausmann, R.; Dawson, M.; Hartnig, C.; Haas, S.; Thomas, D.; Hoell, A.; et al. Investigation of Energy-Relevant Materials with Synchrotron X-Rays and Neutrons. Adv. Eng. Mater. 2011, 13, 712–729. [Google Scholar] [CrossRef]
- Gu, Q.; Kimpton, J.A.; Brand, H.E.A.; Wang, Z.; Chou, S. Solving Key Challenges in Battery Research Using in Situ Synchrotron and Neutron Techniques. Adv. Energy Mater. 2017, 1, 1602831. [Google Scholar] [CrossRef]
- Ren, Y.; Zuo, X. Synchrotron X-ray and Neutron Diffraction, Total Scattering, and Small-Angle Scattering Techniques for Rechargeable Battery Research. Small Methods 2018, 2, 1800064. [Google Scholar] [CrossRef]
- Balagurov, A.M.; Bobrikov, I.A.; Samoylova, N.Y.; Drozhzhin, O.A.; Antipov, E.V. Neutron Scattering for Analysis of Processes in Lithium-Ion Batteries. Russ. Chem. Rev. 2014, 83, 1120–1134. [Google Scholar] [CrossRef]
- Liang, L.; Rinaldi, R.; Schober, H. Neutron Scattering Applications and Techniques. In Neutron Applications in Earth, Energy and Environmental Sciences; Liang, L., Rinaldi, R., Schober, H., Eds.; Springer: Boston, MA, USA, 2009; pp. 1–14. [Google Scholar] [CrossRef]
- Squires, G.L. Introduction to the Theory of Thermal Neutron Scattering, 3rd ed.; Squires, G.L., Ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 2–9. ISBN 9781139107808. [Google Scholar]
- Fritzsche, H.; Huot, J.; Fruchart, D. Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–276. ISBN 978-3-319-22792-4. [Google Scholar]
- Mason, T.E.; Abernathy, D.; Anderson, I.; Ankner, J.; Egami, T.; Ehlers, G.; Ekkebus, A.; Granroth, G.; Hagen, M.; Herwig, K.; et al. The Spallation Neutron Source in Oak Ridge: A Powerful Tool for Materials Research. Phys. B Condens. Matter 2006, 385, 955–960. [Google Scholar] [CrossRef]
- Wang, X.L.; An, K.; Cai, L.; Feng, Z.; Nagler, S.E.; Daniel, C.; Rhodes, K.J.; Stoica, A.D.; Skorpenske, H.D.; Liang, C.; et al. Visualizing the Chemistry and Structure Dynamics in Lithium-Ion Batteries by in Situ Neutron Diffraction. Sci. Rep. 2012, 2, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Peterson, V.K. In Situ Neutron Powder Diffraction Studies of Lithium-Ion Batteries. J. Solid State Electrochem. 2012, 16, 1849–1856. [Google Scholar] [CrossRef]
- Kaup, K.; Zhou, L.; Huq, A.; Nazar, L.F. Impact of the Li Substructure on the Diffusion Pathways in Alpha and Beta Li3PS4: An In Situ High Temperature Neutron Diffraction Study. J. Mater. Chem. A 2020, 8, 12446–12456. [Google Scholar] [CrossRef]
- Rao, R.P.; Sharma, N.; Peterson, V.K.; Adams, S. Formation and Conductivity Studies of Lithium Argyrodite Solid Electrolytes Using in Situ Neutron Diffraction. Solid State Ion. 2013, 230, 72–76. [Google Scholar] [CrossRef]
- Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A.; et al. Structure and Dynamics of the Fast Lithium Ion Conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378–19392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meesala, Y.; Liao, Y.; Jena, A.; Yang, N.; Pang, W.K.; Hu, S.; Chang, H.; Liu, C.; Liao, S.; Chen, J.; et al. An Efficient Multi-Doping Strategy to Enhance Li- Ion Conductivity in the Garnet-Type Solid Electrolyte Li7La3Zr2O12. J. Mater. Chem. A 2019, 7, 8589–8601. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Redhammer, G.J.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, M.; Amthauer, G. Crystal Structure of Garnet-Related Li-Ion Conductor Li7−3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? Chem. Mater. 2016, 28, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.A.; Martínez-Lope, M.J.; Aguadero, A.; Daza, L. Neutron Powder Diffraction as a Characterization Tool of Solid Oxide Fuel Cell Materials. Prog. Solid State Chem. 2008, 36, 134–150. [Google Scholar] [CrossRef]
- Rao, R.P.; Gu, W.; Sharma, N.; Peterson, V.K.; Avdeev, M.; Adams, S. In Situ Neutron Diffraction Monitoring of Li7La3Zr2O12 Formation: Toward a Rational Synthesis of Garnet Solid Electrolytes. Chem. Mater. 2015, 27, 2903–2910. [Google Scholar] [CrossRef]
- Baklanova, Y.V.; Tyutyunnik, A.P.; Tarakina, N.V.; Fortes, A.D.; Maksimova, L.G.; Korona, D.V.; Denisova, T.A. Stabilization of Cubic Li7La3Hf2O12 by Al-Doping. J. Power Sources 2018, 391, 26–33. [Google Scholar] [CrossRef]
- Chen, Y.; Rangasamy, E.; Dela Cruz, C.R.; Liang, C.; An, K. A Study of Suppressed Formation of Low-Conductivity Phases in Doped Li7La3Zr2O12 Garnets by in Situ Neutron Diffraction. J. Mater. Chem. A 2015, 3, 22868–22876. [Google Scholar] [CrossRef]
- Möhl, G.E.; Metwalli, E.; Bouchet, R.; Phan, T.N.T.; Cubitt, R.; Müller-Buschbaum, P. In Operando Small-Angle Neutron Scattering Study of Single-Ion Copolymer Electrolyte for Li-Metal Batteries. ACS Energy Lett. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Weiss, M.; Seidlhofer, B.K.; Geiß, M.; Geis, C.; Busche, M.R.; Becker, M.; Vargas-Barbosa, N.M.; Silvi, L.; Zeier, W.G.; Schröder, D.; et al. Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films. ACS Appl. Mater. Interfaces 2019, 11, 9539–9547. [Google Scholar] [CrossRef]
- Oudenhoven, J.F.M.; Labohm, F.; Mulder, M.; Niessen, R.A.H.; Mulder, F.M.; Notten, P.H.L. In Situ Neutron Depth Profiling: A Powerful Method to Probe Lithium Transport in Micro-Batteries. Adv. Mater. 2011, 23, 4103–4106. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Oudenhoven, J.F.M.; Danilov, D.L.; Vezhlev, E.; Gao, L.; Li, N.; Mulder, F.M.; Eichel, R.; Notten, P.H.L. Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries. Adv. Energy Mater. 2018, 8, 1801430. [Google Scholar] [CrossRef]
- Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T. In Situ Visualization of Lithium Plating in All-Solid-State Lithium-Metal Battery. Nano Energy 2019, 63, 103895. [Google Scholar] [CrossRef]
- Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. J. Am. Chem. Soc. 2017, 139, 14257–14264. [Google Scholar] [CrossRef]
- Han, F.; Westover, A.S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D.N.; Dudney, N.J.; Wang, H.; Wang, C. High Electronic Conductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nat. Energy 2019, 4, 187–196. [Google Scholar] [CrossRef]
- Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries. Adv. Energy Mater. 2020, 10, 2000702. [Google Scholar] [CrossRef]
- Mori, K.; Enjuji, K.; Murata, S.; Shibata, K.; Kawakita, Y.; Yonemura, M.; Onodera, Y.; Fukunaga, T. Direct Observation of Fast Lithium-Ion Diffusion in a Superionic Conductor: Li7P3S11 Metastable Crystal. Phys. Rev. Appl. 2015, 4, 054008. [Google Scholar] [CrossRef]
- Monteforte, M.; Cockcroft, J. Neutron Pair Distribution Function Analysis and 3D Modelling: Structural Investigation of FePt Nanoparticle-Ligand Systems. Master’s Thesis, University of London, London, UK, 2013. [Google Scholar]
- Billinge, S.J.L. The Rise of the X-ray Atomic Pair Distribution Function Method: A Series of Fortunate Events. Philos. Trans. R. Soc. A 2019, 377, 20180413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Yang, Y.; Yang, Q.; Liu, Y.; Wang, L.; Chen, C.; Cheng, R. The Effect of Sintering Process on Lithium Ionic Conductivity of Li6.4Al0.2La3Zr2O12 Garnet Produced by Solid-State Synthesis. RSC Adv. 2018, 8, 13083–13088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, D.; Cabana, J.; Bréger, J.; Yoon, W.S.; Grey, C.P. Cation Ordering in Li[NixMnxCo(1-2x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-Ray Absorption Spectroscopy, and Electrochemical Study. Chem. Mater. 2007, 19, 6277–6289. [Google Scholar] [CrossRef]
- Idemoto, Y.; Kitamura, N.; Ueki, K.; Vogel, S.C.; Uchimoto, Y. Average and Local Structure Analyses of Li(Mn1/3Ni1/3Co1/3−xAlx)O2 Using Neutron and Synchrotron X-Ray Sources. J. Electrochem. Soc. 2012, 159, A673–A677. [Google Scholar] [CrossRef]
- Idemoto, Y.; Ueki, K.; Kitamura, N. Dependence of Average and Local Structures and Cathode Performance on Synthetic Condition of Lix(Mn1/3Co1/3Ni1/3)O2 as a Cathode Active Material for Li Ion Battery. Electrochemistry 2010, 78, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Idemoto, Y.; Sera, Y.; Ishida, N.; Kitamura, N. Average and Local Crystal Structure and Electronic Structure of 0.4Li2MnO3-0.6LiMn1/3Ni1/3Co1/3O2 Using First-Principles Calculations and Neutron Beam and Synchrotron X-Ray Sources. Electrochemistry 2015, 83, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Idemoto, Y.; Tejima, F.; Ishida, N.; Kitamura, N. Average, Electronic, and Local Structures of LiMn2−AlxO4 in Charge-Discharge Process by Neutron and Synchrotron X-ray. J. Power Sources 2019, 410, 38–44. [Google Scholar] [CrossRef]
- Zhao, E.; Zhang, M.; Wang, X.; Hu, E.; Liu, J.; Yu, X.; Olguin, M.; Wynn, T.A.; Meng, Y.S.; Page, K.; et al. Local Structure Adaptability through Multi Cations for Oxygen Redox Accommodation in Li-Rich Layered Oxides. Energy Storage Mater. 2020, 24, 384–393. [Google Scholar] [CrossRef]
- Zhao, E.; Li, Q.; Meng, F.; Liu, J.; Wang, J.; He, L.; Jiang, Z.; Zhang, Q.; Yu, X.; Gu, L.; et al. Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides. Angew. Chem. Int. Ed. 2019, 58, 4323–4327. [Google Scholar] [CrossRef]
- Wang, H.; Downing, R.G.; Dura, J.A.; Hussey, D.S. In Situ Neutron Techniques for Studying Lithium Ion Batteries. In Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells; Page, K.A., Soles, C.L., Runt, J., Eds.; ACS Symposium Series: Washington, DC, USA, 2012; Volume 1096, pp. 91–106. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, M.; Zhang, Y.; Shao, H.; Zhu, Y.; Guo, X.; Li, L.; Wang, H.; Liu, W. Lithium Migration Pathways at the Composite Interface of LiBH4 and Two-Dimensional MoS2 Enabling Superior Ionic Conductivity at Room Temperature. Phys. Chem. Chem. Phys. 2020, 22, 4096–4105. [Google Scholar] [CrossRef]
- Seidlmayer, S.; Hattendorff, J.; Buchberger, I.; Karge, L.; Gasteiger, H.A.; Gilles, R. In Operando Small-Angle Neutron Scattering (SANS) on Li-Ion Batteries. J. Electrochem. Soc. 2015, 162, A3116–A3125. [Google Scholar] [CrossRef]
- Bridges, C.A.; Sun, X.G.; Zhao, J.; Paranthaman, M.P.; Dai, S. In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering. J. Phys. Chem. C 2012, 116, 7701–7711. [Google Scholar] [CrossRef]
- Sacci, R.L.; Baniuelos, J.L.; Veith, G.M.; Littrell, K.C.; Cheng, Y.Q.; Wildgruber, C.U.; Jones, L.L.; Ramirez-Cuesta, A.J.; Rother, G.; Dudney, N.J. Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering. J. Phys. Chem. C 2015, 119, 9816–9823. [Google Scholar] [CrossRef]
- Paul, N.; Wetjen, M.; Busch, S.; Gasteiger, H.; Gilles, R. Contrast Matched SANS for Observing SEI and Pore Clogging in Silicon-Graphite Anodes. J. Electrochem. Soc. 2019, 166, A1051–A1054. [Google Scholar] [CrossRef]
- Cousin, F.; Menelle, A. Neutron Reflectivity. EPJ Web Conf. 2015, 104, 01005. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, H. In Situ Neutron Techniques for Lithium Ion and Solid-State Rechargeable Batteries. In Handbook of Solid State Batteries, 2nd ed.; Dudney, N.J., West, W.C., Nanda, J., Eds.; World Scientific: New York, NY, USA, 2016; Volume 6, pp. 51–77. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, N.; Mi, L.; Wang, J.P.; Metwalli, E.; Bießmann, L.; Herold, C.; Yang, J.; Wu, G.P.; Xu, Z.K.; et al. Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(Diethylene Glycol Monomethyl Ether Methacrylate)- Block-Poly(Poly(Ethylene Glycol)Methyl Ether Methacrylate) Thin Films Investigated by in Situ Neutron Reflectivity. Langmuir 2020, 36, 6228–6237. [Google Scholar] [CrossRef]
- Wagemakera, M.; van de Krol, R.; van Well, A.A. Nano-Morphology of Lithiated Thin Film TiO2 Anatase Probed with in Situ Neutron Reflectometry. Physica B 2003, 336, 124–129. [Google Scholar] [CrossRef]
- Hirayama, M.; Yonemura, M.; Suzuki, K.; Torikai, N.; Smith, H.; Watkinsand, E.; Majewski, J.; Kanno, R. Surface Characterization of LiFePO4 Epitaxial Thin Films by X-ray/Neutron Reflectometry. Electrochemistry 2010, 78, 413–415. [Google Scholar] [CrossRef] [Green Version]
- Owejan, J.E.; Owejan, J.P.; Decaluwe, S.C.; Dura, J.A. Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured in Situ by Neutron Reflectometry. Chem. Mater. 2012, 24, 2133–2140. [Google Scholar] [CrossRef]
- Jerliu, B.; Steitz, R.; Oberst, V.; Geckle, U.; Bruns, M.; Schmidt, H. Volume Expansion during Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Operando Neutron Reflectometry. J. Phys. Chem. C 2014, 118, 9395–9399. [Google Scholar] [CrossRef]
- Zhang, Y.; Chandran, K.S.R.; Bilheux, H.Z. Imaging of the Li Spatial Distribution within V2O5 Cathode in a Coin Cell by Neutron Computed Tomography. J. Power Sources 2018, 376, 125–130. [Google Scholar] [CrossRef]
- Siegel, J.B.; Lin, X.; Stefanopoulou, A.G.; Hussey, D.S.; Jacobson, D.L.; Gorsich, D. Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery. J. Electrochem. Soc. 2011, 158, A523–A529. [Google Scholar] [CrossRef]
- Owejan, J.P.; Gagliardo, J.J.; Harris, S.J.; Wang, H.; Hussey, D.S.; Jacobson, D.L. Direct Measurement of Lithium Transport in Graphite Electrodes Using Neutrons. Electrochim. Acta 2012, 66, 94–99. [Google Scholar] [CrossRef]
- Michalak, B.; Sommer, H.; Mannes, D.; Kaestner, A.; Brezesinski, T.; Janek, J. Gas Evolution in Operating Lithium-Ion Batteries Studied in Situ by Neutron Imaging. Sci. Rep. 2015, 5, 15627. [Google Scholar] [CrossRef] [Green Version]
- Starke, B.; Soc, J.E.; Starke, B.; Seidlmayer, S.; Schulz, M.; Dinter, A.; Revay, Z.; Gilles, R.; Pettinger, K. Gas Evolution and Capacity Fading in LiFexMn1−xPO4/Graphite Cells Studied by Neutron Imaging and Neutron Induced Prompt Gamma Activation Analysis. J. Electrochem. Soc. 2017, 164, A3943–A3948. [Google Scholar] [CrossRef]
- Song, B.; Dhiman, I.; Carothers, J.C.; Veith, G.M.; Liu, J.; Bilheux, H.Z.; Huq, A. Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operando Neutron Imaging. ACS Energy Lett. 2019, 4, 2402–2408. [Google Scholar] [CrossRef]
- Nazer, N.S.; Strobl, M.; Kaestner, A.; Vie, P.J.S.; Yartys, V.A. Operando Neutron Imaging Study of a Commercial Li-Ion Battery at Variable Charge-Discharge Current Densities. Electrochim. Acta 2022, 427, 140793. [Google Scholar] [CrossRef]
- Kardjilov, N.; Manke, I.; Hilger, A.; Strobl, M.; Banhart, J. Neutron Imaging in Materials Science. Mater. Today 2011, 14, 248–256. [Google Scholar] [CrossRef]
- Kockelmann, W.; Burca, G.; Kelleher, J.F.; Kabra, S.; Rhodes, N.J.; Schooneveld, E.M.; Sykora, J.; Pooley, D.E.; Jim, B.; Aliotta, F.; et al. Status of the Neutron Imaging and Diffraction Instrument IMAT. Phys. Procedia 2015, 69, 71–78. [Google Scholar] [CrossRef]
- Kiyanagi, Y.; Shinohara, T.; Kai, T.; Kamiyama, T.; Sato, H.; Kino, K. Present Status of Research on Pulsed Neutron Imaging in Japan. Phys. Procedia 2013, 43, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, T.; Kai, T. Commissioning Start of Energy-Resolved Neutron Imaging System, RADEN in J-PARC. Neutron News 2015, 26, 11–14. [Google Scholar] [CrossRef]
- Bilheux, H.; Herwig, K.; Keener, S.; Davis, L. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source. Phys. Procedia 2015, 69, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Strobl, M. The Scope of the Imaging Instrument Project ODIN at ESS. Phys. Procedia 2015, 69, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Tomandl, I.; Vacik, J.; Kobayashi, T.; Mora Sierra, Y.; Hnatowicz, V.; Lavreniev, V.; Horak, P.; Ceccio, G.; Cannavo, A.; Baba, M.; et al. Analysis of Li Distribution in Ultrathin All-Solid-State Li-Ion Battery (ASSLiB) by Neutron Depth Profiling (NDP). Radiat. Eff. Defects Solids 2020, 175, 394–405. [Google Scholar] [CrossRef]
- Porz, L.; Swamy, T.; Sheldon, B.W.; Rettenwander, D.; Frömling, T.; Thaman, H.L.; Berendts, S.; Uecker, R.; Carter, W.C.; Chiang, Y.M. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017, 7, 1701003. [Google Scholar] [CrossRef]
- Ke, X.; Wang, Y.; Dai, L.; Yuan, C. Cell Failures of All-Solid-State Lithium Metal Batteries with Inorganic Solid Electrolytes: Lithium Dendrites. Energy Storage Mater. 2020, 33, 309–328. [Google Scholar] [CrossRef]
- Liu, X.; Garcia-Mendez, R.; Lupini, A.R.; Cheng, Y.; Hood, Z.D.; Han, F.; Sharafi, A.; Idrobo, J.C.; Dudney, N.J.; Wang, C.; et al. Local Electronic Structure Variation Resulting in Li ‘Filament’ Formation within Solid Electrolytes. Nat. Mater. 2021, 20, 1485–1490. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Q.; Chen, J.; Li, Y.; Ye, H.; Zhao, J.; Geng, L.; Dai, Q.; Yang, T.; Li, H.; et al. In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries. ACS Nano 2021, 15, 19070–19079. [Google Scholar] [CrossRef]
- Han, F.; Yue, J.; Zhu, X.; Wang, C. Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation. Adv. Energy Mater. 2018, 8, 1703644. [Google Scholar] [CrossRef]
- Loong, C.K. Inelastic Scattering and Applications. Rev. Mineral. Geochem. 2006, 63, 233–254. [Google Scholar] [CrossRef]
- Muy, S.; Bachman, J.C.; Giordano, L.; Chang, H.H.; Abernathy, D.L.; Bansal, D.; Delaire, O.; Hori, S.; Kanno, R.; Maglia, F.; et al. Tuning Mobility and Stability of Lithium Ion Conductors Based on Lattice Dynamics. Energy Environ. Sci. 2018, 11, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Heitmann, T.; Hester, G.; Mitra, S.; Calloway, T.; Miskowiec, A.; Diallo, S.; Osti, N.; Mamontov, E. Probing Li Ion Dynamics in Amorphous XLi2SO4⋅(1−x )LiPO3 by Quasielastic Neutron Scattering. Solid State Ion. 2019, 334, 95–98. [Google Scholar] [CrossRef]
- Shah, A.R.; Shutt, R.R.C.; Smith, K.; Hack, J.; Neville, T.P.; Headen, T.F.; Brett, D.J.L.; Howard, C.A.; Miller, T.S.; Cullen, P.L. Neutron Studies of Na-Ion Battery Materials. J. Phys. Mater. 2021, 4, 042008. [Google Scholar] [CrossRef]
- Grimaldo, M.; Roosen-Runge, F.; Zhang, F.; Schreiber, F.; Seydel, T. Dynamics of Proteins in Solution. Q. Rev. Biophys. 2019, 52, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Bailey, E.J.; Griffin, P.J.; Tyagi, M.; Winey, K.I. Segmental Diffusion in Attractive Polymer Nanocomposites: A Quasi-Elastic Neutron Scattering Study. Macromolecules 2019, 52, 669–678. [Google Scholar] [CrossRef]
- Embs, J.P.; Juranyi, F.; Hempelmann, R. Introduction to Quasielastic Neutron Scattering. Z. Phys. Chem. 2010, 224, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Wang, W.; Winey, K.I.; Maranas, J.K. Dynamic Patterning in PEO-Based Single Ion Conductors for Li Ion Batteries. Macromolecules 2012, 45, 4354–4362. [Google Scholar] [CrossRef]
- Sacci, R.L.; Lehmann, M.L.; Diallo, S.O.; Cheng, Y.Q.; Daemen, L.L.; Browning, J.F.; Doucet, M.; Dudney, N.J.; Veith, G.M. Lithium Transport in an Amorphous LixSi Anode Investigated by Quasi-Elastic Neutron Scattering. J. Phys. Chem. C 2017, 121, 11083–11088. [Google Scholar] [CrossRef]
- Ganapatibhotla, L.V.N.R.; Maranas, J.K. Interplay of Surface Chemistry and Ion Content in Nanoparticle-Filled Solid Polymer Electrolytes. Macromolecules 2014, 47, 3625–3634. [Google Scholar] [CrossRef]
- Nozaki, H.; Harada, M.; Ohta, S.; Watanabe, I.; Miyake, Y.; Ikedo, Y.; Jalarvo, N.H.; Mamontov, E.; Sugiyama, J. Li Diffusive Behavior of Garnet-Type Oxides Studied by Muon-Spin Relaxation and QENS. Solid State Ion. 2014, 262, 585–588. [Google Scholar] [CrossRef]
- Lefevr, J.; Cervini, L.; Griffin, J.M.; Blanchard, D. Lithium Conductivity and Ions Dynamics in LiBH4/SiO2 Solid Electrolytes Studied by Solid-State NMR and Quasi-Elastic Neutron Scattering and Applied in Lithium-Sulfur Batteries. J. Phys. Chem. C 2018, 122, 15264–15275. [Google Scholar] [CrossRef] [Green Version]
- Hester, G.; Heitmann, T.; Tyagi, M.; Rathore, M.; Dalvi, A.; Mitra, S. Neutron Scattering Studies of Lithium-Ion Diffusion in Ternary Phosphate Glasses. MRS Adv. 2016, 1, 3057–3062. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abitonze, M.; Yu, X.; Diko, C.S.; Zhu, Y.; Yang, Y. Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries. Batteries 2022, 8, 255. https://doi.org/10.3390/batteries8120255
Abitonze M, Yu X, Diko CS, Zhu Y, Yang Y. Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries. Batteries. 2022; 8(12):255. https://doi.org/10.3390/batteries8120255
Chicago/Turabian StyleAbitonze, Maurice, Xiaohan Yu, Catherine Sekyerebea Diko, Yimin Zhu, and Yan Yang. 2022. "Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries" Batteries 8, no. 12: 255. https://doi.org/10.3390/batteries8120255
APA StyleAbitonze, M., Yu, X., Diko, C. S., Zhu, Y., & Yang, Y. (2022). Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries. Batteries, 8(12), 255. https://doi.org/10.3390/batteries8120255