Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module
Abstract
:1. Introduction
2. Battery Thermal Runaway Propagation Model
3. Thermal Runaway Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
Density | |
Heat capacity at constant pressure | |
Temperature | |
Heat source item | |
Conduction heat transfer | |
Convection heat transfer | |
Radiative heat transfer | |
Volume | |
Energy fraction | |
Thermal conductivity | |
Area | |
Convective heat transfer coefficient | |
Surface emissivity | |
Stefan-Boltzmann constant | |
Turbulent dissipation rate source term | |
General scalar source term | |
Source term for the ith species | |
Turbulent kinetic energy source term | |
Mass source term | |
time | |
Velocity vector | |
Mass fraction of the ith species | |
Turbulence dissipation from fluctuating dilatation | |
Turbulent dissipation rate | |
Molecular viscosity | |
Turbulent viscosity | |
Dynamic viscosity | |
Turbulent Prandtl number for turbulent kinetic energy | |
Turbulent Prandtl number for turbulent dissipation rate | |
Stress tensor | |
Turbulent stress tensor |
References
- Xu, C.; Fan, Z.; Zhang, M.; Wang, P.; Wang, H.; Jin, C.; Peng, Y.; Jiang, F.; Feng, X.; Ouyang, M. A Comparative Study of the Venting Gas of Lithium-Ion Batteries during Thermal Runaway Triggered by Various Methods. Cell Rep. Phys. Sci. 2023, 4, 101705. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Gao, Y.; Guan, D.; Li, S. Quantitative Power Flow Characterization of Energy Harvesting Shock Absorbers by Considering Motion Bifurcation. Energies 2022, 15, 6887. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Guan, D.; Gao, Y. Damping Characterization of Electromagnetic Shock Absorbers by Considering Engagement and Disengagement. Iran. J. Sci. Technol.-Trans. Mech. Eng. 2022, 47, 1215–1264. [Google Scholar] [CrossRef]
- Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Rep. Phys. Sci. 2021, 2, 100285. [Google Scholar] [CrossRef]
- Xu, J.; Mei, W.; Zhao, C.; Liu, Y.; Zhang, L.; Wang, Q. Study on Thermal Runaway Mechanism of 1000 MAh Lithium Ion Pouch Cell during Nail Penetration. J. Therm. Anal. Calorim. 2021, 144, 273–284. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Wang, H.; Zheng, Y.; Wang, S.; Rui, X.; Xu, C.; Feng, X.; Wang, H.; Ouyang, M. Heating Power and Heating Energy Effect on the Thermal Runaway Propagation Characteristics of Lithium-Ion Battery Module: Experiments and Modeling. Appl. Energy 2022, 312, 118760. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Lu, L.; He, X.; Ouyang, M. Overcharge Behaviors and Failure Mechanism of Lithium-Ion Batteries under Different Test Conditions. Appl. Energy 2019, 250, 323–332. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; de Persis, S. Identification and Quantification of Gases Emitted during Abuse Tests by Overcharge of a Commercial Li-Ion Battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Bailey, J.J.; Vo, N.T.; Magdysyuk, O.V.; Drakopoulos, M.; et al. Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway. Adv. Sci. 2017, 5, 1700369. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Mao, B.; Chen, M.; Huang, Z.; Wang, Q. Experimental Study on Thermal Runaway and Fire Behaviors of Large Format Lithium Iron Phosphate Battery. Appl. Therm. Eng. 2021, 192, 116949. [Google Scholar] [CrossRef]
- Kim, J.; Mallarapu, A.; Finegan, D.P.; Santhanagopalan, S. Modeling Cell Venting and Gas-Phase Reactions in 18650 Lithium Ion Batteries during Thermal Runaway. J. Power Sources 2021, 489, 229496. [Google Scholar] [CrossRef]
- Zlochower, I.A.; Green, G.M. The Limiting Oxygen Concentration and Flammability Limits of Gases and Gas Mixtures. J. Loss Prev. Process. Ind. 2009, 22, 499–505. [Google Scholar] [CrossRef]
- Li, W.; Rao, S.; Xiao, Y.; Gao, Z.; Chen, Y.; Wang, H.; Ouyang, M. Fire Boundaries of Lithium-Ion Cell Eruption Gases Caused by Thermal Runaway. iScience 2021, 24, 102401. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Zhao, Z.; Jin, C.; Xu, C.; Huang, W.; Yuan, Z.; Wang, S.; Li, Y.; Zhao, Y.; et al. Thermal Runaway Propagation Behavior of the Cell-to-Pack Battery System. J. Energy Chem. 2023, 84, 162–172. [Google Scholar] [CrossRef]
- Srinivasan, R.; Thomas, M.E.; Airola, M.B.; Carkhuff, B.G.; Frizzell-Makowski, L.J.; Alkandry, H.; Reuster, J.G.; Oguz, H.N.; Green, P.W.; La Favors, J.; et al. Preventing Cell-to-Cell Propagation of Thermal Runaway in Lithium-Ion Batteries. J. Electrochem. Soc. 2020, 167, 020559. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Yao, J.; Feng, X.; Lai, X.; Shen, K.; Wang, H.; Rui, X.; Xu, C.; Zheng, Y.; et al. No Thermal Runaway Propagation Optimization Design of Battery Arrangement for Cell-to-Chassis Technology. eTransportation 2022, 14, 100199. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Wang, H.; Lai, X.; Wang, S.; Chen, S.; Rui, X.; Zheng, Y.; Feng, X.; Wang, H.; et al. Model and Experiments to Investigate Thermal Runaway Characterization of Lithium-Ion Batteries Induced by External Heating Method. J Power Sources 2021, 504, 230065. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, Y.; Duan, Q.; Qin, P.; Sun, J.; Wang, Q. Heating Position Effect on Internal Thermal Runaway Propagation in Large-Format Lithium Iron Phosphate Battery. Appl. Energy 2022, 325, 119778. [Google Scholar] [CrossRef]
- Jia, Z.; Song, L.; Mei, W.; Yu, Y.; Meng, X.; Jin, K.; Sun, J.; Wang, Q. The Preload Force Effect on the Thermal Runaway and Venting Behaviors of Large-Format Prismatic LiFePO4 Batteries. Appl. Energy 2022, 327, 120100. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; Yin, X.; Ling, G. Avoiding Thermal Runaway Propagation of Lithium-Ion Battery Modules by Using Hybrid Phase Change Material and Liquid Cooling. Appl. Therm. Eng. 2021, 184, 116380. [Google Scholar] [CrossRef]
- Song, L.; Huang, Z.; Mei, W.; Jia, Z.; Yu, Y.; Wang, Q.; Jin, K. Thermal Runaway Propagation Behavior and Energy Flow Distribution Analysis of 280 Ah LiFePO4 Battery. Process Saf. Environ. Prot. 2023, 170, 1066–1078. [Google Scholar] [CrossRef]
- Meng, L.; See, K.W.; Wang, G.; Wang, Y.; Zhang, Y.; Zang, C.; Xie, B. Explosion-Proof Lithium-Ion Battery Pack—In-Depth Investigation and Experimental Study on the Design Criteria. Energy 2022, 249, 123715. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Zhang, Z.; Wang, Q.; Jin, C.; Wu, C.; Xu, C.; Hao, J.; Sun, L.; Du, Z.; et al. Fire and Explosion Characteristics of Vent Gas from Lithium-Ion Batteries after Thermal Runaway: A Comparative Study. eTransportation 2022, 13, 100190. [Google Scholar] [CrossRef]
- Wei, G.; Huang, R.; Zhang, G.; Jiang, B.; Zhu, J.; Guo, Y.; Han, G.; Wei, X.; Dai, H. A Comprehensive Insight into the Thermal Runaway Issues in the View of Lithium-Ion Battery Intrinsic Safety Performance and Venting Gas Explosion Hazards. Appl. Energy 2023, 349, 121651. [Google Scholar] [CrossRef]
- Huang, W.; Feng, X.; Pan, Y.; Jin, C.; Sun, J.; Yao, J.; Wang, H.; Xu, C.; Jiang, F.; Ouyang, M. Early Warning of Battery Failure Based on Venting Signal. J. Energy Storage 2023, 59, 106536. [Google Scholar] [CrossRef]
- He, C.X.; Yue, Q.L.; Chen, Q.; Zhao, T.S. Modeling Thermal Runaway of Lithium-Ion Batteries with a Venting Process. Appl. Energy 2022, 327, 120110. [Google Scholar] [CrossRef]
- Cai, T.; Valecha, P.; Tran, V.; Engle, B.; Stefanopoulou, A.; Siegel, J. Detection of Li-Ion Battery Failure and Venting with Carbon Dioxide Sensors. eTransportation 2021, 7, 100100. [Google Scholar] [CrossRef]
- Coman, P.T.; Mátéfi-Tempfli, S.; Veje, C.T.; White, R.E. Modeling Vaporization, Gas Generation and Venting in Li-Ion Battery Cells with a Dimethyl Carbonate Electrolyte. J. Electrochem. Soc. 2017, 164, A1858–A1865. [Google Scholar] [CrossRef]
- Kong, D.; Wang, G.; Ping, P.; Wen, J. A Coupled Conjugate Heat Transfer and CFD Model for the Thermal Runaway Evolution and Jet Fire of 18650 Lithium-Ion Battery under Thermal Abuse. eTransportation 2022, 12, 100157. [Google Scholar] [CrossRef]
- Feng, X.; Lu, L.; Ouyang, M.; Li, J.; He, X. A 3D Thermal Runaway Propagation Model for a Large Format Lithium Ion Battery Module. Energy 2016, 115, 194–208. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Yi, M. Design Optimization of Forced Air-Cooled Lithium-Ion Battery Module Based on Multi-Vents. J. Energy Storage 2021, 40, 102781. [Google Scholar] [CrossRef]
Cell and air | Conductive heat transfer | area = 0.00767 m2; thickness = 0.001 m; = 500 W m−1K−1 |
Convective heat transfer | area = 0.007678 m2; h = 5 W m−2K−1 | |
Radiative heat transfer | area = 0.007678 m2; = 0.04 W m−2K−4 | |
Cell front face | Conductive heat transfer | area = 0.00923 m2; thickness = 5.8 mm; = 0.29 W m−1K−1 |
Cell side face | Conductive heat transfer | area = 0.00143 m2; thickness = 5.8 mm; = 0.29 W m−1K−1 |
Heater to cell | Conductive heat transfer | area = 0.00923 m2; thickness = 5.8 mm; = 0.29 W m−1K−1 |
Density | 2132.86 kg m−3 | |
Specific heat | 1089.35 J kg−1 K−1 | |
Mass | 433.10 g | |
Volume | 142 mm × 65 mm × 22 mm | |
Emissivity | 0.58 | |
Boltzmann constant | 5.67 × 10−8 W m−2 K−4 | |
Self-generated heat temperature | 166.92 °C | |
TR onset temperature | 274.00 °C | |
TR maximum temperature | 607.00 °C | |
TR total energy | 207,628.64 J |
Case | State | Side 1 | Side 2 | Wall 1 | Wall 2 | Wall 3 | Wall 4 | Wall 5 | Wall 6 | Wall 7 | Wall 8 | Wall 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Upright | Outlet | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Wall | Wall | Wall | Wall | Inlet 1.5 g/s | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Wall | Wall | Wall | Inlet 1.5 g/s | Wall | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Inlet 1.5 g/s | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Wall | Wall | Wall | Wall | Inlet 1.0 g/s | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Wall | Wall | Wall | Wall | Inlet 2.0 g/s | Wall | Wall | Wall | Wall | |
Upright | Outlet | Outlet | Wall | Wall | Wall | Wall | Inlet 2.5 g/s | Wall | Wall | Wall | Wall | |
Upright | Inlet 1.0 g/s | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Upright | Inlet 1.5 g/s | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Upright | Inlet 2.0 g/s | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Upright | Inlet 2.5 g/s | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Invert | Outlet | Outlet | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | Wall | |
Invert | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | |
Invert | Inlet 1.0 g/s | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet | Outlet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhu, X.; Qiu, J.; Xu, C.; Wang, Y.; Feng, X. Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module. Batteries 2024, 10, 176. https://doi.org/10.3390/batteries10060176
Zhang S, Zhu X, Qiu J, Xu C, Wang Y, Feng X. Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module. Batteries. 2024; 10(6):176. https://doi.org/10.3390/batteries10060176
Chicago/Turabian StyleZhang, Songtong, Xiayu Zhu, Jingyi Qiu, Chengshan Xu, Yan Wang, and Xuning Feng. 2024. "Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module" Batteries 10, no. 6: 176. https://doi.org/10.3390/batteries10060176
APA StyleZhang, S., Zhu, X., Qiu, J., Xu, C., Wang, Y., & Feng, X. (2024). Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module. Batteries, 10(6), 176. https://doi.org/10.3390/batteries10060176