Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Material Characterizations
2.3. Electrode Fabrication
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Chemical Purity and Composition of Pit-Derived Carbon
3.2. Effects of Jet Milling and Spheroidization on Particle Size, Morphology, and Tap Density
3.3. Crystallinity Enhancement
3.4. Electrochemical Performance of Upcycled Graphite Anodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rangarajan, S.S.; Sunddararaj, S.P.; Sudhakar, A.; Shiva, C.K.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges. Clean. Technol. 2022, 4, 908–930. [Google Scholar] [CrossRef]
- Bajolle, H.; Lagadic, M.; Louvet, N. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Res. Soc. Sci. 2022, 93, 102850. [Google Scholar] [CrossRef]
- Promi, A.; Meyer, K.; Ghosh, R.; Lin, F. Advancing electric mobility with lithium-ion batteries: A materials and sustainability perspective. MRS Bull. 2024, 49, 697–707. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, Z.; Sun, J.; Liu, Z.; Wang, J. High-energy batteries: Beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 2022, 14, 94. [Google Scholar] [CrossRef]
- Ma, X.; Chen, M.; Chen, B.; Meng, Z.; Wang, Y. High-performance graphite recovered from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 2019, 7, 19732–19738. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, B.; Qin, X.; Wang, Z.; Lv, W.; He, Y.; Yang, Q.; Kang, F. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704. [Google Scholar] [CrossRef]
- Natarajan, S.; Aravindan, V. An urgent call to spent LIB recycling: Whys and wherefores for graphite recovery. Adv. Energy Mater. 2020, 10, 2002238. [Google Scholar] [CrossRef]
- Tian, H.; Graczyk-Zajac, M.; Kessler, A.; Weidenkaff, A.; Riedel, R. Recycling and reusing of graphite from retired lithium-ion batteries: A Review. Adv. Mater. 2024, 36, 2308494. [Google Scholar] [CrossRef]
- Park, J.; Cho, S.-J.; Shin, S.; Kim, R.; Shin, D.; Shin, Y. Overview of graphite supply chain and its challenges. Geosci. J. 2025, 29, 329–341. [Google Scholar] [CrossRef]
- Pol, V.G. Lithium-ion battery critical materials sustainability. ACS Energy Lett. 2025, 10, 2553–2558. [Google Scholar] [CrossRef]
- Bhuwalka, K.; Ramachandran, H.; Narasimhan, S.; Yao, A.; Frohmann, J.; Peiseler, L.; Chueh, W.; Boies, A.; Davis, S.J.; Benson, S. Securing the supply of graphite for batteries. arXiv 2025, arXiv:2503.21521. [Google Scholar] [CrossRef]
- Gulley, A.L. The development of China’s monopoly over cobalt battery materials. Min. Econ. 2024, 37, 619–631. [Google Scholar] [CrossRef]
- Ellingsen, L.A.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef]
- Moradi, B.; Botte, G.G. Recycling of graphite anodes for the next generation of lithium ion batteries. J. Appl. Electrochem. 2016, 46, 123–148. [Google Scholar] [CrossRef]
- Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green recycling methods to treat lithium-ion batteries E-waste: A circular approach to sustainability. Adv. Mater. 2022, 34, 2103346. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, J.; Zhuang, Z.; Liang, Z.; Jia, K.; Ji, G.; Zhou, G.; Cheng, H.-M. Toward direct regeneration of spent lithium-ion batteries: A next-generation recycling method. Chem. Rev. 2024, 124, 2839–2887. [Google Scholar] [CrossRef] [PubMed]
- Markey, B.; Zhang, M.; Robb, I.; Xu, P.; Gao, H.; Zhang, D.; Holoubek, J.; Xia, D.; Zhao, Y.; Guo, J.; et al. Effective upcycling of graphite anode: Healing and doping enabled direct regeneration. J. Electrochem. Soc. 2020, 167, 160511. [Google Scholar] [CrossRef]
- Ferdous, A.R.; Shah, S.S.; Shah, S.N.A.; Johan, B.A.; Al Bari, A.; Aziz, A. Transforming waste into wealth: Advanced carbon-based electrodes derived from refinery and coal by-products for next-generation energy storage. Molecules 2024, 29, 2081. [Google Scholar] [CrossRef]
- Lower, L.; Dey, S.C.; Vook, T.; Nimlos, M.; Park, S.; Sagues, W.J. Catalytic graphitization of biocarbon for lithium-ion anodes: A minireview. ChemSusChem 2023, 16, e202300729. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, M.; Yuan, W.; Mu, J.; He, Z.; Wu, M. Green synthesis of hierarchically porous carbon derived from coal tar pitch for enhanced lithium storage. Batteries 2023, 9, 473. [Google Scholar] [CrossRef]
- Lee, G.; Lee, M.E.; Kim, S.-S.; Joh, H.-I.; Lee, S. Efficient upcycling of polypropylene-based waste disposable masks into hard carbons for anodes in sodium ion batteries. J. Ind. Eng. Chem. 2022, 105, 268–277. [Google Scholar] [CrossRef]
- Ji, Y.; Palmer, C.; Foley, E.; Giovine, R.; Yoshida, E.; Sebti, E.; Patterson, A.; McFarland, E.; Clément, R. Valorizing the carbon byproduct of methane pyrolysis in batteries. Carbon 2023, 204, 26–35. [Google Scholar] [CrossRef]
- Hong, S.; Ku, J.; Park, S.; Park, J.; Yu, Y.-S.; Kim, C. Recycling of polyethylene via hydrothermal carbonization for the Li-ion battery anode. Carbon. Lett. 2024, 34, 1529–1536. [Google Scholar] [CrossRef]
- Gharpure, A.; Kowalik, M.; Wal, R.L.V.; van Duin, A.C. Upcycling plastic waste into graphite using graphenic additives for energy storage: Yield, graphitic quality, and interaction mechanisms via experimentation and molecular dynamics. ACS Sustain. Chem. Eng. 2024, 12, 4565–4575. [Google Scholar] [CrossRef]
- Kim, K.S.; Hwang, J.U.; Im, J.S.; Lee, J.D.; Kim, J.H.; Kim, M.I. The effect of waste PET addition on PFO-based anode materials for improving the electric capacity in lithium-ion battery. Carbon Lett. 2020, 30, 545–553. [Google Scholar] [CrossRef]
- Kim, J.-J.; Lee, S.-H.; Roh, J.-S. Effect of heat-treatment temperature and residence time on microstructure and crystallinity of mesophase in coal tar pitch. Carbon. Lett. 2024, 34, 815–825. [Google Scholar] [CrossRef]
- Rong, T.; Guan, W.; Song, W.; Zuo, H.; Wang, J.; Xue, Q.; Jiao, S. Electrochemical graphitization transformation of deposited carbon for Li-ion storage: Sustainable energy utilization from coke oven solid waste. J. Mater. Chem. A 2023, 11, 84–94. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, X.; Chen, Z.; Seh, Z.W.; Wang, L.; Sun, Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2101565. [Google Scholar] [CrossRef]
- He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2021, 122, 903–956. [Google Scholar] [CrossRef]
- Bryntesen, S.N.; Strømman, A.H.; Tolstorebrov, I.; Shearing, P.R.; Lamb, J.J.; Burheim, O.S. Opportunities for the state-of-the-art production of LIB electrodes—A review. Energies 2021, 14, 1406. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Wu, J.; Shao, R.; Jiang, R.; Tie, Z.; Jin, Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries. Small 2022, 18, 2102894. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives, Electrochem. Energy Rev. 2023, 6, 8. [Google Scholar] [CrossRef]
- Xie, G.; Tan, X.; Shi, Z.; Peng, Y.; Ma, Y.; Zhong, Y.; Wang, F.; He, J.; Zhu, Z.; Cheng, X.; et al. SiOx based anodes for advanced Li-ion batteries: Recent progress and perspectives. Adv. Funct. Mater. 2025, 35, 2414714. [Google Scholar] [CrossRef]
- He, W.; Xu, W.; Li, Z.; Hu, Z.; Yang, J.; Qin, G.; Teng, W.; Zhang, T.; Zhang, W.; Sun, Z.; et al. Structural design and challenges of micron-scale silicon-based lithium-ion batteries. Adv. Sci. 2025, 12, 2407540. [Google Scholar] [CrossRef]
- Xiong, Y.; Xing, H.; Fan, Y.; Wei, Y.; Shang, J.; Chen, Y.; Yan, J. SiOx-based graphite composite anode and efficient binders: Practical applications in lithium-ion batteries. RSC Adv. 2021, 11, 7801–7807. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yin, L.; Ren, D.; Wang, L.; Ren, Y.; Xu, W.; Lapidus, S.; Wang, H.; He, X.; Chen, Z.; et al. In situ observation of thermal-driven degradation and stability in graphite anodes. Nat. Commun. 2021, 12, 4158. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, P.; Wang, K.; Fang, X.; Li, W.; Nai, J.; Liu, Y.; Wang, Y.; Zou, S.; Yuan, H.; et al. Developing high-performance anode-free lithium batteries: Challenges, strategies, and opportunities. Adv. Funct. Mater. 2025, 35, 2424022. [Google Scholar] [CrossRef]
- Natarajan, S.; Divya, M.L.; Aravindan, V. Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. J. Energy Chem. 2022, 71, 351–369. [Google Scholar] [CrossRef]
- Cameán, I.; Lavela, P.; Tirado, J.L.; García, A. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel 2010, 89, 986–991. [Google Scholar] [CrossRef]
- Lee, S.E.; Kim, J.H.; Lee, Y.-S.; Bai, B.C.; Im, J.S. Effect of crystallinity and particle size on coke-based anode for lithium ion batteries. Carbon Lett. 2021, 31, 911–920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Yang, I.; Lee, B.; Kim, T.H.; Park, S.-M.; An, J.-C. Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries. Batteries 2025, 11, 365. https://doi.org/10.3390/batteries11100365
Choi S, Yang I, Lee B, Kim TH, Park S-M, An J-C. Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries. Batteries. 2025; 11(10):365. https://doi.org/10.3390/batteries11100365
Chicago/Turabian StyleChoi, Seonhui, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park, and Jung-Chul An. 2025. "Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries" Batteries 11, no. 10: 365. https://doi.org/10.3390/batteries11100365
APA StyleChoi, S., Yang, I., Lee, B., Kim, T. H., Park, S.-M., & An, J.-C. (2025). Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries. Batteries, 11(10), 365. https://doi.org/10.3390/batteries11100365