Film Thickness Effect in Restructuring NiO into LiNiO2 Anode for Highly Stable Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of NiO Porous Nanosheets (NSs)
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masuk, N.I.; Mostakim, K.; Kanka, S.D. Performance and emission characteristic analysis of a gasoline engine utilizing different types of alternative fuels: A comprehensive review. Energy Fuels 2021, 35, 4644–4669. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Abd Rahim, N.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards sustainable energy: A systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Zantye, M.S.; Gandhi, A.; Wang, Y.; Vudata, S.P.; Bhattacharyya, D.; Hasan, M.M.F. Optimal design and integration of decentralized electrochemical energy storage with renewables and fossil plants. Energy Environ. Mater. 2022, 15, 4119–4136. [Google Scholar] [CrossRef]
- Rostirolla, G.; Grange, L.; Minh-Thuyen, T.; Stolf, P.; Pierson, J.M.; Da Costa, G.; Baudic, G.; Haddad, M.; Kassab, A.; Nicod, J.M.; et al. A survey of challenges and solutions for the integration of renewable energy in datacenters. Renew. Sustain. Energy Rev. 2022, 155, 111787. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.X.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering 2023, 24, 172–183. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bao, Z.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Hao, Y.; Shao, J.; Yuan, Y.; Li, X.; Xiao, W.; Sari, H.M.K.; Liu, T.; Lu, J. Design of phosphide anodes harvesting superior sodium storage: Progress, challenges, and perspectives. Adv. Funct. Mater. 2023, 33, 2212692. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.T.; Son, D.Y.; Ono, L.K.; Qi, Y.B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Evarts, E.C. Lithium batteries: To the limits of lithium. Nature 2015, 526, S93–S95. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Arshad, F.; Li, L.; Amin, K.; Fan, E.; Manurkar, N.; Ahmad, A.; Yang, J.; Wu, F.; Chen, R. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 13527–13554. [Google Scholar] [CrossRef]
- Landi, B.J.; Ganter, M.J.; Cress, C.D.; DiLeo, R.A.; Raffaelle, R.P. Carbon nanotubes for lithium ion batteries. Energy Environ. Mater. 2009, 2, 638–654. [Google Scholar] [CrossRef]
- Haregewoin, A.M.; Wotango, A.S.; Hwang, B.J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Mater. 2016, 9, 1955–1988. [Google Scholar] [CrossRef]
- Qian, H.; Li, X.; Chen, Q.; Liu, W.; Zhao, Z.; Ma, Z.; Cao, Y.; Wang, J.; Li, W.; Xu, K.; et al. LiZn/Li2O induced chemical confinement enabling dendrite-free Li-metal anode. Adv. Funct. Mater. 2023, 2310143. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives. Electrochem. Energy Rev. 2023, 6, 8. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Safaei, B.; Yuan, C.; Jen, T.-C. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy Rev. 2023, 6, 24. [Google Scholar] [CrossRef]
- Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X.; et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; An, Y.; Feng, J. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.J.; Hu, R.Z.; Yang, L.C.; Zhu, M. Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes. Adv. Energy Mater. 2016, 6, 1600256. [Google Scholar] [CrossRef]
- Luo, J.; Liu, J.; Zeng, Z.; Ng, C.F.; Ma, L.; Zhang, H.; Lin, J.; Shen, Z.; Fan, H.J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle fife and high rate capability. Nano Lett. 2013, 13, 6136–6143. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Zheng, Y.; Huang, R.; Yao, J. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J. Power Sources 2019, 416, 62–71. [Google Scholar] [CrossRef]
- Jiang, T.; Bu, F.; Feng, X.; Shakir, I.; Hao, G.; Xu, Y. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery. ACS Nano 2017, 11, 5140–5147. [Google Scholar] [CrossRef]
- Hassan, M.F.; Guo, Z.; Chen, Z.; Liu, H. α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Mater. Res. Bull. 2011, 46, 858–864. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Giang, T.T.; Kim, I.T. Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries. Chem. Eng. J. 2022, 437, 135292. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Yao, J.; Huang, Y.; Xiao, S. Facile synthesis of porous tubular NiO with considerable pseudocapacitance as high capacity and long life anode for lithium-ion batteries. Ceram. Int. 2018, 44, 2568–2577. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, B.; Lu, Z.D.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Fan, F.; Mei, L.; Lu, B. Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 2016, 10, 8243–8251. [Google Scholar] [CrossRef]
- Hu, N.; Tang, Z.; Shen, P.K. Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance. Rsc Adv. 2018, 8, 26589–26595. [Google Scholar] [CrossRef]
- Ullah, K.; Shah, N.; Wadood, R.; Khan, B.M.; Oh, W.C. Recent trends in graphene based transition metal oxides as anode materials for rechargeable lithium-ion batteries. Nano Trends 2023, 1, 100004. [Google Scholar] [CrossRef]
- Torres, R.M.; Manthiram, A. Delineating the effects of transition-metal-ion dissolution on silicon anodes in lithium-ion batteries. Small 2024, e2309350. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S.H.; Nam, J.S.; Sagong, M.; Ahn, J.; Lim, H.; Kim, I.-D. Toward thin and stable anodes for practical lithium metal batteries: A review, strategies, and perspectives. EcoMat 2023, 5, e12416. [Google Scholar] [CrossRef]
- Shah, A.; Senapati, S.; Murthy, H.C.A.; Singh, L.R.; Mahato, M. Supercapacitor performance of NiO, NiO-MWCNT, and NiO–Fe-MWCNT composites. ACS Omega 2023, 8, 33380–33391. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.G.; Masuda, Y. Highly sensitive and selective gas sensors based on NiO/MnO2@NiO nanosheets to detect allyl mercaptan gas released by humans under psychological stress. Adv. Sci. 2022, 9, 2202442. [Google Scholar] [CrossRef] [PubMed]
- Itzhak, A.; He, X.; Kama, A.; Kumar, S.; Ejgenberg, M.; Kahn, A.; Cahen, D. NiN-passivated NiO hole-transport layer improves halide perovskite-based solar cell. ACS Appl. Mater. Interfaces 2022, 14, 47587–47594. [Google Scholar] [CrossRef] [PubMed]
- Janus, W.; Ślęzak, T.; Ślęzak, M.; Szpytma, M.; Dróżdż, P.; Nayyef, H.; Mandziak, A.; Wilgocka-Ślęzak, D.; Zając, M.; Jugovac, M.; et al. Tunable magnetic anisotropy of antiferromagnetic NiO in (Fe)/NiO/MgO/Cr/MgO(001) epitaxial multilayers. Sci. Rep. 2023, 13, 4824. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.C.; Tummala, S.; Chiu, H.-H.; Ho, M.-K.; Li, T.-Y.; Chang, C.-K.; Cheng, C.-L.; Ho, Y.-P.; Wu, S.Y. Sm-doped NiO nanoparticles for magnetic memory at room temperature. ACS Appl. Nano Mater. 2021, 4, 10116–10127. [Google Scholar] [CrossRef]
- Ata-ur, R.; Iftikhar, M.; Latif, S.; Jevtovic, V.; Ashraf, I.M.; El-Zahhar, A.A.; Abdu Musad Saleh, E.; Mustansar Abbas, S. Current advances and prospects in NiO-based lithium-ion battery anodes. Sustain. Energy Technol. Assess. 2022, 53, 102376. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Liang, J.; Yu, W.; Ding, S.J.; Cheng, S.D.; Yang, G.; Wang, Y.L.; Xi, Y.X.; Xi, K.; Kumar, R.V. Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 2015, 16, 152–162. [Google Scholar] [CrossRef]
- Wei, S.; Di Lecce, D.; Brescia, R.; Pugliese, G.; Shearing, P.R.; Hassoun, J. Electrochemical behavior of nanostructured NiO@C anode in a lithium-ion battery using LiNi⅓Co⅓Mn⅓O2 cathode. J. Alloys Compd. 2020, 844, 155365. [Google Scholar] [CrossRef]
- Wang, X.H.; Sun, L.M.; Sun, X.L.; Li, X.W.; He, D.Y. Size-controllable porous NiO electrodes for high-performance lithium ion battery anodes. Mater. Res. Bull. 2017, 96, 533–537. [Google Scholar] [CrossRef]
- Gan, H.H.; Zhang, Y.; Li, S.Q.; Yu, L.P.; Wang, J.R.; Xue, Z.G. Self-healing single-ion conducting polymer electrolyte formed via supramolecular networks for lithium metal natteries. Acs Appl. Energy Mater. 2021, 4, 482–491. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048. [Google Scholar] [CrossRef]
- Jin, Y.; Li, S.; Kushima, A.; Zheng, X.; Sun, Y.; Xie, J.; Sun, J.; Xue, W.; Zhou, G.; Wu, J.; et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Mater. 2017, 10, 580–592. [Google Scholar] [CrossRef]
- Mezzomo, L.; Ferrara, C.; Brugnetti, G.; Callegari, D.; Quartarone, E.; Mustarelli, P.; Ruffo, R. Exploiting self-healing in lithium batteries: Strategies for next-generation energy storage devices. Adv. Energy Mater. 2020, 10, 2002815. [Google Scholar] [CrossRef]
- Zhou, B.H.; Jo, Y.H.; Wang, R.; He, D.; Zhou, X.P.; Xie, X.L.; Xue, Z.G. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10354–10362. [Google Scholar] [CrossRef]
- Nam, J.; Kim, E.; Rajeev, K.K.; Kim, Y.; Kim, T.H. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Sci. Rep. 2020, 10, 14966. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Z.; Su, Z.; Chen, S.; Yan, C.; Al-Mamun, M.; Tang, Y.; Zhang, S. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 2021, 81, 105654. [Google Scholar] [CrossRef]
- Li, Z.; Wei, L.; Liu, Y.; Su, Y.; Dong, X.; Zhang, Y. Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 13853–13860. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef] [PubMed]
- Heryanto; Hendri; Abdullah, B.; Tahir, D. Analysis of structural properties of X-ray diffraction for composite copper-activated carbon by modified Williamson-Hall and size-strain plotting methods. J. Phys. Conf. Ser. 2018, 1080, 012007. [Google Scholar] [CrossRef]
- Kibasomba, P.M.; Dhlamini, S.; Maaza, M.; Liu, C.-P.; Rashad, M.M.; Rayan, D.A.; Mwakikunga, B.W. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 2018, 9, 628–635. [Google Scholar] [CrossRef]
- Wang, D.; Xu, R.; Wang, X.; Li, Y. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17, 979. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Q.; Xue, J.; Jia, H.; Xu, B.; Liu, X.; Li, Q. Annealing temperature effect on 3D hierarchically porous NiO/Ni for removal of trace hexavalent chromium. Mater. Chem. Phys. 2020, 240, 122140. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Ng, T.-W.; Kang, W.; Lee, C.-S.; Zhang, W. Iron(ii) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: Structural and chemical evolution upon cycling. J. Mater. Chem. A 2015, 3, 20527–20534. [Google Scholar] [CrossRef]
- Cao, B.; Liu, Z.; Xu, C.; Huang, J.; Fang, H.; Chen, Y. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries. J. Power Sources 2019, 414, 233–241. [Google Scholar] [CrossRef]
- Sun, H.; Xin, G.; Hu, T.; Yu, M.; Shao, D.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, A.; Li, X. A modeling and experimental study of capacity fade for lithium-ion batteries. Engergy AI 2020, 2, 100032. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Sun, X.; Li, F.; Liu, Q.; Wang, Q.; He, D. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571–3573. [Google Scholar] [CrossRef]
- Nava, D.P.; Guzman, G.; Vazquez-Arenas, J.; Cardoso, J.; Gomez, B.; Gonzalez, I. An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly(poly (ethylene glycol) methacrylate). Solid State Ion. 2016, 290, 98–107. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryu, K.-S. Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci. Rep. 2017, 7, 16617. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.H.; Ding, N.; Liu, J.; Li, C.; Chen, C.H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384–2390. [Google Scholar] [CrossRef]
- So, S.; Ko, J.; Ahn, Y.N.; Kim, I.T.; Hur, J. Unraveling improved electrochemical kinetics of In2Te3-based anodes embedded in hybrid matrix for Li-ion batteries. Chem. Eng. J. 2022, 429, 132395. [Google Scholar] [CrossRef]
- Piao, T.; Park, S.M.; Doh, C.H.; Moon, S.I. Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements. J. Electrochem. Soc. 1999, 146, 2794–2798. [Google Scholar] [CrossRef]
- Bisquert, J.; Garcia-Belmonte, G.; Bueno, P.; Longo, E.; Bulhões, L.O.S. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 1998, 452, 229–234. [Google Scholar] [CrossRef]
- Ye, B.; Xu, L.; Wu, W.; Ye, Y.; Yang, Z.; Ai, J.; Qiu, Y.; Gong, Z.; Zhou, Y.; Huang, Q.; et al. Encapsulation of 2D MoS2 nanosheets into 1D carbon nanobelts as anodes with enhanced lithium/sodium storage properties. J. Mater. Chem. C 2022, 10, 3329–3342. [Google Scholar] [CrossRef]
- Khalaji, A.D.; Jarosova, M.; Machek, P.; Chen, K.; Xue, D. Li-ion battery studies on nickel oxide nanoparticles prepared by facile route calcination. Polyhedron 2020, 179, 114360. [Google Scholar] [CrossRef]
- Kumar Rai, A.; Tuan Anh, L.; Park, C.-J.; Kim, J. Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram. Int. 2013, 39, 6611–6618. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, S.; Yang, G.; Lu, T.; Pan, L. NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries. J. Solid State Electrochem. 2018, 22, 785–795. [Google Scholar] [CrossRef]
Sample Name | Thickness (μm) | Expanded Thickness (μm) | Restructuring Cycle Number | Capacity at 0.1 A g−1 (mAh g−1) |
---|---|---|---|---|
N1 | 15.9 | 20.3 | 500 | 1200 |
N2 | 20.5 | 25.0 | 220 | 1000 |
N3 | 39.7 | 46.5 | 210 | 570 |
N4 | 52.2 | 56.8 | 160 | 500 |
Anode Materials | Morphology | Areal Weight of Active Material (mg cm−2) | Current Rate (A g−1) | Specific Capacity (mAh g−1) | References |
---|---|---|---|---|---|
NiO@CMK | NSs | - | 0.1 | 1076 | [42] |
NiO/Ni foam | Nanobelt | 1.3–1.5 | ~0.143 | 1035 | [32] |
NiO | Porous NSs | - | 0.071 | ~800 | [52] |
NiO/Ni foam | Oxidation of Ni foam (NiO nanostructure) | - | ~0.143 | ~750 | [44,62] |
NiO | Porous microtubules | 1.42 | 0.2 | ~800 | [29] |
NiO | Nanoparticles | ~1.0 | 0.1 | ~600 | [70] |
NiO | Nanoparticles | - | 0.1 | ~730 | [71] |
NiO@C | Nanoparticles | 1.5–2.5 | 0.1 | ~900 | [43] |
NiO/CNT | Nanoparticle assembled microsphere | - | 0.1 | ~800 | [72] |
NiO | Porous NSs | 1.5 | 0.1 | 1000 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.P.; Kim, I.T. Film Thickness Effect in Restructuring NiO into LiNiO2 Anode for Highly Stable Lithium-Ion Batteries. Batteries 2024, 10, 80. https://doi.org/10.3390/batteries10030080
Nguyen TP, Kim IT. Film Thickness Effect in Restructuring NiO into LiNiO2 Anode for Highly Stable Lithium-Ion Batteries. Batteries. 2024; 10(3):80. https://doi.org/10.3390/batteries10030080
Chicago/Turabian StyleNguyen, Thang Phan, and Il Tae Kim. 2024. "Film Thickness Effect in Restructuring NiO into LiNiO2 Anode for Highly Stable Lithium-Ion Batteries" Batteries 10, no. 3: 80. https://doi.org/10.3390/batteries10030080
APA StyleNguyen, T. P., & Kim, I. T. (2024). Film Thickness Effect in Restructuring NiO into LiNiO2 Anode for Highly Stable Lithium-Ion Batteries. Batteries, 10(3), 80. https://doi.org/10.3390/batteries10030080