Magnetic Fields as Biophysical Modulators of Anticancer Drug Action
Abstract
1. Introduction
2. Methods
3. The Types of Magnetic Fields
4. SMF and Drugs
4.1. SMF and Cisplatin
4.2. SMF and DOX
4.3. SMF and 5-FU/Paclitaxel/Topotecan
Cell Lines/Animal | Agent Co-Used | SMF Intensity | Exposure Time | Critical Endpoint | Interaction | Refs |
---|---|---|---|---|---|---|
K562 | Cisplatin | 8.8 mT | 8 h | Enhanced the killing potency; inhibited metabolic activity, increased cisplatin uptake, and decreased P-gp expression | Potentiation | [35] |
K562 | 8.8 mT | 12 h | Enhanced the anticancer effect, reducing the efficient killing concentration; increased DNA damage | Potentiation | [10] | |
Heap1-6 | 8.8 mT | 24 h | Promoted the killing of tumor cells; increased the ratio of cells arrested in G2/M phase, enhanced DNA damage and caused larger holes in the cell membrane | Potentiation | [38] | |
K562 | 9 mT | 12 h | Altered membrane permeability; holes appear on the cell surface | Potentiation | [36] | |
A2780 and A2780-CP cell lines | 10, 15 and 25 mT | 24/48/96 h | Increased the effect of cisplatin on cell viability percent and decreased the resistance of A2780-CP cells; produced large, verruca shaped structures at the surface of the cell membrane, increased drug uptake | Potentiation | [23] | |
A2780 and A2780-CP cell lines | 15 mT | 24/48/96 h | Increased DNA damage and cell death; elevated expression levels of p53, p21, and CTR1, with no significant effect on Bcl2 expression levels | Potentiation | [37] | |
Hela | 10 mT | 48 h | Decreased cell viability; increased ROS levels | Potentiation | [39] | |
SH-SY5Y | 31.7–232.0 mT | 2 h | Decreased cell viability; overexpression of the apoptosis-related cleaved caspase-3 protein, increase in ROS production and reduction in the number of mitochondria | Potentiation | [42] | |
24 h | Antagonizing cisplatin toxicity; decreased levels of cleaved caspase-3 and ROS production | Antagonism | ||||
MDA-MB231 cell/mice | 0.2–0.4 T | 24 h/24 d | Increased anti-tumor effects and reduced side effects; altered levels of oxidative stress | Potentiation | [40] | |
HeLa, HCT116, CNE-2Z and MCF7 | 1 T | 3 d | No effect on the antitumor effect of cisplatin | No effect | [41] | |
K562 | DOX | 8.8 mT | 12 h | Enhanced the cytotoxicity; altered cellular ultrastructure, cell cycle arrest in G2/M phase, increased DNA damage, decreased P-gp expression | Potentiation | [43] |
Heap1-6 | 8.8 mT | 24 h | Promote the killing of tumor cells; cells were almost arrested in G1 and G2/M phase, enhanced DNA damage and caused larger holes in the cell membrane | Potentiation | [38] | |
MCF-7 | 10 mT | 24/48 h | Decreased required dose of chemotherapy drugs; boosted the generation and lifetime of ROS | Potentiation | [44] | |
G292 | 3, 6, 12, 24 mT | 24 h | Enhanced cytotoxicity; promoted ROS production, altering iron and calcium homeostasis, and increased apoptosis | Potentiation | [45] | |
Breast cancer transplant mice | 110 mT | 4 × 4 h | Promoted tumor regression | Potentiation | [46] | |
HeLa, HCT116, CNE-2Z and MCF7 | 5-FU/5-FU+ Paclitaxel | 1 T | 3 d | Increased anti-tumor effects; caused abnormal mitotic spindles | Potentiation | [41] |
K562 | Paclitaxel | 8.8 mT | 24 h | Reduced effective concentration; increased DNA damage, alteration of cell membrane permeability | Potentiation | [50] |
A-Mel-3-tumor-bearing hamsters | Paclitaxel | 587 mT | 2 h | Improved antitumoral efficacy; inhibited tumor angiogenesis and increased tumor microvessel permeability | Potentiation | [9] |
A172 | TMZ | 0.5 mT | Reduced cell viability more effectively | Potentiation | [52] | |
HepG2 | Capsaicin | 0.5 mT | 72 h | Enhance the anti-cancer effect; increased the binding efficiency of capsaicin for the TRPV1 channel | Potentiation | [53] |
Primary cultures and cell lines | Different apoptosis inducing agents | 6 mT | 24/48 h | Promotion/inhibition of apoptosis; interfered with apoptosis in a cell type- and exposure time-dependent manner | Potentiation/Antagonism | [54] |
MDA-MB-468/T47D | TRAIL | 3 mT | 24 h | Induced apoptosis; cell cycle arrest at the G2/M phase, decreased survivin protein, and downregulated Cdc2 expression. | Potentiation | [55] |
MCF-7 | Vitamin D | 0.2 T | 3 h | Inhibition of cell proliferation | Potentiation | [56] |
LLC-1 tumor-bearing mice | EGFR inhibitor cetuximab | 587 mT | 2 h/d, 13 d | Interfered with the effects of cetuximab; Interference of SMF and EGFR signaling | Antagonism | [57] |
CNE-2Z, HCT116 c | EGFR inhibitor afatinib | 1 T | 3 d | Increased the antitumor efficacy; Inhibition of the EGFR pathway | Potentiation | [58] |
CNE-2Z | mTOR inhibitor Torin 2 | 1 T | 3 d | Increased the antitumor efficacy; Inhibition of the mTOR pathway | Potentiation | [59] |
HCT116, LoVo | Topotecan | Upward 1 T | 2 d | Inhibition of cell proliferation; DNA synthesis | Potentiation | [51] |
Downward 1 T | Does not affect cellular proliferation | No effect | ||||
Mice bearing GIST-T1 | Imatinib mesylate | 9.4 T | 200 h | Improved the anti-tumor effect, reduced its toxicity and improved the mice mental health | Potentiation | [60] |
Patients with advanced malignancy | Standard multi-agent chemotherapy regimens | 3–28 mT | 15 min | No differences in the white blood cell count and the platelet count in control and treated groups | No effect | [61] |
Advanced lung cancer patients receiving chemotherapy | / | 0.4 T, rotating frequency of 7.5 Hz | 2 h/d, 21 d | Improved life quality and modulated blood cytokine concentration in advanced lung cancer patients | Potentiation | [62] |
HL-60 | Mixture of antineoplastic drugs 5-FU, cisplatin, doxorubicin and vincristine | 1 T | 72 h | Metabolic activity retardation | Potentiation | [49] |
4.4. SMF and Molecularly Targeted Drugs
4.5. SMF and Other Drugs
4.6. Clinical Research
5. ELF-EMF and Drugs
5.1. ELF-EMF and Cisplatin/Carboplatin
5.2. ELF-EMF and Temozolomide
5.3. ELF-EMF and Antimetabolites (MTX/5-FU)
5.4. ELF-EMF and Anthracyclines/Other Drugs
Cell Lines/Animal | Agent Co-Used | EMF | Exposure Time | Critical Endpoint | Interaction | Refs | |
---|---|---|---|---|---|---|---|
Frequency | Intensity | ||||||
PC12, THP-1 and HeLa | Methotrexate | 10 Hz | 0.3 mT | 30 min | Enhanced cellular uptake of methotrexate; induced transient plasma membrane pores/damage | Potentiation | [76] |
MCF-7 | 25 Hz | 1.5 mT | 2 h/d, 3 d | Not alter cytotoxicity | No effect | [77] | |
MCF-7, SH-SY5Y | Cisplatin | 50 Hz | 0.50 mT | 30 min (15 min field-on/15 min field-of) | Down-regulation of the genes involved in non-homologous end-joining pathway GADD45A mRNA levels were increased, mRNA levels of XRCC4, Ku80, Ku70 and DNA-PKcs were down-regulated. | Potentiation | [65] |
G401, CHLA255, N2a cells | 50 Hz | 5.1 mT (Superimposed SMF) | 2 h/d, 3 d | Decreased cell proliferation and induced cell apoptosis | Potentiation | [67] | |
G401 Tumor Model in Nude Mice | 80 min/d, 15 d | Decreased of tumor mass | |||||
i.p. injection of Ehrlich ascites cells | 50 Hz | 10 mT | 1 h/d, 2 weeks | Tumor growth inhibition; increased DNA damage | Potentiation | [68] | |
A2780 | 50 Hz | 20 mT | 2 h | Potentiated cisplatin-induced apoptosis. increased P53 gene expression and decreased MMP-2 expression | Potentiation | [64] | |
MES-SA and MES-SA/Dx5 | 50 Hz | 50 mT | −4 h | Enhanced the cytotoxicity | Potentiation | [82] | |
HepG2 | 50 Hz | 50 mT | −4 h | Enhanced the cytotoxicity | Potentiation | [83] | |
AT478 | 50 Hz | 1 mT | 16 min | Reduced ROS and antioxidant enzyme activity (SOD, GSH-Px); reduced DNA damage; significantly reduced MDA levels. | Antagonism | [69] | |
MCF-7 | Cisplatin + Bleomycin | 50 Hz | 0.50 mT | 30 min (15 min field-on/15 min field-of) | Increased drug sensitivity | Potentiation | [66] |
SH-SY5Y | Cisplatin + Bleomycin | 50 Hz | 0.50 mT | 30 min (15 min field-on/15 min field-of) | Drug sensitivity has not changed | No effect | [66] |
U-87 | Carboplatin | 50 Hz | 7 mT | 24 h | Increased cell viability; reduced carboplatin-induced caspase-3 protein expression | Antagonism | [70] |
A172 | TMZ | 10 Hz | 5 mT | 96 h | Inhibited cell viability, increased free radical production, and upregulating p53 gene and protein expression | Potentiation | [52] |
T98, A172 | 50 Hz | 7mT | 6 h/d, multiple days | Enhanced the cytotoxicity of TMZ, inhibited cell migration; upregulating p53 expression, downregulating cyclin-D1, and partially affecting MGMT expression | Potentiation | [75] | |
U87, T98 | 100 Hz | 10 mT | 144 h | Increased cell apoptosis; increased expression of P53, Bax, and Caspase-3, decreased expression of Bcl-2 and Cyclin-D1, increased generation of ROS, and up-regulated expression of the HO-1 gene. | Potentiation | [73] | |
U87 | 100 Hz | 10 mT | 122 h,144 h | Enhanced the effects of TMZ; decreased expression of tumor stem cell markers (CD133, Nestin, and Notch4), increased expression of the differentiation marker GFAP, increased intracellular calcium concentration, SOD activity, and MDA levels | Potentiation | [74] | |
SH-SY5Y | DOX | 50 Hz | 1 mT/100 µT | 5 d/10 d | Reduced cytotoxicity; improvements in the activity of the major antioxidant and detoxification defensive systems, as well as by the activation of crucial regulators of the cellular redox environment. | Antagonism | [81] |
MCF-7 | 50 Hz | 20 mT | 24 h | Inhibition of cell growth and proliferation; increased ROS production and promotion of apoptosis and enhanced arrest of MCF-7 cells in the G0-G1 phase | Potentiation | [80] | |
MES-SA and MES-SA/Dx5 | 50 Hz | 50 mT | −4 h | MF does not directly modulate MDR1 activity but may instead facilitate anticancer drug uptake by influencing influx pathways | Potentiation | [82] | |
HepG2 | 50 Hz | 50 mT | −4 h | Enhanced the cytotoxicity | Potentiation | [83] | |
MES-SA and MES-SA/Dx5 | Daunorubicin | 50 Hz | 50 mT | −4 h | MF does not directly modulate MDR1 activity but may instead facilitate anticancer drug uptake by influencing influx pathways | Potentiation | [82] |
HepG2 | Mitomycin C | 50 Hz | 50 mT | −4 h | Enhanced the cytotoxicity | Potentiation | [83] |
MES-SA and MES-SA/Dx5 | Etoposide | 50 Hz | 50 mT | −4 h | Not alter cytotoxicity | No effect | [82] |
HepG2 | 50 Hz | 50 mT | −4 h | Not alter cytotoxicity | No effect | [83] | |
MCF-7 | 5-Fu | 50 Hz | 1 mT | Pre-exposure for 12 h | Enhanced antiproliferative effect; promoted DNA synthesis, induced entry into the S phase, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E (no effect on apoptosis and P53 expression) | Potentiation | [78] |
Caco-2 | 50 Hz | 4 mT | 10 min | Reduced CT and ECT treatment efficacy | Antagonism | [79] | |
UTSCC1, A549, MiaPaCa, DLD1 | Cetuximab | 30 Hz (BEMER therapy) | ~13 μT | 8 min | Not enhance the sensitivity of cancer cells | No effect | [84] |
EL4 tumor-bearing mice | HPMA-bound doxorubicin | BEMER therapy | 3.5–35 μT | 30 min/4 h or continuous exposure, multiple days | Synergistic antitumor effect | Potentiation | [85] |
HCA-2/1cch | Vincristine | 1 Hz | 1.5 mT | synchronous exposure for 1 h/after drug treatment, EMF treatment: 2 h/d, 2d | When EMF was applied simultaneously with drugs, a significant synergistic enhancement effect was observed; when EMF was applied after drug treatment, only a very weak or no synergistic effect was observed. | Potentiation/No effect | [86] |
Mitomycin C | 25 Hz | ||||||
Cisplatin | 25 Hz | ||||||
Hodgkin’s lymphoma patients | ABVD (Adriamycin, Bleomycin, Vinblastine and Dacarbazine) | 1 to 100 Hz | 1 to 100 μT | / | Reduced the side effects of chemotherapy, specifically Myelotoxicity, reduced the oxidative stress | Potentiation | [87] |
5.5. Clinical Research
6. Mechanistic Insights: How MFs Modulate Drug Response
6.1. Membrane Permeability and Drug Transport
6.2. Cell Cycle Perturbation and Mitotic Arrest
6.3. Oxidative Stress and Redox Modulation
6.4. Apoptosis Induction and DNA Damage Enhancement
6.5. Integration and Crosstalk
7. Key Challenges and Scientific Controversies
7.1. Lack of Parameter Standardization
7.2. Mechanistic Ambiguity and Biological Complexity
7.3. Limited In Vivo and Clinical Translation
7.4. Interdisciplinary Gaps and Engineering Challenges
7.5. Need for Predictive and Personalized Approaches
8. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MF | Magnetic Field |
SMF | Static Magnetic Field |
ELF-EMF | Extremely Low-Frequency Electromagnetic Field |
RF-EMF | Radiofrequency Electromagnetic Field |
TVMF | Time-Varying Magnetic Field |
GMF | Gradient Magnetic Field |
ROS | Reactive Oxygen Species |
P-gp | P-glycoprotein |
GSH | Glutathione |
MDA | Malondialdehyde |
SOD | Superoxide Dismutase |
TMZ | Temozolomide |
DOX | Doxorubicin |
5-FU | 5-Fluorouracil |
EGFR | Epidermal Growth Factor Receptor |
mTOR | Mammalian Target of Rapamycin |
CDK | Cyclin-Dependent Kinase |
CDC2 | Cell Division Cycle 2 |
MDR1 | Multidrug Resistance Protein 1 |
CTR1 | Copper Transporter 1 |
GFAP | Glial Fibrillary Acidic Protein |
DSB | Double-Strand Break |
TRAIL | Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand |
IC50 | Half Maximal Inhibitory Concentration |
CD133, Nestin, Notch4 | Cancer Stem Cell Markers |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
HO-1 | Heme Oxygenase-1 |
DNA-PKcs | DNA-dependent Protein Kinase Catalytic Subunit |
Ku70/Ku80/XRCC4 | DNA Repair Proteins |
GADD45A | Growth Arrest and DNA Damage-inducible 45 Alpha |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Desai, A.; Lustberg, M.B.; Lyman, G.H. Mitigating acute chemotherapy-associated adverse events in patients with cancer. Nat. Rev. Clin. Oncol. 2022, 19, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.-J.; Jang, H. Anticancer drug resistance: An update and perspective. Drug Resist. Updates 2021, 59, 100796. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Emameh, R.Z.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2021, 71, 507–526. [Google Scholar] [CrossRef]
- Zhang, X.; Yarema, K.; Xu, A. Biological Effects of Static Magnetic Fields; Springer: Singapore, 2017. [Google Scholar]
- Martino, C.F.; Portelli, L.; McCabe, K.; Hernandez, M.; Barnes, F. Reduction of the earth’s magnetic field inhibits growth rates of model cancer cell lines. Bioelectromagnetics 2010, 31, 649–655. [Google Scholar] [CrossRef]
- Destefanis, M.; Viano, M.; Leo, C.; Gervino, G.; Ponzetto, A.; Silvagno, F. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int. J. Radiat. Biol. 2015, 91, 964–972. [Google Scholar] [CrossRef]
- Wang, T.; Nie, Y.; Zhao, S.; Han, Y.; Du, Y.; Hou, Y. Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells. Bioelectromagnetics 2011, 32, 443–452. [Google Scholar] [CrossRef]
- Gellrich, D.; Becker, S.; Strieth, S. Static magnetic fields increase tumor microvessel leakiness and improve antitumoral efficacy in combination with paclitaxel. Cancer Lett. 2014, 343, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-F.; Qi, H.; Sun, R.-G.; Liu, Y.; Zhang, K.; Liu, J.-Q. Static Magnetic Fields Enhanced the Potency of Cisplatin on K562 Cells. Cancer Biother. Radiopharm. 2010, 25, 401–408. [Google Scholar] [CrossRef]
- Provenzano, A.E.; Amatori, S.; Nasoni, M.G.; Persico, G.; Russo, S.; Mastrogiacomo, A.R.; Gambarara, A.; Fanelli, M. Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells. Cell. Physiol. Biochem. 2018, 46, 389–400. [Google Scholar] [CrossRef]
- Crocetti, S.; Beyer, C.; Schade, G.; Egli, M.; Fröhlich, J.; Franco-Obregón, A. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability. PLoS ONE 2013, 8, e72944. [Google Scholar] [CrossRef]
- Mousavi, M.; Baharara, J.; Shahrokhabadi, K. The Synergic Effects of Crocus sativus L. and Low Frequency Electromagnetic Field on VEGFR2 Gene Expression in Human Breast Cancer Cells. Avicenna J. Med. Biotechnol. 2014, 6, 123–127. [Google Scholar]
- Buckner, C.A.; Buckner, A.L.; Koren, S.A.; Persinger, M.A.; Lafrenie, R.M. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Bioelectromagnetics 2018, 39, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Ding, L.; Xu, Q.; Shi, G.; Li, X.; Li, X.; Ji, J.; Zhang, D.; Wang, Y.; Wang, T.; et al. LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci. Rep. 2017, 7, 749. [Google Scholar] [CrossRef]
- Novikov, V.V.; Novikov, G.V.; Fesenko, E.E. Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics 2009, 30, 343–351. [Google Scholar] [CrossRef]
- Ali, F.M.; El-Gebaly, R.H.; Hamad, A.M. Combination of bacteriolytic therapy with magnetic field for Ehrlich tumour treatment. Gen. Physiol. Biophys. 2017, 36, 259–271. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.; Wang, H.; Wu, C.; Feng, H.; Han, J. Effect of low-frequency rotary magnetic fields on advanced gastric cancer: Survival and palliation of general symptoms. J. Cancer Res. Ther. 2018, 14, 815–819. [Google Scholar] [CrossRef]
- Poniedziałek, B.; Rzymski, P.; Karczewski, J.; Jaroszyk, F.; Wiktorowicz, K. Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed in vitro to static magnetic field. Electromagn. Biol. Med. 2013, 32, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, H.; Wang, M.; Zimmerman, J.W.; Pennison, M.J.; Sharma, S.; Surratt, T.; Xu, Z.-X.; Brezovich, I.; Absher, D.; Myers, R.M.; et al. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine 2019, 44, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Xu, Y.; Guan, R.; Li, M.; Hui, Y.; Gao, Z.; Yang, B.; Xin, Z. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells. OncoTargets Ther. 2015, 8, 3489–3497. [Google Scholar] [CrossRef]
- Fang, F.; Liu, C.; Huang, Q.; Dong, C.; Zhang, G.; Jiang, J.; Lu, S. Effect of static magnetic field on gene expression of human umbilical cord mesenchymal stem cells by transcriptome analysis. Adv. Med. Sci. 2024, 69, 281–288. [Google Scholar] [CrossRef]
- Jalali, A.; Zafari, J.; Jouni, F.J.; Abdolmaleki, P.; Shirazi, F.H.; Khodayar, M.J. Combination of static magnetic field and cisplatin in order to reduce drug resistance in cancer cell lines. Int. J. Radiat. Biol. 2019, 95, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Ballo, M.T.; Conlon, P.; Lavy-Shahaf, G.; Kinzel, A.; Vymazal, J.; Rulseh, A.M. Association of Tumor Treating Fields (TTFields) therapy with survival in newly diagnosed glioblastoma: A systematic review and meta-analysis. J. Neuro-Oncol. 2023, 164, 1–9. [Google Scholar] [CrossRef]
- Moser, J.C.; Salvador, E.; Deniz, K.; Swanson, K.; Tuszynski, J.; Carlson, K.W.; Karanam, N.K.; Patel, C.B.; Story, M.; Lou, E.; et al. The Mechanisms of Action of Tumor Treating Fields. Cancer Res. 2022, 82, 3650–3658. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.P.; Adamson, D.C. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines 2021, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Markov, M.S. Angiogenesis, magnetic fields and ‘window effects’. Cardiology 2010, 117, 54–56. [Google Scholar] [CrossRef]
- Zhu, Y.-M.; Xu, D.; Ren, H.; Geng, J.; Xu, K. Metagenomic insights into the “window” effect of static magnetic field on nitrous oxide emission from biological nitrogen removal process at low temperature. J. Environ. Manag. 2021, 298, 113377. [Google Scholar] [CrossRef]
- Repacholi, M.H. An overview of WHO’s EMF project and the health effects of EMF exposure. In Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR 2003) Electromagnetic Fields and Our Health, Kuala Lumpur, Malaysia, 20–22 October 2003. [Google Scholar]
- Wang, H.; Zhang, X. Magnetic Fields and Reactive Oxygen Species. Int. J. Mol. Sci. 2017, 18, 2175. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Yang, X.; Fang, Z.; Zhang, X. Biological effects of magnetic field combined with irradiation. Chem. Life 2019, 39, 849–858. [Google Scholar] [CrossRef]
- Engstrom, S. Physical mechanisms of non-thermal extremely-low-frequency magnetic-field effects. Ursi Radio Sci. Bull. 2004, 77, 95–106. [Google Scholar]
- Israel, M.; Zaryabova, V.; Ivanova, M. Electromagnetic field occupational exposure: Non-thermal vs. thermal effects. Electromagn. Biol. Med. 2013, 32, 145–154. [Google Scholar] [CrossRef]
- Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, W.; Bu, T.; Qi, H.; Sun, R.; He, X. Decreased P-glycoprotein is associated with the inhibitory effects of static magnetic fields and cisplatin on K562 cells. Bioelectromagnetics 2014, 35, 437–443. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, H.; Sun, R.G.; Chen, W.F. An investigation into the combined effect of static magnetic fields and different anticancer drugs on K562 cell membranes. Tumori 2011, 97, 386–392. [Google Scholar] [CrossRef]
- Zafari, J.; Rastegar-Pouyani, N.; Jouni, F.J.; Najjar, N.; Azarshin, S.Z.; Jafarzadeh, E.; Abdolmaleki, P.; Shirazi, F.H. Static magnetic field reduces cisplatin resistance via increasing apoptosis pathways and genotoxicity in cancer cell lines. Sci. Rep. 2024, 14, 5792. [Google Scholar] [CrossRef]
- Xu, L.; Guo, W.; Liu, Y.; Zhang, X.; Yu, J.; Wu, W.; Zhao, T. Synergistic inhibitory effect of static magnetic field and antitumor drugs on Hepa1-6 cells. Chin. J. Biotechnol. 2015, 31, 1363–1374. [Google Scholar]
- Kamalipooya, S.; Abdolmaleki, P.; Salemi, Z.; Jouni, F.J.; Zafari, J.; Soleimani, H. Simultaneous application of cisplatin and static magnetic field enhances oxidative stress in HeLa cell line. Vitr. Cell. Dev. Biol.-Anim. 2017, 53, 783–790. [Google Scholar] [CrossRef]
- Yu, X.; Ji, X.; Fan, Y.; Yu, B.; Wang, X.; Feng, C.; Zhang, L.; Song, C.; Zhang, X. Static Magnetic Fields Protect against Cisplatin-Induced Kidney Toxicity. Antioxidants 2022, 12, 73. [Google Scholar] [CrossRef]
- Luo, Y.; Ji, X.; Liu, J.; Li, Z.; Wang, W.; Chen, W.; Wang, J.; Liu, Q.; Zhang, X. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry 2016, 109, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, C.; Ahmadi, M.; Mobasheri, H.; Dini, L. Impact of Inhomogeneous Static Magnetic Field (31.7–232.0 mT) Exposure on Human Neuroblastoma SH-SY5Y Cells during Cisplatin Administration. PLoS ONE 2014, 9, e113530. [Google Scholar] [CrossRef]
- Hao, Q.; Wenfang, C.; Xia, A.; Qiang, W.; Ying, L.; Kun, Z.; Runguang, S. Effects of a moderate-intensity static magnetic field and adriamycin on K562 cells. Bioelectromagnetics 2011, 32, 191–199. [Google Scholar] [CrossRef]
- Verdom, B.H.; Abdolmaleki, P.; Behmanesh, M. The Static Magnetic Field Remotely Boosts the Efficiency of Doxorubicin through Modulating ROS Behaviors. Sci. Rep. 2018, 8, 990. [Google Scholar] [CrossRef]
- Rajabi, F.; Hajipour-Verdom, B.; Abdolmaleki, P. Static magnetic field promotes the doxorubicin toxicity effects on osteosarcoma cells. Sci. Rep. 2025, 15, 11902. [Google Scholar] [CrossRef]
- Gray, J.R.; Frith, C.H.; Parker, J.D. In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics 2000, 21, 575–583. [Google Scholar] [CrossRef]
- Azwar, S.; Seow, H.F.; Abdullah, M.; Jabar, M.F.; Mohtarrudin, N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. Biology 2021, 10, 854. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef]
- Sabo, J.; Mirossay, L.; Horovcak, L.; Sarissky, M.; Mirossay, A.; Mojzis, J. Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry 2002, 56, 227–231. [Google Scholar] [CrossRef]
- Sun, R.-G.; Chen, W.-F.; Qi, H.; Zhang, K.; Bu, T.; Liu, Y.; Wang, S.-R. Biologic effects of SMF and paclitaxel on K562 human leukemia cells. Gen. Physiol. Biophys. 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Polyakova, T.; Dejneka, A.; Zablotskii, V.; Zhang, X. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry. FASEB BioAdvances 2020, 2, 254–263. [Google Scholar] [CrossRef]
- Ashta, A.; Motalleb, G.; Ahmadi-Zeidabadi, M. Evaluation of frequency magnetic field, static field, and Temozolomide on viability, free radical production and gene expression (p53) in the human glioblastoma cell line (A172). Electromagn. Biol. Med. 2020, 39, 298–309. [Google Scholar] [CrossRef]
- Chen, W.-T.; Lin, G.-B.; Lin, S.-H.; Lu, C.-H.; Hsieh, C.-H.; Ma, B.-L.; Chao, C.-Y. Static magnetic field enhances the anticancer efficacy of capsaicin on HepG2 cells via capsaicin receptor TRPV1. PLoS ONE 2018, 13, e0191078. [Google Scholar] [CrossRef]
- Tenuzzo, B.; Chionna, A.; Panzarini, E.; Lanubile, R.; Tarantino, P.; Di Jeso, B.; Dwikat, M.; Dini, L. Biological effects of 6 mT static magnetic fields: A comparative study in different cell types. Bioelectromagnetics 2006, 27, 560–577. [Google Scholar] [CrossRef]
- Lin, T.; Wan, L.; Qi, X.; Shi, W.; Lin, J. A moderate static magnetic field enhances TRAIL-induced apoptosis by the inhibition of Cdc2 and subsequent downregulation of survivin in human breast carcinoma cells. Bioelectromagnetics 2014, 35, 337–346. [Google Scholar] [CrossRef]
- Pacini, S.; Aterini, S.; Pacini, P.; Ruggiero, C.; Gulisano, M.; Ruggiero, M. Influence of static magnetic field on the antiproliferative effects of vitamin D on human breast cancer cells. Oncol. Res. 1999, 11, 265–271. [Google Scholar]
- Gellrich, D.; Schmidtmayer, U.; Eckrich, J.; Hagemann, J.; Becker, S.; Strieth, S. Modulation of Exposure to Static Magnetic Field Affects Targeted Therapy of Solid Tumors In Vivo. Anticancer Res. 2018, 38, 4549–4555. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Wang, H.; Wang, W.; Li, Z.; Liu, J.; Yang, X.; Ji, X.; Luo, Y.; Hu, C.; et al. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget 2016, 7, 41527–41539. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Liu, J.; Luo, Y.; Li, Z.; Ji, X.; Wang, W.; Zhang, X. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci. Bull. 2015, 60, 2120–2128. [Google Scholar] [CrossRef]
- Tian, X.; Wang, C.; Yu, B.; Fan, Y.; Zhang, L.; Zhang, X. 9.4 T static magnetic field ameliorates imatinib mesylate-induced toxicity and depression in mice. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 314–327. [Google Scholar] [CrossRef]
- Salvatore, J.R.; Harrington, J.; Kummet, T. Phase I clinical study of a static magnetic field combined with anti-neoplastic chemotherapy in the treatment of human malignancy: Initial safety and toxicity data. Bioelectromagnetics 2003, 24, 524–527. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Z.; Yu, H.; Zhu, Q.; Xu, Y.; Li, Y.; Li, C.; Zhao, W.; Liang, Z.; Chen, L. The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: A randomized, double-blinded, controlled clinical trial. Int. J. Radiat. Biol. 2020, 96, 943–950. [Google Scholar] [CrossRef]
- Bozec, A.; Ebran, N.; Radosevic-Robin, N.; Sudaka, A.; Monteverde, M.; Toussan, N.; Etienne-Grimaldi, M.; Nigro, C.L.; Merlano, M.; Penault-Llorca, F.; et al. Combination of mTOR and EGFR targeting in an orthotopic xenograft model of head and neck cancer. Laryngoscope 2016, 126, E156–E163. [Google Scholar] [CrossRef]
- Baharara, J.; Hosseini, N.; Farzin, T.R. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology 2016, 68, 1403–1413. [Google Scholar] [CrossRef]
- Sanie-Jahromi, F.; Saadat, I.; Saadat, M. Effects of extremely low frequency electromagnetic field and cisplatin on mRNA levels of some DNA repair genes. Life Sci. 2016, 166, 41–45. [Google Scholar] [CrossRef]
- Sanie-Jahromi, F.; Saadat, M. Different profiles of the mRNA levels of DNA repair genes in MCF-7 and SH-SY5Y cells after treatment with combination of cisplatin, 50-Hz electromagnetic field and bleomycin. Biomed. Pharmacother. 2017, 94, 564–568. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, C.; Zhu, K.; Li, H.; Gu, W.; Zhou, D.; Lai, J.; Zhou, D.; Lv, Y.; Tofani, S.; et al. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagnetics 2018, 39, 375–385. [Google Scholar] [CrossRef]
- El-Bialy, N.S.; Rageh, M.M. Extremely Low-Frequency Magnetic Field Enhances the Therapeutic Efficacy of Low-Dose Cisplatin in the Treatment of Ehrlich Carcinoma. BioMed Res. Int. 2013, 2013, 189352. [Google Scholar] [CrossRef]
- Bułdak, R.J.; Polaniak, R.; Bułdak, Ł.; Żwirska-Korczala, K.; Skonieczna, M.; Monsiol, A.; Kukla, M.; Duława-Bułdak, A.; Birkner, E. Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics 2012, 33, 641–651. [Google Scholar] [CrossRef]
- Amiri, M.; Basiri, M.; Eskandary, H.; Akbarnejad, Z.; Esmaeeli, M.; Masoumi-Ardakani, Y.; Ahmadi-Zeidabadi, M. Cytotoxicity of carboplatin on human glioblastoma cells is reduced by the concomitant exposure to an extremely low-frequency electromagnetic field (50 Hz, 70 G). Electromagn. Biol. Med. 2018, 37, 138–145. [Google Scholar] [CrossRef]
- Wijaya, J.H.; Hulou, S.; Lucke-Wold, B.; V, W.B.G.; Lamprecht, C.B.; Ruchika, F.; Schneider, B.; Foster, D.; Abolfazli, P.; Quintero-Consuegra, M.D.; et al. Socioeconomic status as a determinant of survival in glioblastoma: A systematic review and meta-analysis. Neurosurg. Rev. 2025, 48, 500. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Temozolomide: Therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev. Neurother. 2010, 10, 1537–1544. [Google Scholar] [CrossRef]
- Akbarnejad, Z.; Eskandary, H.; Dini, L.; Vergallo, C.; Nematollahi-Mahani, S.N.; Farsinejad, A.; Abadi, M.F.S.; Ahmadi, M. Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100 Hz, 100 G). Biomed. Pharmacother. 2017, 92, 254–264. [Google Scholar] [CrossRef]
- Ahmadi-Zeidabadi, M.; Akbarnejad, Z.; Esmaeeli, M.; Masoumi-Ardakani, Y.; Mohammadipoor-Ghasemabad, L.; Eskandary, H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagn. Biol. Med. 2019, 38, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Dehghani-Soltani, S.; Eftekhar-Vaghefi, S.H.; Babaee, A.; Basiri, M.; Mohammadipoor-Ghasemabad, L.; Vosough, P.; Ahmadi-Zeidabadi, M. Pulsed and Discontinuous Electromagnetic Field Exposure Decreases Temozolomide Resistance in Glioblastoma by Modulating the Expression of O6-Methylguanine-DNA Methyltransferase, Cyclin-D1, and p53. Cancer Biother. Radiopharm. 2021, 36, 579–587. [Google Scholar] [CrossRef]
- Stratton, D.; Malibha-Pinchbeck, M.; Inal, J. Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage. Biochem. Biophys. Res. Commun. 2022, 626, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Laqué-Rupérez, E.; Ruiz-Gómez, M.; de la Peña, L.; Gil, L.; Martínez-Morillo, M. Methotrexate cytotoxicity on MCF-7 breast cancer cells is not altered by exposure to 25 Hz, 1.5 mT magnetic field and iron (III) chloride hexahydrate. Bioelectrochemistry 2003, 60, 81–86. [Google Scholar] [CrossRef]
- Han, Q.; Chen, R.; Wang, F.; Chen, S.; Sun, X.; Guan, X.; Yang, Y.; Peng, B.; Pan, X.; Li, J.; et al. Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLoS ONE 2018, 13, e0192888. [Google Scholar] [CrossRef]
- Alkis, M.E.; Akdag, M.Z.; Kandemir, S.I. Influence of extremely low-frequency magnetic field on chemotherapy and electrochemotherapy efficacy in human Caco-2 colon cancer cells. Electromagn. Biol. Med. 2022, 41, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Salimian, M.; Allahverdi, A.; Kianamiri, S.; Abdolmaleki, P. Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line. Sci. Rep. 2023, 13, 884. [Google Scholar] [CrossRef]
- Falone, S.; Santini, S.; Cordone, V.; Cesare, P.; Bonfigli, A.; Grannonico, M.; Di Emidio, G.; Tatone, C.; Cacchio, M.; Amicarelli, F. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci. Rep. 2017, 7, 11470. [Google Scholar] [CrossRef]
- Shibaki, R.; Kakikawa, M. Different effects of magnetic field on drug activity in human uterine sarcoma cell lines MES-SA and MES-SA/Dx5. Electromagn. Biol. Med. 2022, 41, 343–351. [Google Scholar] [CrossRef]
- Kakikawa, M.; Maeda, T.; Yamada, S. Combined Effect of 60 Hz Magnetic Fields and Anticancer Drugs on Human Hepatoma HepG2 Cells. IEEE J. Electromagn. RF Microwaves Med. Biol. 2019, 3, 56–60. [Google Scholar] [CrossRef]
- Storch, K.; Dickreuter, E.; Artati, A.; Adamski, J.; Cordes, N. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage. PLoS ONE 2016, 11, e0167931. [Google Scholar] [CrossRef] [PubMed]
- Říhová, B.; Etrych, T.; Šírová, M.; Tomala, J.; Ulbrich, K.; Kovář, M. Synergistic effect of EMF–BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma. J. Drug Target. 2011, 19, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gómez, M.; de la Peña, L.; Prieto-Barcia, M.; Pastor, J.; Gil, L.; Martínez-Morillo, M. Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line. Bioelectromagnetics 2002, 23, 578–585. [Google Scholar] [CrossRef]
- Rossi, E.; Corsetti, M.T.; Sukkar, S.; Poggi, C. Extremely Low Frequency Electromagnetic Fields Prevent Chemotherapy Induced Myelotoxicity. Electromagn. Biol. Med. 2007, 26, 277–281. [Google Scholar] [CrossRef]
- Braganza, L.F.; Blott, B.H.; Coe, T.J.; Melville, D. The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. Biochim. Biophys. Acta 1984, 801, 66–75. [Google Scholar] [CrossRef]
- Petrov, E.; Martinac, B. Modulation of channel activity and gadolinium block of MscL by static magnetic fields. Eur. Biophys. J. 2007, 36, 95–105. [Google Scholar] [CrossRef]
- Triantafilou, M.; Morath, S.; Mackie, A.; Hartung, T.; Triantafilou, K. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J. Cell Sci. 2004, 117, 4007–4014. [Google Scholar] [CrossRef]
- Zhang, X.; Min, X.; Yang, F. Conformational basis of the phospholipid requirement for the activity of SR Ca2+-ATPase. Chem. Phys. Lipids 1998, 97, 55–64. [Google Scholar] [CrossRef]
- Germann, U. P-glycoprotein—A mediator of multidrug resistance in tumour cells. Eur. J. Cancer 1996, 32, 927–944. [Google Scholar] [CrossRef]
- Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; Bastos, M.d.L.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015, 149, 1–123. [Google Scholar] [CrossRef]
- Kilari, D.; Guancial, E.; Kim, E.S. Role of copper transporters in platinum resistance. World J. Clin. Oncol. 2016, 7, 106–113. [Google Scholar] [CrossRef]
- Spreckelmeyer, S.; Orvig, C.; Casini, A. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin. Molecules 2014, 19, 15584–15610. [Google Scholar] [CrossRef]
- Monteith, G.R.; Davis, F.M.; Roberts-Thomson, S.J. Calcium Channels and Pumps in Cancer: Changes and Consequences. J. Biol. Chem. 2012, 287, 31666–31673. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Moreno-Layseca, P.; Streuli, C.H. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 2014, 34, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Van Huizen, A.V.; Morton, M.; Kinsey, K.; Von Kannon, V.K.; Saad; Birkholz, B.; Czajka, C.; Cyrus, C.; Barnes, B.; Beane, B. Weak magnetic fields alter stem cell-mediated growth. Sci. Adv. 2019, 5, eaau7201. [Google Scholar] [CrossRef]
- Barnes, F.; Greenebaum, B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ. Res. 2018, 163, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Gong, J.; Han, H.; He, L.; Teng, Y.; Tetley, T.; Sinharay, R.; Chung, K.F.; Islam, T.; Gilliland, F.; et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J. Thorac. Dis. 2018, 10, 3088–3197. [Google Scholar] [CrossRef]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; Palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in Health, Disease and Aging. CNS Neurol. Disord. Drug Targets 2011, 10, 192–207. [Google Scholar] [CrossRef]
- Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.-Y.; Lin, L.-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 2015, 35, S78–S103. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 2006, 12, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Citterio, E. Fine-tuning the ubiquitin code at DNA double-strand breaks: Deubiquitinating enzymes at work. Front. Genet. 2015, 6, 282. [Google Scholar] [CrossRef]
- Kim, J.; Ha, C.S.; Lee, H.J.; Song, K. Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells. Biochem. Biophys. Res. Commun. 2010, 400, 739–744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Lv, Y. Magnetic Fields as Biophysical Modulators of Anticancer Drug Action. Magnetochemistry 2025, 11, 89. https://doi.org/10.3390/magnetochemistry11100089
Yu X, Lv Y. Magnetic Fields as Biophysical Modulators of Anticancer Drug Action. Magnetochemistry. 2025; 11(10):89. https://doi.org/10.3390/magnetochemistry11100089
Chicago/Turabian StyleYu, Xin, and Yue Lv. 2025. "Magnetic Fields as Biophysical Modulators of Anticancer Drug Action" Magnetochemistry 11, no. 10: 89. https://doi.org/10.3390/magnetochemistry11100089
APA StyleYu, X., & Lv, Y. (2025). Magnetic Fields as Biophysical Modulators of Anticancer Drug Action. Magnetochemistry, 11(10), 89. https://doi.org/10.3390/magnetochemistry11100089