Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres
Abstract
1. Introduction
2. Materials and Methods
- Comparison of external heat tests on 2.5–3.3 Ah 26,650 cells from different manufacturers.
- Effect of SoC and abuse method on a 3 Ah 26,650 cell.
- Comparison of external heat and overcharge on pouch and prismatic higher capacity (22–230 Ah) cells.
- Open-field nail penetration tests on pouch and prismatic cells.
2.1. Pressure Vessel Set-Up
2.2. Gas Volume Calculations
2.3. Gas Composition Analysis
2.4. 26650 Cell Characterisation
2.4.1. The 26,650 Cells External Heat Test Set-Up
2.4.2. The 26,650 Nail Penetration Test Set-Up
2.5. Higher Capacity (22–230 Ah) Pouch and Prismatic Cell Tests
2.5.1. Higher Capacity Cells External Heat Test Set-Up
2.5.2. Higher Capacity Cells Overcharge Test Set-Up
2.5.3. Higher Capacity Cells Open-Field Nail Penetration Tests
3. Results and Discussion
3.1. The 26,650 Cells External Heat Tests
3.1.1. The 26,650 Cell External Heat at 33, 67, and 100% SoC
3.1.2. External Heat Gas Composition
3.1.3. Nail Penetration Temperatures, Gas Volumes, and Composition
3.2. Higher Capacity Cell Results
3.2.1. External Heat Gas Volumes and Gas Composition
3.2.2. Overcharge Temperature Data and Gas Volumes
3.2.3. Overcharge Gas Composition
3.3. Nail Penetration Open-Field Tests
3.3.1. Cell F (25 Ah Pouch) Temperature Data
3.3.2. Cell H (50 Ah Prismatic) Temperature Data
3.3.3. 105 Ah (Cell J) Prismatic Temperature Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LFP | Lithium iron phosphate |
SoC | State of charge |
LIB | Lithium-ion batteries |
EV | Electric vehicles |
TR | Thermal runaway |
SATP | Standard atmospheric temperature and pressure |
SEI | Solid electrolyte interphase |
IR | Internal resistance |
CCCV | Constant current constant voltage |
EIS | Electrochemical impedance spectroscopy |
ACIR | Alternating current internal resistance |
FTIR | Fourier Transform Infrared Spectroscopy |
References
- Department for Buisness and Trade. UK Battery Strategy; Department for Business and Trade: London, UK, 2023. [Google Scholar]
- Clemens, K. Tesla Kicks Off Future of LFP Batteries in EVs. Available online: https://eepower.com/tech-insights/tesla-kicks-off-future-of-lfp-batteries-in-evs/#:~:text=Tesla%E2%80%99s%20decision%20to%20use%20LFP%20in%20its%20Semi,significantly%20longer%20than%20those%20equipped%20with%20nickel%20cathodes (accessed on 22 October 2024).
- Johnson, P. BYD is Launching its Next-Gen Blade EV Battery Soon with More Range and Even Lower Cost. Available online: https://electrek.co/2024/04/08/byd-launch-next-gen-ev-battery-more-range-lower-price/ (accessed on 7 November 2024).
- Bugryniec, P.J.; Davidson, J.N.; Cumming, D.J.; Brown, S.F. Pursuing safer batteries: Thermal abuse of LiFePO4 cells. J. Power Sources 2019, 414, 557–568. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Wang, Q.; Duan, Q.; Li, Y.; Li, L.; Wang, Q. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes. Int. J. Heat Mass Transf. 2021, 172, 121077. [Google Scholar] [CrossRef]
- Mao, B.; Ma, Y.; Zhang, K.; Li, X.; Lu, J.; Zhang, Y.; Wen, J.X. Self-ignition, jet flame and thermal radiation hazards associated with the large-size LiFePO4 cell during thermal runaway. J. Power Sources 2024, 622, 253361. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes: Impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef]
- Yuan, L.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Saf. Environ. Prot. 2020, 144, 186–192. [Google Scholar] [CrossRef]
- Sturk, D.; Rosell, L.; Blomqvist, P.; Tidblad, A.A. Analysis of Li-Ion Battery Gases Vented in an Inert Atmosphere Thermal Test Chamber. Batteries 2019, 5, 61. [Google Scholar] [CrossRef]
- Yang, M.; Rong, M.; Pan, J.; Ye, Y.; Yang, A.; Chu, J.; Yuan, H.; Wang, X. Thermal runaway behavior analysis during overheating for commercial LiFePO4 batteries under various state of charges. Appl. Therm. Eng. 2023, 230, 120816. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Zhang, Z.; Wang, Q.; Jin, C.; Wu, C.; Xu, C.; Hao, J.; Sun, L.; Du, Z.; et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study. eTransportation 2022, 13, 100190. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Li, M.; Li, Y.; Li, C.; Zhang, Y.; Chen, S.; Shen, H.; Qian, F.; Feng, X.; et al. Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production. Batteries 2022, 8, 250. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Li, M.; Li, C.; Zhang, Y.; Li, Y.; Yang, X.; Yang, X.; Feng, X.; Ouyang, M. Thermal Runaway Characteristics and Gas Composition Analysis of Lithium-Ion Batteries with Different LFP and NCM Cathode Materials Under Inert Atmosphere. Electronics 2023, 12, 1603. [Google Scholar] [CrossRef]
- Yang, M.; Rong, M.; Ye, Y.; Yang, A.; Chu, J.; Yuan, H.; Wang, X. Comprehensive analysis of gas production for commercial LiFePO4 batteries during overcharge-thermal runaway. J. Energy Storage 2023, 72, 108323. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; De Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Jin, C.; Xu, C.; Zhao, Y.; Li, Y.; Zhong, C.; Feng, X. Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes. J. Hazard. Mater. 2023, 458, 131646. [Google Scholar] [CrossRef] [PubMed]
- Said, A.O.; Lee, C.; Stoliarov, S.I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry. J. Power Sources 2020, 445, 227347. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, L.; Ju, X.; Liao, B.; Ye, K.; Li, L.; Cao, B.; Ni, Y. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J. Hazard. Mater. 2020, 381, 120916. [Google Scholar] [CrossRef] [PubMed]
- Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D.; Howard, G.; Read, E.; Williams, R.C.E. Comprehensive gas analysis of a 21700 Li (Ni0.8Co0.1Mn0.1O2) cell using mass spectrometry. J. Power Sources 2022, 539, 231585. [Google Scholar] [CrossRef]
- Howard, G.; Buston, J.; Gill, J. Experimental understanding of gas volumes and forces generated due to swelling during lithium-ion pouch cell failure. In Proceedings of the Hazards 31, Virtual, 16–18 November 2021. [Google Scholar]
- Howard, G.E.; Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D. Comprehensive Study of the Gas Volume and Composition Generated by 5 Ah Nickel Manganese Cobalt Oxide (NMC) Li-Ion Pouch Cells Through Different Failure Mechanisms at Varying States of Charge. Batteries 2025, 11, 197. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Yan, W. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. J. Hazard. Mater. 2020, 400, 123169. [Google Scholar] [CrossRef] [PubMed]
Cell ID | Cell A | Cell B | Cell C | Cell D |
---|---|---|---|---|
Format | Cylindrical, 26,650 | |||
Weight (g) | 83 | 86 | 84 | 87 |
Rated Capacity (Ah) | 3.0 | 3.3 | 2.5 | 3.0 |
Average Actual Capacity (Ah) | 2.9 | 3.5 | 2.4 | 2.9 |
Maximum Rated Continuous Discharge Rate (A) | 15 | 5 | 50 | 9 |
IR (mΩ) | 2.1 | 6.6 | 3.2 | 1.0 |
Cell ID | Format | Nominal Capacity (Ah) | Measured Capacity (Ah) | Weight (g) | IR (Ω) | Dimensions (mm) |
---|---|---|---|---|---|---|
E | Prismatic | 22 | 21 | 636 | 2.81 | 145 × 130 × 15 |
F | Pouch | 25 | 25 | 510 | 1.07 | 150 × 240 × 60 |
G | Prismatic | 32 | 33 | 745 | 1.35 | 150 × 90 × 25 |
H | Prismatic | 50 | 53 | 987 | 0.71 | 145 × 115 × 25 |
I | Prismatic | 50 | N/A | 1404 | * | 135 × 180 × 30 |
J | Prismatic | 105 | 109 | 1987 | * | 130 × 195 × 35 |
K | Prismatic | 230 | 242 | 4158 | * | 170 × 205 × 50 |
Cell ID | Atmosphere | Number of Tests | Starting SoC (%) | Overcharge Current (A) |
---|---|---|---|---|
Cell E | Air | 2 | 75 | 11 (0.5 C) |
Cell E | Ar | 2 | 75 | 11 (0.5 C) |
Cell G | Ar | 2 | 75 | 16 (0.5 C) |
Cell I | Ar | 1 | 75 | 25 (0.5 C) |
Cell J | Ar | 2 | 75 | 26 (0.25 C) |
Cell K | Ar | 2 | 100 | 30 (pressure vessel current limit) |
Cell ID | Atmosphere | Capacity (Ah) | Max. Temps. (°C) | Average Net Gas Volume (L) | Average Gas Volume (L/Ah) | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO (%) | CO2 (%) | CH4 (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | ||||||
A | N2 | 3.0 | 368–339 | 2.0 | 0.65 | 42.7 | 0.0 | 11.3 | 20.3 | 7.3 | 6.1 | 7.8 | 4.5 |
A | Air | 3.0 | 280 | 2.4 | 0.80 | 42.2 | 0.7 | 15.5 | 14.7 | 7.3 | 5.7 | 8.9 | 4.9 |
B | N2 | 3.3 | 226–315 | 1.8 | 0.50 | 47.6 | 1.8 | 19.1 | 10.4 | 2.4 | 4.9 | 10.3 | 3.6 |
B | Air | 3.3 | 270 | 1.1 | 0.33 | 36.9 | 0.0 | 30.8 | 13.2 | 0.7 | 4.2 | 11.5 | 2.7 |
C | N2 | 2.5 | 245–369 | 2.1 | 0.82 | 27.0 | 16.8 | 28.6 | 17.6 | 2.3 | 1.5 | 5.1 | 1.3 |
C | Air | 2.5 | 304 | 1.3 | 0.52 | 39.1 | 4.1 | 25.1 | 12.8 | 2.6 | 6.1 | 6.9 | 3.2 |
D | Ar | 3.0 | 318–409 | 3.1 | 1.03 | 12.9 | 8.2 | 16.8 | 14.5 | 3.2 | 4.4 | 10.7 | 1.7 |
D | Air | 3.0 | 327–348 | 2.5 | 0.83 | - | - | - | - | - | - | - | - |
Test Number | SoC (%) | Atmosphere | Maximum Temperature (°C) | Net Gas Volume Generated (L) | Net Average Gas Volume Generated (L) | Net Gas Volume (L/Ah) | Average Net Gas Volume (L/Ah) |
---|---|---|---|---|---|---|---|
D-1 | 100 | Ar | 374 | 2.9 | 3.1 | 1.0 | 1.0 |
D-2 | 100 | Ar | 409 | 3.1 | 1.0 | ||
D-3 | 100 | Ar | 318 | 3.3 | 1.1 | ||
D-4 | 67 | Ar | 370 | 2.4 | 2.5 | 1.2 | 1.2 |
D-5 | 67 | Ar | 286 | 2.4 | 1.2 | ||
D-6 | 67 | Ar | 265 | 2.6 | 1.3 | ||
D-7 | 33 | Ar | 213 | 1.6 | 1.9 | 1.6 | 1.9 |
D-8 | 33 | Ar | 194 | 2.1 | 2.1 | ||
D-9 | 33 | Ar | 258 | 2.0 | 2.0 | ||
D-10 | 100 | Air | 327 | 2.4 | 2.5 | 0.8 | 0.8 |
D-11 | 100 | Air | 348 | 2.5 | 0.8 | ||
D-12 | 100 | Air | 333 | 2.7 | 0.9 | ||
D-13 | 50 | Air | 261 | 1.9 | 1.9 | 0.8 | 0.8 |
D-14 | 50 | N2 | 215 | 1.9 | 1.9 | 0.8 | 0.8 |
Cell ID | Net Gas Volume (L) | Net Gas Volume (L/Ah) | Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO (%) | CO2 (%) | CH4 (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | |||
D-15 | 1.9 | 0.6 | 22.1 | 23.2 | 14.9 | 22.1 | 3.9 | 5.6 | 7.0 | 1.2 |
D-16 | 1.0 | 0.3 | 6.3 | 13.5 | 17.4 | 37.6 | 1.2 | 4.9 | 16.3 | 2.7 |
D-17 | 1.4 | 0.5 | 46.5 | 0.0 | 15.0 | 21.6 | 4.9 | 4.4 | 6.0 | 1.6 |
Cell ID | Average Net Gas Volumes (L) | Average Gas Volume (L/Ah) | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO (%) | CO2 (%) | CH4 (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | |||
Cell F (25 Ah Pouch) | 15.7 | 0.63 | 48.5 | 7.3 | 14.5 | 5.0 | 3.5 | 10.3 | 6.5 | 4.4 |
Cell H (50 Ah Prismatic) | 24.5 | 0.49 | 56.6 | 7.0 | 14.9 | 5.6 | 2.2 | 5.6 | 5.4 | 2.8 |
Cell J (105 Ah Prismatic) | 58.1 | 0.55 | 55.1 | 15.2 | 17.4 | 3.7 | 1.2 | 2.8 | 2.9 | 2.3 |
Cell ID | Capacity (Ah) | Atmosphere | Max Temperature (°C) | SoC at Failure (%) | Net Gas Volume (L) | Net Gas Volume at Failure Capacity (L/Ah) | Net Gas Volume at Nominal Capacity (L/Ah) |
---|---|---|---|---|---|---|---|
E-1 | 22 | Ar | 225 | 129 | 19.2 | 0.68 | 0.87 |
E-2 | 22 | Ar | 65 | 129 | 3.2 | 0.11 | 0.15 |
E-3 | 22 | Air | 296 | 128 | 19.2 | 0.68 | 0.87 |
E-4 | 22 | Air | 94 | 136 | 3.2 | 0.11 | 0.14 |
G-1 | 32 | Ar | 150 | 129 | 22.2 | 0.54 | 0.69 |
G-2 | 32 | Ar | 63 | 132 | 20.6 | 0.49 | 0.64 |
I-1 | 50 | Ar | 327 | 149 | 45.5 | 0.61 | 0.91 |
J-4 | 105 | Ar | 526 | 131 | 77.8 | 0.57 | 0.74 |
J-5 | 105 | Ar | 226 | - | 75.9 | - | 0.72 |
K-1 | 230 | Ar | 242 | 125 | 160 | 0.56 | 0.70 |
K-2 | 230 | Ar | 356 | 123 | 182 | 0.64 | 0.79 |
Cell ID | Capacity (Ah) | Atmosphere | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO (%) | CO2 (%) | CH4 (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | |||
Cell E | 22 | Air | 44.3 | 13.3 | 24.2 | 4.6 | 2.1 | 6.3 | 3.5 | 1.8 |
Cell E | 22 | Ar | 42.8 | 17.9 | 21.3 | 3.1 | 1.2 | 7.8 | 2.0 | 4.1 |
Cell G | 32 | Ar | 51.2 | 7.2 | 12.8 | 4.6 | 5.3 | 8.0 | 5.7 | 5.6 |
Cell I | 50 | Ar | 45.3 | 6.0 | 14.0 | 4.8 | 3.8 | 9.7 | 8.4 | 8.0 |
Cell J | 105 | Ar | 47.2 | 9.2 | 15.8 | 12.0 | 2.7 | 8.4 | 2.8 | 2.1 |
Cell K | 230 | Ar | 33.4 | 18.3 | 22.8 | 6.5 | 3.5 | 11.5 | 2.3 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, G.E.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Mellor, J.W.; Reeve, P.A.P. Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres. Batteries 2025, 11, 267. https://doi.org/10.3390/batteries11070267
Howard GE, Buston JEH, Gill J, Goddard SL, Mellor JW, Reeve PAP. Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres. Batteries. 2025; 11(7):267. https://doi.org/10.3390/batteries11070267
Chicago/Turabian StyleHoward, Gemma E., Jonathan E. H. Buston, Jason Gill, Steven L. Goddard, Jack W. Mellor, and Philip A. P. Reeve. 2025. "Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres" Batteries 11, no. 7: 267. https://doi.org/10.3390/batteries11070267
APA StyleHoward, G. E., Buston, J. E. H., Gill, J., Goddard, S. L., Mellor, J. W., & Reeve, P. A. P. (2025). Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres. Batteries, 11(7), 267. https://doi.org/10.3390/batteries11070267