Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Preparations
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cano, Z.P.; Banham, D.; Ye, S.Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z.W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Wang, F.F.; Ke, X.Y.; Shen, K.; Zhu, L.; Yuan, C. A Critical Review on Materials and Fabrications of Thermally Stable Separators for Lithium-Ion Batteries. Adv. Mater. Technol. 2022, 7, 2100772. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Yu, X.W.; Wang, S.F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Peljo, P.; Girault, H.H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception. Energy Environ. Sci. 2018, 11, 2306–2309. [Google Scholar] [CrossRef]
- Wang, C.H.; Adair, K.R.; Liang, J.W.; Li, X.N.; Sun, Y.P.; Li, X.; Wang, J.W.; Sun, Q.; Zhao, F.P.; Lin, X.T.; et al. Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2019, 29, 1900392. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Lee, D.; Park, J.; Jo, S.; Kim, J.; Song, T.; Paik, U. Epitaxial Growth of Nanostructured Li2Se on Lithium Metal for All Solid-State Batteries. Adv. Sci. 2021, 8, 2004204. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.W.; Sun, C.Z.; Jin, J.; Wang, Q.; Chen, X.D.; Zha, W.P.; Wen, Z.Y. Sustained Release-Driven Formation of Ultrastable SEI between Li6PS5Cl and Lithium Anode for Sulfide-Based Solid-State Batteries. Adv. Energy Mater. 2021, 11, 2002545. [Google Scholar] [CrossRef]
- Cao, Y.; Zuo, P.J.; Lou, S.F.; Sun, Z.; Li, Q.; Huo, H.; Ma, Y.L.; Du, C.Y.; Gao, Y.Z.; Yin, G.P. A quasi-solid-state Li-S battery with high energy density, superior stability and safety. J. Mater. Chem. A 2019, 7, 6533–6542. [Google Scholar] [CrossRef]
- Wan, H.; Liu, S.; Deng, T.; Xu, J.; Zhang, J.; He, X.; Ji, X.; Yao, X.; Wang, C. Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium−Sulfur Battery. ACS Energy Lett. 2021, 6, 862–868. [Google Scholar] [CrossRef]
- Chang, X.; Liu, G.; Wu, M.; Chang, M.; Zhao, X.; Chen, G.Z.; Fow, K.L.; Yao, X. Dual-functional ZnO/LiF layer protected lithium metal for stable Li10GeP2S12-based all-solid-state lithium batteries. Battery Energy 2023, 2, 20220051. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, Z.; Zhong, H.; Su, Y.; Wang, K.; Yang, Y. Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All-Solid-State Lithium−Sulfur Batteries. ACS Energy Lett. 2022, 7, 2761–2770. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.; Kim, S.; Yoon, K.; Han, S.; Lee, M.H.; Ko, Y.; Noh, J.H.; Kim, W.; Kang, K. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci. Adv. 2022, 8, eabq0153. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Kim, S.Y.; Harutyunyan, A.; Amirmaleki, M.; Lee, Y.; Son, Y.; Li, J. Ultra-Thin Lithium Silicide Interlayer for Solid-State Lithium-Metal Batteries. Adv. Mater. 2023, 35, 2210835. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Mizuno, F. Capture Lithium in αMnO2: Insights from First Principles. Chem. Mater. 2012, 24, 3943–3951. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Liu, L.; Xu, S.; Yan, X. Advances in Manganese-Based Oxides Cathodic Electrocatalysts for Li–Air Batteries. Adv. Funct. Mater. 2018, 28, 1704973. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, W.; Lou, Y.; Ma, J.; Yao, W.; Zong, R.; Zhu, Y. Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition. Nat. Commun. 2021, 12, 4152. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Nam, K.-W.; Ling, C.; Arthur, T.S.; Song, W.; Knapp, A.M.; Ehrlich, S.N.; Yang, X.-Q.; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110–113. [Google Scholar] [CrossRef]
- Johnson, C.S. Development and utility of manganese oxides as cathodes in lithium batteries. J. Power Sources 2007, 165, 559–565. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage. Nano Lett. 2008, 8, 2664–2668. [Google Scholar] [CrossRef] [PubMed]
- Débart, A.; Paterson, A.J.; Bao, J.; Bruce, P.G. α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 4521–4524. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhu, S.; Lu, Y. 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Adv. Funct. Mater. 2017, 27, 1606422. [Google Scholar] [CrossRef]
- Zuo, T.-T.; Wu, X.-W.; Yang, C.-P.; Yin, Y.-X.; Ye, H.; Li, N.-W.; Guo, Y.-G. Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Adv. Mater. 2017, 29, 1700389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zou, Y.; Liu, P.; Lai, Z.; Wen, L.; Jin, Y. EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms. Electrochim. Acta 2022, 418, 140350. [Google Scholar] [CrossRef]
- Le, M.; Liu, Y.; Wang, H.; Dutta, R.K.; Yan, W.; Hemminger, J.C.; Wu, R.Q.; Penner, R.M. In Situ Electrical Conductivity of LixMnO2 Nanowires as a Function of x and Size. Chem. Mater. 2015, 27, 3494–3504. [Google Scholar] [CrossRef]
- Duan, J.; Zheng, Y.; Luo, W.; Wu, W.; Wang, T.; Xie, Y.; Li, S.; Li, J.; Huang, Y. Is graphite lithiophobic or lithiophilic? Natl. Sci. Rev. 2020, 7, 1208. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; He, Y.; Li, Z.; Peng, Z.; Yao, X. Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries. Batteries 2024, 10, 189. https://doi.org/10.3390/batteries10060189
Song L, He Y, Li Z, Peng Z, Yao X. Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries. Batteries. 2024; 10(6):189. https://doi.org/10.3390/batteries10060189
Chicago/Turabian StyleSong, Libo, Yuanyue He, Zhendong Li, Zhe Peng, and Xiayin Yao. 2024. "Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries" Batteries 10, no. 6: 189. https://doi.org/10.3390/batteries10060189
APA StyleSong, L., He, Y., Li, Z., Peng, Z., & Yao, X. (2024). Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries. Batteries, 10(6), 189. https://doi.org/10.3390/batteries10060189