Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Electrolyte Matrix
2.2. Measurements and Calculations
- Caphigh is the highest value of discharge capacity in the initial 10 cycles;
- Caplow is the lowest value of discharge capacity in the initial 10 cycles;
- nhigh is the cycle number of the highest discharge capacity in the initial 10 cycles;
- nlow is the cycle number of the lowest discharge capacity in the initial 10 cycles;
- Subscript 0 is for 6.77 M (30%) KOH electrolyte.
3. Results and Discussion
3.1. Electrochemical Performance of MgNi-Based NiMH with 30% KOH Electrolyte
3.2. Electrochemical Performance of Pure Salt Solutions
Salt | Concentration in M | Test time before cell failed in h | Test cycles before cell failed | Capacity % 1 | Degradation % 2 | Conductivity % 3 |
---|---|---|---|---|---|---|
KOH | 6.77 | >130 | >20 | 100.0 | 100.0 | 100.0 |
KF | 1.77 | 105 | 20 | 12.3 | 49.4 | 12.9 |
KCl | 1.77 | 73 | 8 | 79.7 | 136.5 | 14.6 |
KBr | 1.77 | 56 | 4 | 167.4 | 309.9 | 12.9 |
KI | 1.77 | 128 | 20 | 16.3 | n/a | 15.0 |
LiCl | 1.77 | 56 | 5 | 84.7 | 185.4 | 10.3 |
NaCl | 1.77 | 100 | 11 | 100.0 | 121.2 | 12.0 |
KCl | 1.77 | 73 | 8 | 79.7 | 136.5 | 14.6 |
RbCl | 1.77 | 70 | 9 | 82.8 | 88.8 | 15.0 |
CsCl | 1.77 | 42 | 4 | 79.4 | 105.0 | 14.2 |
3.3. Electrochemical Performance of Mixtures of Salt and KOH Solutions
3.3.1. Effect of Salt Additives on Conductivity
Sample number | KOH concentration in M | Normalized conductivity in % 1 |
---|---|---|
1 | 4.15 | 88.2 |
2 | 4.64 | 92.6 |
3 | 5.15 | 95.6 |
4 | 5.67 | 98.5 |
5 | 6.21 | 98.5 |
6 | 6.77 | 100.0 |
7 | 7.33 | 95.6 |
8 | 7.91 | 92.6 |
9 | 8.52 | 89.7 |
Salt | Concentration in M | Conductivity in % 1 | Salt | Concentration in M | Conductivity in % 1 | Salt | Concentration in M | Conductivity in % 1 |
---|---|---|---|---|---|---|---|---|
LiCl | 0.44 | 97.4 | Na2WO4 | 0.29 | 88.3 | Li2SO4 | 0.005 | 90.7 |
NaCl | 0.44 | 97.4 | KIO4 | 0.44 | 100.0 | Na2SO4 | 0.005 | 91.4 |
KCl | 0.44 | 97.0 | LiNO3 | 0.44 | 97.7 | K2SO4 | 0.005 | 89.0 |
RbCl | 0.44 | 96.3 | NaNO3 | 0.44 | 97.7 | Rb2SO4 | 0.005 | 89.3 |
CsCl | 0.44 | 96.3 | RbNO3 | 0.44 | 95.5 | Cs2SO4 | 0.005 | 88.7 |
KF | 0.44 | 96.8 | KNO3 | 0.44 | 100 | LiCHO2 | 0.44 | 92.4 |
KBr | 0.44 | 98.3 | K2CO3 | 0.29 | 99.6 | KCHO2 | 0.44 | 93.6 |
KI | 0.44 | 96.1 | Cs2CO3 | 0.29 | 97.0 | CsCHO2 | 0.44 | 94.1 |
LiBr | 0.44 | 93.8 | Rb2CO3 | 0.29 | 98.5 | KC2H3O2 | 0.44 | 89.4 |
NaBr | 0.44 | 94.5 | Na2CO3 | 0.29 | 89.0 | NaC2H3O2 | 0.44 | 90.5 |
NaF | 0.44 | 96.9 | K3PO4 | 0.22 | 99.2 | - | - | - |
3.3.2. Effect of Salt Additives on Discharge Capacity and Degradation
3.3.3. Performance of Alkaline Cations Containing Electrolytes
3.3.4. Performance of Halogen Containing Electrolytes
3.3.5 Performance of Oxyacid Containing Electrolytes
3.4. Mechanistic Analysis for Using Additive Containing Electrolytes in Novel Ni/MH Battery Systems
3.4.1. Synergistic Effect between KOH and Salt Additives
3.4.2. Active Sites for Proton Transfer and H Bond Types
3.4.3. Proton Transfer Mechanisms: Vehicle Mechanism and Structure-Diffusion Mechanism
3.4.4. Factors that Influence Electrochemical Performance of the Novel Additive-Containing Electrolytes
- (1)
- The nature of the basic sites. The stronger the basicity, the better the performance [23,24]. In this research, CO32−, PO43−, and F− are strong Lewis bases and do well in decreasing degradation and boosting discharge capacity. NO3− and I− are weak Lewis bases and have poor hydrogen ion adsorption. In Figure 3, NO3− and I− containing electrolytes show poor performance.
- (2)
- The amount of basic sites. Comparing CHO2− and C2H3O2− containing electrolytes, it was found that C2H3O2− shows better performance than CHO2−. For CHO2−, the Lewis basic site that acts as the proton carrier is the oxygen in the C–O bond. For C2H3O2−, the Lewis basic sites include the oxygen in the C–O bond and the C from the CH3− group. C2H3O2− contains more basic sites than CHO2− [22].
- (3)
- The stability of the salt additives. During the charge/discharge processes, the salt additives are in highly reductive/oxidative environments. The additives with low stability, such as KIO4, perform poorly.
- (4)
- The salt solubility in KOH solution. It has been found that all the SO42− containing salts have low solubility in KOH solutions [20,21]. The maximum solubility of K2SO4 in KOH is only around 0.093% (0.005 M). In this research, the SO42− containing electrolyte performs poorly compared to other oxyacid salt electrolytes, and similarly to pure KOH solutions.
- (5)
- The ionic charge of the additive ions. Anions with high ionic charge, such as CO32−, PO43−, WO42−, perform well.
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Linden, D.; Reddy, T.B. Handbook of Batteries; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Fetcenko, M.A.; Ovshinsky, S.R.; Reichman, B.; Young, K.; Fierro, C.; Koch, J.; Zallen, A.; Mays, W.; Ouchi, T. Recent advances in NiMH battery technology. J. Power Sources 2007, 165, 544–551. [Google Scholar] [CrossRef]
- Iwakura, C.; Fukuda, K.; Senoh, H.; Inoue, H.; Matsuoka, M.; Yamamoto, Y. Electrochemical characterization of MmNi4.0−xMn0.75Al0.25Cox electrodes as a function of cobalt content. Electrochim. Acta 1998, 43, 2041–2046. [Google Scholar] [CrossRef]
- Geng, M.; Feng, F.; Sebastian, P.J.; Matchett, A.J.; Northwood, D.O. Charge transfer and mass transfer reactions in the metal hydride electrode. Int. J. Hydrog. Energy 2001, 26, 165–169. [Google Scholar] [CrossRef]
- Niessen, R.A.H.; Notten, R.H.L. Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds. Electrochem. Solid State Lett. 2005, 8, 534–538. [Google Scholar] [CrossRef]
- Notten, P.H.L.; Ouwerkerk, M.; Hal, H.V.; Beelen, D.; Keur, W.; Zhou, J.; Fei, H. High energy density strategies: From hydride-forming materials research to battery integration. J. Power Sources 2004, 129, 45–54. [Google Scholar] [CrossRef]
- Young, K.; Nei, J. The current status of hydrogen storage alloy development for electrochemical applications. Materials 2013, 6, 4574–4608. [Google Scholar] [CrossRef]
- Anik, M.; Özdemir, G.; Küçükdeveci, N. Electrochemical hydrogen storage characteristics of Mg–Pd–Ni ternary alloys. Int. J. Hydrog. Energy 2011, 36, 6744–6750. [Google Scholar] [CrossRef]
- Rongeat, C.; Grosjean, M.H.; Ruggeri, S.; Dehmas, M.; Bourlot, S.; Marcotte, S.; Roué, L. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries. J. Power Sources 2006, 158, 747–753. [Google Scholar] [CrossRef]
- Liu, J. Effect of Ti-La substitution on electrochemical properties of amorphous MgNi-based secondary hydride electrodes. J. Tianjin Norm. Univ. 2011, 313, 67–70. [Google Scholar]
- Anik, M.; Özdemir, G.; Küçükdeveci, N.; Baksan, B. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy. Int. J. Hydrog. Energy 2011, 36, 1568–1577. [Google Scholar] [CrossRef]
- Kalinichenka, S.; Röntzsch, L.; Riedl, T.; Gemming, T.; Weißgärber, T.; Kieback, B. Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. Int. J. Hydrog. Energy 2011, 36, 1592–1600. [Google Scholar] [CrossRef]
- Ma, F.; Liu, X.; Yan, S.; Ao, D.; Ren, Y. Research progress of influence factors on electrochemical performance of Mg-base hydrogen storage alloys. Met. Func. Mater. 2011, 34, 63–64. [Google Scholar]
- Anik, M. Effect of titanium additive element on the discharging behavior of MgNi alloy electrode. Int. J. Hydrog. Energy 2011, 36, 15075–15080. [Google Scholar] [CrossRef]
- Danczuk, M.; Nunes, C.V., Jr.; Araki, K.; Anaissi, F.J.J. Influence of Alkaline Cation on the Electrochemical Behavior of Stabilized Alpha Nickel Hydroxide. Solid State Electron. 2014, 18, 2279–2287. [Google Scholar] [CrossRef]
- Karwowska, M.; Jaron, T.; Fijalkowski, K.J.; Leszczynski, P.J.; Rogulski, Z.; Czerwinski, A. Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni–MH batteries. J. Power Sources 2014, 263, 304–309. [Google Scholar] [CrossRef]
- Shangguan, E.; Li, J.; Chang, Z.; Tang, H.; Li, B.; Yuan, X.; Wang, H. Sodium tungstate as electrolyte additive to improve high-temperature performance of nickel–metal hydride batteries. Int. J. Hydrog. Energy 2013, 38, 5133–5138. [Google Scholar] [CrossRef]
- Vaidyanathan, H.; Robbins, K.; Rao, G.M. Effect of KOH concentration and anions on the performance of an Ni-H2 battery positive plate. J. Power Sources 1996, 63, 7–13. [Google Scholar] [CrossRef]
- Ovshinsky, S.R.; Fetcenko, M.A.; Reichman, B.; Young, K.; Chao, B.; Im, J. Electrochemical Hydrogen Storage Alloys and Batteries Fabricated from Mg containing Base Alloys. U.S. Patent 5,616,432, 1 April 1997. [Google Scholar]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Zaluska, A.; Zaluski, L.; Ström-Olsen, J.O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 2001, 72, 157–165. [Google Scholar] [CrossRef]
- Basak, D. Proton Transfer in Organic Scaffolds; University of Massachusetts Amherst: Amherst, MA, USA, 2012. [Google Scholar]
- Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. Covalent nature of the strong homonuclear hydrogen bond—Study of the O–H---O system by crystal structure correlation methods. J. Am. Chem. Soc. 1994, 116, 909–915. [Google Scholar] [CrossRef]
- Grabowski, J.S. What is the covalency of hydrogen bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Chang, J.C.; Jiang, J.C.; Lin, S.H. Ab initio study of the ammoniated ammonium ions NH4+(NH3)0–6. Chem. Phys. 2002, 276, 93–106. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Young, K.-H.; Ng, K.Y.S. Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries. Batteries 2015, 1, 54-73. https://doi.org/10.3390/batteries1010054
Yan S, Young K-H, Ng KYS. Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries. Batteries. 2015; 1(1):54-73. https://doi.org/10.3390/batteries1010054
Chicago/Turabian StyleYan, Suli, Kwo-Hsiung Young, and K.Y. Simon Ng. 2015. "Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries" Batteries 1, no. 1: 54-73. https://doi.org/10.3390/batteries1010054
APA StyleYan, S., Young, K.-H., & Ng, K. Y. S. (2015). Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries. Batteries, 1(1), 54-73. https://doi.org/10.3390/batteries1010054