Polyaniline—Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review
Abstract
:1. Introduction
2. PANI/rGO Electrodes by Electropolymerization
2.1. Layered PANI/rGO Structures
Substrate | Electrolyte | Details of Polymerization Process (and Composite Component Contents or PANI Mass Loading) | Specific Capacitance (F/g) of rGO, PANI, PANI/rGO Electrodes (rGO//PANI//PANI/rGO) or SC Based on These (at Current Density or Scan Rate) | Cycling Stability (%) of PANI/rGO Electrodes or SC Based on These (at Cycle Number, Current Density or Scan Rate) | Specific Energy (Wh/kg)/Specific Power (W/kg) of Symmetric SC (Electrolyte Type, Potential Window) | Ref. |
---|---|---|---|---|---|---|
rGO paper (VF of graphene suspension) | 0.5 M H2SO4, 0.05 M ANI | 0.75 V, 900 s | single electrode: 147//-//233 (20 mV/s) | single electrode: >100 (1500, 20 mV/s) | - | [43] |
rGO paper (GO on A4 paper template, HI, sodium bicarbonate) | 1 M HCl, 0.3 M ANI | 0.8 V and 2 mA/cm2, 60 s (rGO:PANI as 3:2) | single electrode: 55//-//522 (1 A/g) | single electrode: 57 (10,000, 10 A/g) | - | [44] |
rGO paper (GO, HI) | 1 M H2SO4, 0.1 M ANI | 0.8 V, 600 s (22.3 wt% PANI) | single electrode: 180//-//763 (1 A/g) | single electrode: 82 (1000, 5 A/g) | - | [45] |
Partially exfoliated G foil | 1 M HClO4, 0.05 M ANI | 0.5 mA/cm2, 5400 s (1.29 mg/cm2) | single electrode: -//-//840 (1 A/g) | single electrode: 80.6 (10,000, 20 A/g) | - | [46] |
N-doped rGO paper (GO, γ-ray irradiation reduction, VF) | 0.05 M ANI, 0.5 M CSA, 0.1 M Et4NBF4 | 0.7 V, 2 C/cm2 | single electrode: -//-//330 (1 mA/cm2) | - | - | [47] |
rGO paper (GO, HI, 90 °C, 2 h) on ITO | 1 M H2SO4, 0.1 M ANI | 0.8 V, 30 s | single electrode: -//-//759 (1 A/g) | - | - | [48] |
rGO hydrogel (GO, sodium ascorbate, HT 90 °C, 1.5 h, pressed disk) | 1 M H2SO4, 0.4 M ANI | CV mode from –0.2 to +0.8 V at 10 mV/s (61 wt% PANI) | single electrode: -//-//791 (1.14 A/g) | - | - | [49] |
3D G grown by CVD on Ni foam template | 1 M HClO4, 0.1 M ANI | 0.65 mA/cm2, 2500 s (7.1 wt% PANI, 92.9 wt% G) | single electrode: -//-//751 (1 A/g) | single electrode: 93.2 (1000, 4 mA/cm2) | - | [50] |
G grown on wavy-shaped Ni foam template | 1 M H2SO4, 0.5 M ANI | pulsed mode, pulse length of 4 s, 60 cycles at 2 mA/cm2 | SC: -//-//261 (0.38 A/g) (based on mass of PANI) | SC: 89 (1000, 1 mA/cm2) | 23.2/399 (H3PO4-PVA, 0–+0.8 V) | [51] |
G woven fabric (by CVD) | 1 M HCl, 0.5 M ANI | 0.8 V, 900 s | SC: 67 (0.1 mA/cm2)//-//771 | SC: 100 (2000, -) | 15 mWh/m2/ 0.33 mW/cm2 (H3PO4-PVA, −0.4–+0.6 V) | [52] |
G-coated polyester textile | 1 M H2SO4, 0.1 M ANI | 0.75 V (10 wt% PANI, 0.2 mg/cm2) | single electrode: -//-//896 (1 A/g) | SC: 75.55 (1000, 10 A/g) | 13.11/200 (H3PO4-PVA, 0–+0.8 V) | [53] |
Hydrogen-bonded G on ITO | 1.0 M KOH, 0.1 M ANI | 50 cycles from 0 V to 1.0 V | single electrode: -//217//598 (1 A/g) | single electrode: 95 (5000, 1 A/g) | - | [54] |
rGO (GO, hydrazine vapour) on PDMS | 0.5 M H2SO4, 0.05 M ANI | 0.75 V, 4500 s (26% rGO) | SC: -//1268//973 (2.5 A/g) | SC: 90 (1700, 2.5 A/g) | - | [55] |
2.2. Multilayer and Inverse PANI/rGO Structures
Substrate | Electrolyte | Details of Polymerization Process (and Composite Component Contents or PANI Mass Loading) | Specific Capacitance of Prepared Electrodes or SC Based on These (at Current Density or Scan Rate) | Cycling Stability (%) of Prepared Electrodes or SC Based on These (at Cycle Number, Current Density or Scan Rate) | Specific Energy (Wh/kg)/Specific Power (W/kg) of Symmetric SC (Electrolyte Type, Potential Window) | Ref. |
---|---|---|---|---|---|---|
rGO paper (GO on A4 paper template, HI, sodium bicarbonate) | 1 M HCl, 0.3 M ANI | 0.8 V and 2 mA/cm2, 60 s (rGO:PANI as 3:2) | rGO/PANI/rGO single electrode: 581 F/g (1 A/g) | rGO/PANI/rGO single electrode: 85 (10,000, 10 A/g) | 10.79/- (H2SO4-PVA, 0–+0.8 V) | [44] |
Carbon woven fabric (CWF) | 1 M H2SO4, 0.1 M ANI | 0.65 V (2.2 mg/cm2 into GO + PAH, HI) | rGO/PANI/CWF single electrode: 571 F/g or 812 F/cm2 (1 A/g) SC: 790.4 F cm2 (1 A/cm2) | rGO/PANI/CWF single electrode: 88.9 (5000, 10 A/g) SC: 82 (3000/10 A/g) | 28.21 μWh/cm2/ 0.12 mW/cm2 (H2SO4-PVA, 0–+1 V) | [58] |
Ni foam or ITO | 1 M H2SO4, 0.5 M ANI | CV mode from −0.6 V to 1.4 V at 100 mV/s | ErGO/PANI/Ni or ITO single electrode: 550 (10 mA/g) | ErGO/PANI/Ni or ITO single electrode: ~95 (1000, 1.5 A/g) | 79.4/1000 (H2SO4, −0.2–+0.6 V) | [60] |
2.3. Mixed PANI/rGO Structures
Substrate | Electrolyte | Details of Polymerization Process (Composite Component Content or PANI Mass Loading) | Specific Capacitance (F/g) of rGO, PANI, PANI/rGO Electrodes (rGO//PANI//PANI/rGO) or SC Based on These (at Current Density or Scan Rate) | Cycling Stability (%) of PANI/rGO Electrodes or SC Based on These (at Cycle Number, Current Density or Scan Rate) | Specific Energy (Wh/kg)/Specific Power (W/kg) of Symmetric SC (Electrolyte Type, Potential Window) | Ref. |
---|---|---|---|---|---|---|
Carbon paper | ANI, GO, SDS | 0.3–0.5 mA/cm2, 7200 s | single electrode: 260//430//600 (1 mV/s) | single electrode: 88 (5000, 3 A) | - | [61] |
GH (GO, HT 180 °C, 14 h) pressed on carbon cloth | HCl, ANI | 0.75 V, 100 s (1 mg/cm2) | single electrode: -//-//854 (1 A/g) SC: -//-//741 (20 A/g) | single electrode: 90 (8000, 20 A/g) SC: 92.6 (8000, 20 A/g) | 14.8/6700 (H2SO4-PVA, 0–+0.8 V) | [57] |
GH (GO, HT 180 °C, 12 h) | 1 M H2SO4, 0.05 M ANI | 0.8 V, 1200 s (29 wt% PANI, 71 wt% G) | single electrode: 230//-//710 (2 A/g) | SC: 86 (1000, 2 A/g) | 24/30,000 (H2SO4, 0–+0.8 V) | [56] |
Porous sponge-like IL-rGO (IL reduced GO, BMIMBF4, DMF, HT 180 °C, 12 h) | 1 M H2SO4, 0.05 M ANI | 0.8 V, 60 s, at 2 mA/cm2 | single electrode: ~200//-//662 (1 A/g) | single electrode: 93.1 (5000, 10 A/g) | - | [62] |
G foam (GO, HT 180 °C, 12 h, freeze) into NF | 0.5 M H2SO4, 0.1 M ANI | CV mode from −0.5 to +1.5 V | single electrode: 192//-//478 (1 A/g) | - | - | [63] |
G foam (Ni template) | HCl:CH3OH:ANI as 1:0.5:0.2 M | 0.8 V, 540 s with stirring | single electrode: 26//-//968 (0.31 A/g) (based on mass of PANI-NFS/GF) or 1474 F/g (0.47 A/g) (based on mass of PANI-NFS) | single electrode: 83 (15,000, 28 mA/cm2) | - | [64] |
ITO | n-hexane, n-hexanol, TritonX-100, ANI, HNO3, G | 2-el. syst., pulse galvanostatic current process with charge loading of 500 mC, at 1 mA/cm2 | single electrode: -//-//878 (1 A/g) | single electrode: ~80 (1000, 10 A/g) | - | [65] |
ITO | GO, H2SO4, ANI | CV mode from − 1.3 to + 1.0 V at 50 mV/s | SC: -//-//640 (100 mV/s) | SC: 90 (1000, 0.1 A/g) | - | [66] |
2.4. Energy Storage in PANI/rGO Supercapacitors
3. Processing Conditions during Electropolymerization of PANI
3.1. Time of Electropolymerization Process
3.2. Cycling Number and Current Density
3.3. Charge Loading/Charge Density Effect
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
2-el. syst. | two-electrode system |
ANI | Aniline |
BMIMBF4 | 1-Butyl-3-methylimidazolium tetrafluoroborate |
CC | carbon cloth |
CNT | carbon nanotubes |
CSA | camphorsulphonic acid |
CVD | chemical vapour deposition |
DMF | dimethylformamide |
ErGO | electrochemically reduced GO |
Et4NBF4 | tetraethylammonium tetrafluoroborate |
Ex-GF | partially exfoliated graphite foil |
G | Graphene |
GH | graphene hydrogel |
GO | graphene oxide |
GP | graphene paper |
GWF | graphene woven fabric |
G/PT | graphene-coated polyester textile |
HbG | hydrogen-bonded graphene |
HT | hydrothermal method |
IL | ionic liquid |
ITO | indium tin oxide |
NF | nickel foam |
PAH | poly(allylamine hydrochloride) |
PANI-NFS | polyaniline-nanofiber sponge |
PDMS | polydimethylsiloxane |
rGO | reduced graphene oxide |
SDS | sodium dodecyl sulphate |
TEM | transmission electron microscopy |
VF | vacuum filtration |
References
- Sumangala, T.P.; Sreekanth, M.S.; Rahaman, A. Applications of Supercapacitors. In Handbook of Nanocomposite Supercapacitor Materials III. Springer Series in Materials Science; Kar, K.K., Ed.; Springer: Cham, Switzerland, 2021; Volume 313, pp. 367–393. [Google Scholar] [CrossRef]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–373. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Faraji, S.; Ani, F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sust. Energy Rev. 2015, 42, 823–834. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, R.-R.; Bi, H.-H.; Lu, Y.H.; Ma, L.-B.; He, X.-J. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Mater. 2021, 36, 69–81. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Materiom. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, Z.; Zhang, S.; Shao, G. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 2018, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Okhay, O.; Krishna, R.; Guerra, L.M.; Ventura, J.; Titus, E.; Gracio, J. Influence of oxidation and deposition process on electrical properties of graphene films. J. Mater. Sci. Eng. B 2014, 4, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Presser, V.; Heon, M.; Gogotsi, Y. Carbide-derived carbons—From porous networks to nanotubes and graphene. Adv. Funct. Mater. 2011, 21, 810–833. [Google Scholar] [CrossRef]
- Canal-Rodríguez, M.; Menéndez, J.A.; Arenillas, A. Performance of carbon xerogel-graphene hybrids electrodes in aqueous supercapacitors. Electrochim. Acta 2018, 276, 28–36. [Google Scholar] [CrossRef]
- Zhu, S.; Ni, J.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A.; Gallo, M.J.H.; Otero-Irurueta, G.; Mikhalev, S.; Staiti, P.; Lufrano, F. Energy storage of supercapacitor electrodes on carbon cloth enhanced by graphene oxide aerogel reducing conditions. J. Energy Storage 2020, 32, 101839. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A.; Staiti, P.; Lufrano, F. Long term durability of solid-state supercapacitor based on reduced graphene oxide aerogel and carbon nanotubes composite electrodes. Electrochim. Acta 2020, 353, 136540. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef]
- Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43, 1303–1310. [Google Scholar] [CrossRef]
- Shakir, I. High energy density based flexible electrochemical supercapacitors from layer-by-layer assembled multiwall carbon nanotubes and graphene. Electrochim. Acta 2014, 129, 396–400. [Google Scholar] [CrossRef]
- Simon, P.; Taberna, P.L.; Béguin, F. Electrical double-layer capacitors and carbons for EDLCs. In Supercapacitors: Materials, Systems, and Applications; Béguin, F., Frąckowiak, E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 131–165. [Google Scholar] [CrossRef]
- Enock, T.K.; King’ondu, C.K.; Pogrebnoi, A.; Jande, Y.A.C. Status of biomass derived carbon materials for supercapacitor application. Int. J. Electrochem. 2017, 2017, 6453420. [Google Scholar] [CrossRef]
- Simon, P.; Burke, A. Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface 2008, 17, 38–43. [Google Scholar] [CrossRef]
- Surawan, T.; Priambodo, P.S. Supercapacitor based on active carbon electrode: Review. In Proceedings of the 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, Padang, Indonesia, 22–24 July 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, H.M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C 2016, 120, 4153–4172. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 2009, 190, 578–586. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Ye, F.; Wang, W.; Wang, G.; Zhang, Z.; Li, S.; Zhou, Y.; Cai, J. Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J. Power Sources 2019, 443, 227246. [Google Scholar] [CrossRef]
- Deng, J.; Wang, T.; Guo, J.; Liu, P. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis. Prog. Nat. Sci. Mater. Int. 2017, 27, 257–260. [Google Scholar] [CrossRef]
- Zhang, P.; Zhai, X.; Huang, H.; Zhou, J.; Li, X.; He, Y.; Guo, Z. Capacitance fading mechanism and structural evolution of conductive polyaniline in electrochemical supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 14625–14634. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, X.; Zhu, Z.; Xiong, D.; Zhang, H.; Yang, W. Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chem. Eng. J. 2021, 423, 130203. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Shen, Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Dev. 2016, 1, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Li, L.; Wang, Y.; Zhang, C.; Liu, T. Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Compos. Commun. 2018, 8, 83–91. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Synergetic effect of polyaniline and graphene in their composite supercapacitor electrodes: Impact of components and parameters of chemical oxidative polymerization. Nanomaterials 2022, 12, 2531. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, H.; Yue, D.; Zhang, J.; Qu, M. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 2012, 51, 9544–9551. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Liu, X.; Guo, J.; Pan, L.; Wang, H.; Su, Q.; Du, G. Nanosulfur/polyaniline/graphene composites for high-performance lithium-sulfur batteries: One pot in-situ synthesis. Mater. Lett. 2014, 133, 193–196. [Google Scholar] [CrossRef]
- Li, Z.-F.; Zhang, H.; Liu, Q.; Liu, Y.; Stanciu, L.; Xie, J. Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes. ACS Appl. Mater. Interfaces 2014, 6, 5996–6002. [Google Scholar] [CrossRef]
- Ding, H.; Jiang, H.; Zhu, Z.; Hu, Y.; Gu, F.; Li, C. Ternary SnO2@PANI/rGO nanohybrids as excellent anode materials for lithium-ion batteries. Electrochim. Acta 2015, 157, 205–210. [Google Scholar] [CrossRef]
- Mi, H.; Li, F.; He, C.; Chai, X.; Zhang, Q.; Li, C.; Li, Y.; Liu, J. Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for lithium-ion batteries. Electrochim. Acta 2016, 190, 1032–1040. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Y.; Song, W.-L.; Li, X.; Fan, L.-Z.; Deng, Y. Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chem. Eng. J. 2017, 316, 645–654. [Google Scholar] [CrossRef]
- Huang, R.-A.; Guo, Y.; Chen, Z.; Zhang, X.; Wang, J.; Yang, B. An easy and scalable approach to synthesize three-dimensional sandwich-like Si/polyaniline/graphene nanoarchitecture anode for lithium ion batteries. Ceram. Int. 2018, 44, 4282–4286. [Google Scholar] [CrossRef]
- Yin, L.; Dou, H.; Wang, A.; Xu, G.; Nie, P.; Chang, Z.; Zhang, X. A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries. New J. Chem. 2018, 42, 1431–1436. [Google Scholar] [CrossRef]
- Deng, S.-H.; Yuan, L.-J.; Chen, Y.-B.; Wang, B. Electrochemical synthesis and performance of polyaniline/MnO2/graphene oxide composites cathode for seawater battery. Appl. Surf. Sci. 2022, 581, 152261. [Google Scholar] [CrossRef]
- Menga, Q.; Caia, K.; Chena, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Hong, X.; Fu, J.; Liu, X.; Li, S.; Wang, X.; Dong, W.; Yang, S. Recent progress on graphene/polyaniline composites for high-performance supercapacitors. Materials 2019, 12, 1451. [Google Scholar] [CrossRef] [Green Version]
- Balqis, F.; Prakoso, B.; Hawari, N.H.; Eldona, C.; Sumboja, A. Recent development of polyaniline/graphene composite electrodes for flexible supercapacitor devices. ChemNanoMat 2022, 8, e202200151. [Google Scholar] [CrossRef]
- Wang, D.-W.; Li, W.; Zhao, J.; Ren, W.; Chen, Z.-G.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G.Q.; Cheng, H.-M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, S.; Zhang, Z.; Liu, H.; Xiao, J.; Wan, L.; Luo, J.; Wang, S.; Liu, Y. Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci. Rep. 2012, 5, 9359. [Google Scholar] [CrossRef] [Green Version]
- Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185. [Google Scholar] [CrossRef]
- Ye, Y.-J.; Huang, Z.-H.; Song, Y.; Geng, J.-W.; Xu, X.X.; Liu, X.-X. Electrochemical growth of polyaniline nanowire arrays on graphene sheets in partially exfoliated graphite foil for high-performance supercapacitive materials. Electrochim. Acta 2017, 240, 72–79. [Google Scholar] [CrossRef]
- Jin, J.; Mu, H.; Wang, W.; Li, X.; Cheng, Q.; Wang, G. Long-life flexible supercapacitors based on nitrogen-doped porous graphene@π-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochim. Acta 2019, 317, 250–260. [Google Scholar] [CrossRef]
- Lv, F.; Xiong, S.; Wang, X.; Chu, J.; Zhang, R.; Gong, M.; Wu, B.; Li, Z.; Zhu, C.; Yang, Z.; et al. Electrochemical fabrication of polyaniline/graphene paper (PANI/GP) supercapacitor electrode materials on free-standing flexible graphene paper. High Perform. Polym. 2021, 33, 1124–1131. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Zhou, A.; Huang, Z.; Bai, H.; Li, L. Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv. Mater. 2016, 28, 10211. [Google Scholar] [CrossRef]
- Yu, M.; Ma, Y.; Liu, J.; Li, S. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 2015, 87, 98–105. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y.H.; Lau, S.P.; Huang, H.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149. [Google Scholar] [CrossRef]
- Zang, X.; Li, X.; Zhu, M.; Li, X.; Zhen, Z.; He, Y.; Wang, K.; Wei, J.; Kang, F.; Zhu, H. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015, 7, 7318–7322. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, Q.; Guo, K.; Chen, X. Wearable supercapacitor based on polyaniline supported by graphene coated polyester textile. Int. J. Energy Res. 2021, 45, 21403–21413. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Q.; Zhang, W.; Wang, Y.; Chen, W. Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromosupercapacitor. J. Mater. Sci. 2016, 51, 7731–7741. [Google Scholar] [CrossRef]
- Xue, M.; Li, F.; Zhu, J.; Song, H.; Zhang, M.; Cao, T. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284–1290. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, L.; Qiao, Y.; Dong, P.; Shi, J.; Cao, S. Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities. RSC Adv. 2016, 6, 58854–58861. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.; Xu, A.; Li, W.; Qin, Y. Facile preparation of graphene/polyaniline composite hydrogel film by electrodeposition for binder-free all-solid-state supercapacitor. J. Alloys Compd. 2021, 875, 159931. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Deng, W.; Zhang, D.; Li, N.; Wu, Q.; He, C. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/polyaniline/graphene composite. J. Power Sources 2018, 384, 278–286. [Google Scholar] [CrossRef]
- Xiong, C.; Li, T.; Zhu, Y.; Zhao, T.; Dang, A.; Li, H.; Ji, X.; Shang, Y.; Khan, M. Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. J. Alloys Compd. 2017, 695, 1248–1259. [Google Scholar] [CrossRef]
- Gupta, S.; Price, C. Investigating graphene/conducting polymer hybrid layered composites as pseudocapacitors: Interplay of heterogeneous electron transfer, electric double layers and mechanical stability. Comp. Part B 2016, 105, 46–49. [Google Scholar] [CrossRef]
- Kakaei, K.; Hamidi, M.; Kakaei, N. Simultaneous electro-synthesis of polyaniline graphene nanocomposite in dilute graphene oxide as dopant and aniline by electrochemical method and its high specific capacitance. Mater. Res. Express 2019, 6, 085623. [Google Scholar] [CrossRef]
- Iessa, K.H.S.; Zhang, Y.; Zhang, G.; Xiao, F.; Wang, S. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor. J. Power Sources 2016, 302, 92–97. [Google Scholar] [CrossRef]
- Wu, L.; Hao, L.; Pang, B.; Wang, G.; Zhang, Y.; Li, X. MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high performance asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 4629–4637. [Google Scholar] [CrossRef]
- Pedrós, J.; Boscá, A.; Martínez, J.; Ruiz-Gómez, S.; Pérez, L.; Barranco, V.; Calle, F. Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. J. Power Sources 2016, 317, 35–42. [Google Scholar] [CrossRef]
- Hu, L.; Tu, J.; Jiao, S.; Hou, J.; Zhua, H.; Fray, D.J. In situ electrochemical polymerization of a nanorod-PANI-graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 2012, 14, 15652–15656. [Google Scholar] [CrossRef]
- Feng, X.-M.; Li, R.-M.; Ma, Y.-W.; Chen, R.-F.; Shi, N.-E.; Fan, Q.-L.; Huang, W. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 2011, 21, 2989–2996. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Shen, Y.; Dou, Z.; Liu, N. Tuning spatial distribution of graphene sheets composited with polyaniline nanofiber array on carbon cloth towards ultrahigh areal energy density flexible supercapacitors. Carbon 2022, 186, 688–698. [Google Scholar] [CrossRef]
- Dou, Z.; Zhou, Y.; Shen, Y.; Xu, X.; Hu, S.; Yang, L.; Qin, Z. Realizing ultrahigh areal capacitance and cycle stability of polyaniline nanofiber network grown on graphene modified carbon cloth with the addition of trivalent iron ions in electrolyte. Electrochim. Acta 2020, 351, 136448. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhong, Q.; Qin, Y.; Xu, A.; Li, W.; Shi, J. In situ synthesis of trifluoroacetic acid-doped polyaniline/reduced graphene oxide composites for high-performance all-solid-state supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8774–8785. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Tkach, A. Polyaniline—Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review. Batteries 2022, 8, 191. https://doi.org/10.3390/batteries8100191
Okhay O, Tkach A. Polyaniline—Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review. Batteries. 2022; 8(10):191. https://doi.org/10.3390/batteries8100191
Chicago/Turabian StyleOkhay, Olena, and Alexander Tkach. 2022. "Polyaniline—Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review" Batteries 8, no. 10: 191. https://doi.org/10.3390/batteries8100191
APA StyleOkhay, O., & Tkach, A. (2022). Polyaniline—Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review. Batteries, 8(10), 191. https://doi.org/10.3390/batteries8100191