Tailoring Primary Particle Growth via Controlled Ammonia Feeding for Enhanced Electrochemical Stability of Hierarchical NCM622 Cathodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngoy, K.R.; Lukong, V.T.; Yoro, K.O.; Makambo, J.B.; Chukwuati, N.C.; Ibegbulam, C.; Eterigho-Ikelegbe, O.; Ukoba, K.; Jen, T.-C. Lithium-ion batteries and the future of sustainable energy: A comprehensive review. Renew. Sustain. Energy Rev. 2025, 223, 115971. [Google Scholar] [CrossRef]
- Hasan, M.; Haque, R.; Jahirul, M.; Rasul, M.G.; Fattah, I.; Hassan, N.; Mofijur, M. Advancing energy storage: The future trajectory of lithium-ion battery technologies. J. Energy Storage 2025, 120, 116511. [Google Scholar] [CrossRef]
- Wagner, A.C.; Bohn, N.; Geßwein, H.; Neumann, M.; Osenberg, M.; Hilger, A.; Manke, I.; Schmidt, V.; Binder, J.R. Hierarchical structuring of NMC111-cathode materials in lithium-ion batteries: An in-depth study on the influence of primary and secondary particle sizes on electrochemical performance. ACS Appl. Energy Mater. 2020, 3, 12565–12574. [Google Scholar] [CrossRef]
- Choi, H.-J.; Kim, Y.G.; Jeong, S.H.; Lee, S.J.; Jung, Y.H.; Kim, J.-H. Cu-Substituted Na3V2(PO4)3/C Composites as High-Rate, Long-Cycle Cathodes for Sodium-Ion Batteries. Batteries 2025, 11, 308. [Google Scholar] [CrossRef]
- Kim, N.Y.; Yim, T.; Song, J.H.; Yu, J.-S.; Lee, Z. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Sources 2016, 307, 641–648. [Google Scholar] [CrossRef]
- Marihot, S.D.; Cheng, Y.; Liu, H.; He, Z.; Li, Y.; Wu, Y.; Hua, W.; Xu, K. Strategic pH-Controlled Synthesis of Single-Crystal LiNi0.6Co0.2Mn0.2O2 for Maximized Structural and Electrochemical Optimization in Lithium-Ion Batteries. Mater. Today Sustain. 2025, 32, 101250. [Google Scholar]
- Aryal, S.; Durham, J.L.; Lipson, A.L.; Pupek, K.Z.; Kahvecioglu, O. Roles of Mn and Co in Ni-rich layered oxide cathodes synthesized utilizing a Taylor Vortex Reactor. Electrochim. Acta 2021, 391, 138929. [Google Scholar] [CrossRef]
- Cambaz, M.A.; Urban, A.; Pervez, S.A.; Geßwein, H.; Schiele, A.; Guda, A.A.; Bugaev, A.L.; Mazilkin, A.; Diemant, T.; Behm, R.J.r. Understanding the origin of higher capacity for Ni-based disordered rock-salt cathodes. Chem. Mater. 2020, 32, 3447–3461. [Google Scholar] [CrossRef]
- Vanaphuti, P.; Cui, Z.; Manthiram, A. Demarcating the Impact of Electrolytes on High-Nickel Cathodes and Lithium-Metal Anode. Adv. Funct. Mater. 2024, 34, 2308619. [Google Scholar] [CrossRef]
- Hussain, S.K.; Bang, J.H. Recent progress in Co-free, Ni-rich cathode materials for lithium-ion batteries. Bull. Korean Chem. Soc. 2024, 45, 4–15. [Google Scholar] [CrossRef]
- Lee, S.; Su, L.; Mesnier, A.; Cui, Z.; Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 2023, 7, 2430–2444. [Google Scholar] [CrossRef]
- Geldasa, F.T.; Kebede, M.A.; Shura, M.W.; Hone, F.G. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: A review. RSC Adv. 2022, 12, 5891–5909. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, H.; Ahn, Y.-J.; Yang, Y.-H.; Sun, Y.-K. Modulating the Electrode–Electrolyte Interphases for High–Energy Lithium–Metal Batteries. Energy Storage Mater. 2025, 81, 104514. [Google Scholar] [CrossRef]
- Nagda, V.; Ekström, H.; Kulachenko, A. Impact of mechanical degradation in polycrystalline NMC particle on the electrochemical performance of lithium-ion batteries. J. Electrochem. Soc. 2024, 171, 060526. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Y.; Feng, L.; Hao, J.; Zhou, D.; Zheng, Y.; Li, B. Unveiling the Degradation Mechanisms and Addressing Sensitivity Challenges in Nickel-Rich Cathodes via Advanced Characterization. Energy Storage Mater. 2025, 81, 104530. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries. Batteries 2025, 11, 254. [Google Scholar] [CrossRef]
- Rambukwella, I.; Ponnuru, H.; Yan, C. The role of dopants in mitigating the chemo-mechanical degradation of Ni-rich cathode: A critical review. EcoEnergy 2025, 3, 321–353. [Google Scholar] [CrossRef]
- Yao, L.; Liang, F.; Jin, J.; Chowdari, B.V.; Yang, J.; Wen, Z. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 2020, 389, 124403. [Google Scholar] [CrossRef]
- Kim, A.-Y.; Strauss, F.; Bartsch, T.; Teo, J.H.; Janek, J.; Brezesinski, T. Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Sci. Rep. 2021, 11, 5367. [Google Scholar] [CrossRef]
- Wullich, R.N.; Lelotte, B.; Pelé, V.; Jordy, C.; Gubler, L.; El Kazzi, M. Optimized LiNbO3 Sol-Gel Coatings for NCM622 in Sulfide-Based All-Solid-State Batteries: Insights into Synthesis, Uniformity, and Electrochemical Performance. Electrochim. Acta 2025, 536, 146750. [Google Scholar] [CrossRef]
- Sun, H.H.; Kim, U.-H.; Park, J.-H.; Park, S.-W.; Seo, D.-H.; Heller, A.; Mullins, C.B.; Yoon, C.S.; Sun, Y.-K. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 2021, 12, 6552. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, P.; Balakrishnan, G.; Pai, R.K.; Dange, Y.D.; Duru, K.K.; Sangaraju, S.; Maram, P.S.; Kalluri, S. High performance crack-free single crystalline NCM-622 via Mg-doping as a high voltage cathode for lithium-ion batteries. J. Power Sources 2025, 657, 238155. [Google Scholar] [CrossRef]
- Qu, X.; Huang, H.; Wan, T.; Hu, L.; Yu, Z.; Liu, Y.; Dou, A.; Zhou, Y.; Su, M.; Peng, X. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 2022, 91, 106665. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, X.; Zhou, Y.; Yang, K.; Fan, J.; Li, L.; Fu, C. Regulating the Evolution Pathway of the Cathode Electrolyte Interphase to Stabilize Li-Rich Cathode Materials. ACS Sustain. Chem. Eng. 2025, 13, 3311–3320. [Google Scholar] [CrossRef]
- Xi, X.; Fan, Y.; Liu, Y.; Chen, Z.; Zou, J.; Zhu, S. Enhanced cyclic stability of NCM-622 cathode by Ti3+ doped TiO2 coating. J. Alloys Compd. 2021, 872, 159664. [Google Scholar] [CrossRef]
- Pham, H.Q.; Mirolo, M.; Tarik, M.; El Kazzi, M.; Trabesinger, S. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater. 2020, 33, 216–229. [Google Scholar] [CrossRef]
- Liao, C.; Li, F.; Liu, J. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. Nanomaterials 2022, 12, 1888. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, F.; Zhang, Y. Micron-sized monodisperse particle LiNi0.6Co0.2Mn0.2O2 derived by oxalate solvothermal process combined with calcination as cathode material for lithium-ion batteries. Materials 2021, 14, 2576. [Google Scholar] [CrossRef]
- Oswald, S.; Bock, M.; Gasteiger, H.A. Elucidating the Implications of Morphology on Fundamental Characteristics of Nickel-Rich NCMs: Cracking, Gassing, Rate Capability, and Thermal Stability of Poly-and Single-Crystalline NCM622. J. Electrochem. Soc. 2022, 169, 050501. [Google Scholar] [CrossRef]
- Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; Belharouak, I.; Yoon, C.S.; Sun, Y.-K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734. [Google Scholar] [CrossRef]
- Meng, Z.; Ma, X.; Azhari, L.; Hou, J.; Wang, Y. Morphology controlled performance of ternary layered oxide cathodes. Commun. Mater. 2023, 4, 90. [Google Scholar] [CrossRef]
- Yang, G.; Huang, L.; Song, J.; Liu, S.; Cong, G.; Zhang, X.; Huang, Y.; An, Q.; Gao, X.; Geng, L. Impact of lithium diffusion paths on electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode for lithium-ion batteries. Electrochim. Acta 2023, 465, 142990. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Geng, J.; Liang, F.; Chen, M.; Zou, Z. Research progress on the failure mechanisms and modifications of Ni-rich ternary layered oxide cathode materials for lithium-ion batteries. J. Electron. Mater. 2023, 52, 72–95. [Google Scholar] [CrossRef]
- Ding, H.; Wang, X.; Wang, J.; Zhang, H.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Morphology-controllable synthesis and excellent electrochemical performance of Ni-rich layered NCM622 as cathode materials for lithium-ion batteries via glycerin-assisted solvothermal method. J. Power Sources 2023, 553, 232307. [Google Scholar] [CrossRef]
- Han, Y.; Zheng, C.; Liu, Z.; Chen, P.; Liu, S.; Li, G.; Gao, X.P. Ultra-High Nickel Oxides as Cathode Materials for High-Energy Lithium-Ion Batteries. Energy Environ. Mater. 2013, e70160. [Google Scholar] [CrossRef]
- Wang, J.; Batara, B.; Xu, K.; Zhang, K.; Hua, W.; Peng, Y.; Liu, W.; Putri, A.H.I.; Xu, Y.; Sun, X. Co-Precipitation of Ni-Rich Me(OH)2 Precursors for High Performance LiNixMnyCo1-x-yO2 Cathodes: A Review. Energy Environ. Mater. 2025, 8, e70078. [Google Scholar] [CrossRef]
- Hu, K.-H.; He, Y.-Y.; Zhu, C.-Q.; Zhou, K.; Chen, Q.; Yang, Z.-M.; Wan, B.-R.; Yang, E.-Q.; Zhang, T.-T.; Qin, Y.-D. Insight into the evolution of precursor and electrochemical performance of Ni-rich cathode modulated by ammonia during hydroxide precipitation. J. Alloys Compd. 2019, 803, 538–545. [Google Scholar] [CrossRef]
- Nam, K.-M.; Kim, H.-J.; Kang, D.-H.; Kim, Y.-S.; Song, S.-W. Ammonia-free coprecipitation synthesis of a Ni–Co–Mn hydroxide precursor for high-performance battery cathode materials. Green Chem. 2015, 17, 1127–1135. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, S.; Jin, B.-S.; Kim, H.-S. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci. Rep. 2019, 9, 8901. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Danilov, D.L.; Eichel, R.A.; Notten, P.H. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005. [Google Scholar] [CrossRef]
- Susai, F.A.; Bano, A.; Maiti, S.; Grinblat, J.; Chakraborty, A.; Sclar, H.; Kravchuk, T.; Kondrakov, A.; Tkachev, M.; Talianker, M. Stabilizing Ni-rich high energy cathodes for advanced lithium-ion batteries: The case of LiNi0.9Co0.1O2. J. Mater. Chem. A 2023, 11, 12958–12972. [Google Scholar] [CrossRef]
- Zybert, M.; Ronduda, H.; Szczęsna, A.; Trzeciak, T.; Ostrowski, A.; Żero, E.; Wieczorek, W.; Raróg-Pilecka, W.; Marcinek, M. Different strategies of introduction of lithium ions into nickel-manganese-cobalt carbonate resulting in LiNi0.6Co0.2Mn0.2O2 (NMC622) cathode material for Li-ion batteries. Solid State Ion. 2020, 348, 115273. [Google Scholar] [CrossRef]
- Kang, H.E.; Park, T.M.; Song, S.G.; Yoon, Y.S.; Lee, S.J. Optimization of LiNiCoMnO2 Cathode Material Synthesis Using Polyvinyl Alcohol Solution Method for Improved Lithium-Ion Batteries. Nanomaterials 2024, 14, 1096. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, G.S.; Jung, C.; Ko, D.S.; Park, S.Y.; Kim, H.G.; Hong, S.H.; Zhu, Y.; Kim, M. Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation. Adv. Sci. 2019, 6, 1800843. [Google Scholar] [CrossRef]
- Sun, W.; Lin, G.; Zhang, X.; Jin, H.; Zhu, M.; Li, Y. The Modification of Ncm Cathode Material Prepared by Hydrothermal Method Under Pulsed High Magnetic Field. Research Square, 2024; Preprint (v1). [Google Scholar] [CrossRef]
- Singh, J.P.; Devnani, H.; Sharma, A.; Lim, W.C.; Dhyani, A.; Chae, K.H.; Lee, S. Challenges and opportunities using Ni-rich layered oxide cathodes in Li-ion rechargeable batteries: The case of nickel cobalt manganese oxides. Energy Adv. 2024, 3, 1869–1893. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, Y.; Yao, Z.; Vanaphuti, P.; Ma, X.; Bong, S.; Chen, M.; Liu, Y.; Cheng, F.; Yang, Z. Systematic study of Al impurity for NCM622 cathode materials. ACS Sustain. Chem. Eng. 2020, 8, 9875–9884. [Google Scholar] [CrossRef]
- Han, D.; Zhang, J.; Yang, M.; Xie, K.; Peng, J.; Dolotko, O.; Huang, C.; Wu, Y.; Shao, L.; Hua, W. Enhancing the long-term cycling stability of Ni-rich cathodes via regulating the length/width ratio of primary particle. Energy Mater. 2024, 4, 400001. [Google Scholar] [CrossRef]
- Anansuksawat, N.; Sangsanit, T.; Prempluem, S.; Homlamai, K.; Tejangkura, W.; Sawangphruk, M. How uniform particle size of NMC90 boosts lithium ion mobility for faster charging and discharging in a cylindrical lithium ion battery cell. Chem. Sci. 2024, 15, 2026–2036. [Google Scholar] [CrossRef]
- Nisar, U.; Bansmann, J.; Hebel, M.; Reichel, B.; Mancini, M.; Wohlfahrt-Mehrens, M.; Hölzle, M.; Axmann, P. Borate modified Co-free LiNi0.5Mn1.5O4 cathode material: A pathway to superior interface and cycling stability in LNMO/graphite full-cells. Chem. Eng. J. 2024, 493, 152416. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, R.; Zhou, K.; Gao, Z.; He, W.; Zhang, L.; Han, C.; Kang, F.; Li, B. A comparative investigation of single crystal and polycrystalline Ni-Rich NCMs as cathodes for lithium-ion batteries. Energy Environ. Mater. 2023, 6, e12331. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, G.; Yang, Z.; Guo, W.; Lin, L.; Zhang, Y.; Zhang, C.; Li, S.; Liu, Y.; Sa, B. A low-cost inorganic oxide as dual-functional electrolyte additive towards long cycling Li-rich Mn-based cathode materials. Energy Mater. 2025, 5, 500033. [Google Scholar] [CrossRef]
- Shi, Z.; Gu, Q.; Yun, L.; Wei, Z.; Hu, D.; Qiu, B.; Chen, G.Z.; Liu, Z. A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. J. Mater. Chem. A 2021, 9, 24426–24437. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shaik, K.H.; Choi, H.J.; Kim, J.-H. Tailoring Primary Particle Growth via Controlled Ammonia Feeding for Enhanced Electrochemical Stability of Hierarchical NCM622 Cathodes. Batteries 2026, 12, 13. https://doi.org/10.3390/batteries12010013
Shaik KH, Choi HJ, Kim J-H. Tailoring Primary Particle Growth via Controlled Ammonia Feeding for Enhanced Electrochemical Stability of Hierarchical NCM622 Cathodes. Batteries. 2026; 12(1):13. https://doi.org/10.3390/batteries12010013
Chicago/Turabian StyleShaik, Khaja Hussain, Hyeon Jun Choi, and Joo-Hyung Kim. 2026. "Tailoring Primary Particle Growth via Controlled Ammonia Feeding for Enhanced Electrochemical Stability of Hierarchical NCM622 Cathodes" Batteries 12, no. 1: 13. https://doi.org/10.3390/batteries12010013
APA StyleShaik, K. H., Choi, H. J., & Kim, J.-H. (2026). Tailoring Primary Particle Growth via Controlled Ammonia Feeding for Enhanced Electrochemical Stability of Hierarchical NCM622 Cathodes. Batteries, 12(1), 13. https://doi.org/10.3390/batteries12010013

