Advances in Soft Magnetic Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, R.; Huang, H.; Kong, H.; Xia, A.; Zhou, L.; Wu, Z.; Gao, X. FeSi@BN soft magnetic composites inspired by fried glutinous rice balls: A core–shell design for enhanced magnetic and thermal performance in high-frequency power applications. Chem. Eng. J. 2025, 515, 163501. [Google Scholar] [CrossRef]
- He, J.; Yuan, H.; Nie, M.; Guo, H.; Yu, H.; Liu, Z.; Sun, R. Soft magnetic materials for power inductors: State of art and future development. Mater. Today Electron. 2023, 6, 100066. [Google Scholar] [CrossRef]
- Ma, R.; Chang, L.; Dong, Y.; Ye, S.; Si, J.; Yao, K.; Yu, P. Magnetic properties of soft magnetic composites fabricated by injection molding of bimodal amorphous Fe73Si11B11C3Cr2 and crystalline Fe50Co50 powders. Powder Technol. 2022, 397, 116986. [Google Scholar] [CrossRef]
- Rodriguez-Vargas, B.R.; Stornelli, G.; Folgarait, P.; Ridolfi, M.R.; Pérez, A.F.M.; Di Schino, A. Recent advances in additive manufacturing of soft magnetic materials: A review. Materials 2023, 16, 5610. [Google Scholar] [CrossRef]
- Bai, G.; Sun, J.; Zhang, Z.; Liu, X.; Bandaru, S.; Liu, W.; Li, Z.; Li, H.; Wang, N.; Zhang, X. Vortex-based soft magnetic composite with ultrastable permeability up to gigahertz frequencies. Nat. Commun. 2024, 15, 2238. [Google Scholar] [CrossRef]
- Wang, F.-H.; You, C.-Y.; Tian, N.; Liu, H.-G.; Zhang, J.; Zhu, X.-P. 3D printing of soft magnetic materials: From printing to applications. J. Alloys Compd. 2024, 990, 174486. [Google Scholar] [CrossRef]
- Weir, G.; Leveneur, J.; Long, N. Magnetic susceptibility of soft magnetic composite materials. J. Magn. Magn. Mater. 2022, 551, 169103. [Google Scholar] [CrossRef]
- Wang, R.; Li, K.; Liu, Y.; Wu, Z.; Wu, X.; Li, S.; Liu, L. Design and fabrication of FeSiCr@ BN soft magnetic composites with im-proved thermal management and core loss performance. J. Alloys Compd. 2025, 1026, 180342. [Google Scholar] [CrossRef]
- Kim, Y.; Zhao, X. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364. [Google Scholar] [CrossRef]
- Birčáková, Z.; Kollár, P.; Füzer, J.; Bureš, R.; Fáberová, M.; Jakubčin, M. Energy loss and hysteresis of reversible magnetization processes in iron-based soft magnetic composites. J. Magn. Magn. Mater. 2023, 587, 171291. [Google Scholar] [CrossRef]
- Lu, S.; Wang, M.; Zhao, Z. Recent advances and future developments in Fe-based amorphous soft magnetic composites. J. Non-Crystalline Solids 2023, 616, 122440. [Google Scholar] [CrossRef]
- Yang, T.; Lu, K.; Wang, J.; Xu, J.; Zheng, Z.; Liu, X. Fe-6.5 wt% Si soft magnetic composites with significant improvement of magnetic properties by com-positing nano-MnZn ferrites. J. Alloys Compd. 2022, 909, 164660. [Google Scholar] [CrossRef]
- Duan, W.; Li, R.; Yang, S.; Han, J.; Lv, X.; Wang, Z.; Yu, Q. Theoretical study on coal gasification behavior in CO2 atmosphere driven by slag waste heat. Energy 2024, 305, 132269. [Google Scholar] [CrossRef]
- Li, W.; Zhou, X.; Kang, Y.; Zou, T.; Li, W.; Ying, Y.; Yu, J.; Zheng, J.; Qiao, L.; Li, J.; et al. Microstructure and magnetic properties of the FeSiAl soft magnetic composite with a NiFe2O4-doped phosphate insulation coating. J. Alloys Compd. 2023, 960, 171010. [Google Scholar] [CrossRef]
- Mori, S.; Mitsuoka, T.; Sugimura, K.; Hirayama, R.; Sonehara, M.; Sato, T.; Matsushita, N. Core-shell structured Mn-Zn-Fe ferrite/Fe-Si-Cr particles for magnetic composite cores with low loss. Adv. Powder Technol. 2018, 29, 1481–1486. [Google Scholar] [CrossRef]
- Gong, M.; Dong, Y.; Huang, J.; Chang, L.; Pan, Y.; Wang, F.; He, A.; Li, J.; Liu, X.; Wang, X. The enhanced magnetic properties of FeSiCr powder cores composited with carbonyl iron powder. J. Mater. Sci. Mater. Electron. 2021, 32, 8829–8836. [Google Scholar] [CrossRef]
- Ni, J.L.; Duan, F.; Feng, S.J.; Hu, F.; Kan, X.C.; Liu, X.S. High performance of FeSiAl/hBN soft magnetic composites. J. Alloys Compd. 2022, 897, 163191. [Google Scholar] [CrossRef]
- Duan, W.; Han, J.; Yang, S.; Wang, Z.; Yu, Q.; Zhan, Y. Understanding CO2 adsorption in layered double oxides synthesized by slag through kinetic and modelling techniques. Energy 2024, 297, 131303. [Google Scholar] [CrossRef]
- Mei, C.; Li, J.; Zhang, B.; Zhu, X.; Hu, F.; Liu, W.; Su, H.; Zou, Z.; Du, Y. Synthesis of FeNi@kaolin soft magnetic composites with adjustable magnetic properties under different DC bias fields. J. Magn. Magn. Mater. 2023, 587, 171350. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Li, S.; Peng, K. Improved magnetic and thermal conductivity performance of FeSi soft magnetic composites by adding h-BN. Mater. Sci. Eng. B 2025, 312, 117869. [Google Scholar] [CrossRef]
- Nie, M.; Jiang, C.; Yang, Y.; Zhou, B.; Chen, Z.; Jia, G.; Li, Z.; Dai, C.; He, J.; Guo, H. Multicomponent soft magnetic alloys for soft magnetic composites: A review. Mater. Today Electron. 2025, 12, 100153. [Google Scholar] [CrossRef]
- Birčáková, Z.; Onderko, F.; Dobák, S.; Kollár, P.; Füzer, J.; Bureš, R.; Fáberová, M.; Weidenfeller, B.; Bednarčík, J.; Jakubčin, M.; et al. Eco-friendly soft magnetic composites of iron coated by sintered ferrite via mechanofusion. J. Magn. Magn. Mater. 2022, 543, 168627. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Z.; Jin, J.; Hu, X.; Li, S.; Ju, N. Effect of SiO2/Organosilicone Double Insulation Coating Processes on the Properties of Ferrosilicon Magnetic Cores. Magnetochemistry 2023, 9, 126. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, H.; He, H.; Li, K.; Wu, Z.; Wang, R. Fabrication and Soft Magnetic Properties of Fe–Si–Cr Composites with Double-Insulating Layers Suitable for High-Frequency Power Applications. Magnetochemistry 2023, 9, 145. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, W.; Liu, J.; Fan, J. Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders. Magnetochemistry 2023, 9, 146. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Li, K.; Chen, R.; Wu, Z.; Li, Y. Investigating the Effect of Carbonyl Iron Powder Doping on the Microstructure and Magnetic Properties of Soft Magnetic Composites. Magnetochemistry 2023, 10, 23. [Google Scholar] [CrossRef]
- Li, S.; Ju, N.; Wang, J.; Zou, R.; Lin, S.; Yang, M. Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites. Magnetochemistry 2023, 9, 169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Wu, Z. Advances in Soft Magnetic Materials. Magnetochemistry 2025, 11, 87. https://doi.org/10.3390/magnetochemistry11100087
Li K, Wu Z. Advances in Soft Magnetic Materials. Magnetochemistry. 2025; 11(10):87. https://doi.org/10.3390/magnetochemistry11100087
Chicago/Turabian StyleLi, Kaixuan, and Zhaoyang Wu. 2025. "Advances in Soft Magnetic Materials" Magnetochemistry 11, no. 10: 87. https://doi.org/10.3390/magnetochemistry11100087
APA StyleLi, K., & Wu, Z. (2025). Advances in Soft Magnetic Materials. Magnetochemistry, 11(10), 87. https://doi.org/10.3390/magnetochemistry11100087