A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling, Measurement and Analyses
2.3.1. Meteorological Conditions Inside and Outside of the Greenhouse
2.3.2. Reference Crop Evapotranspiration and Actual Crop Evapotranspiration
2.3.3. Evaporation from Pan
2.3.4. Plant Measurement
2.3.5. Kc and WUE
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Yield and Water Use Efficiency
3.3. Crop Growth Performance
3.4. Crop Coefficient
3.5. ETo, Epan, and Their Mutual Relationships
4. Discussion
4.1. Spinach Growth and Yield
4.2. ET and WUE
4.3. ETo, Epan, and Crop Coefficient
4.4. A simple Method to Formulate an Irrigation Schedule for Spinach in a Plastic Greenhouse
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Meng, J.; Yao, X.Q.; Yang, X.L.; Luo, J.M.; Shen, Y.J. Spatial and temporal evolution of agricultural planting structure and crop water consumption in groundwater overdraft area. Trans. Chin. Soc. Agric. Mach. 2020, 51, 302–312. [Google Scholar]
- Chen, Q.; Zhang, H.; Tang, L.; Li, X.; Liebig, H.P. Effects of water and nitrogen supply on spinach (Spinacia oleracea L.) growth and soil mineral N residues. Pedosphere 2002, 12, 171–178. [Google Scholar]
- Pardossi, A.; Incrocci, L. Traditional and new approaches to irrigation scheduling in vegetable crops. Horttechnology 2011, 21, 309–313. [Google Scholar] [CrossRef] [Green Version]
- McPhee, J.; Eberhard, J.; Melland, A.; Uddin, J.; Dunn, L.; Hin, S.; Lim, V.; Touch, V.; Sisouvanh, P.; Somphou, I.; et al. Simple ETo-Based rules for irrigation scheduling by smallholder vegetable farmers in Laos and Cambodia. Water 2022, 14, 2010. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements, Irrigation and Drainage Paper; No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Lopez-Urrea, R.; Hunsaker, D.J.; Mota, M.; Shad, Z.M. Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
- Guerra, E.; Ventura, F.; Snyder, R.L. Crop coefficients: A literature review. J. Irrig. Drain. Eng. 2016, 142, 06015006. [Google Scholar] [CrossRef]
- Čereković, N.; Todorovic, M.; Snyder, R. The relationship between leaf area index and crop coefficient for tomato crop grown in Southern Italy. Euroinvent 2010, 1, 3–10. [Google Scholar]
- Okechukwu, M.E.; Mbajiorgu, C.C. Determination of crop coefficients and spatial distribution of evapotranspiration and net irrigation requirement for three commonly cultivated crops in South-East Nigeria. Irrig. Drain. 2020, 69, 743–755. [Google Scholar] [CrossRef]
- Wu, H.; Yan, H.Y.; Zhang, C.; Huang, S.; Sam, A.J. Responses of yield and water use efficiency of drip-irrigated cucumber in greenhouse to water stress. Trans. Chin. Soc. Agric. Eng. 2020, 36, 84–93. [Google Scholar]
- Imtiyaz, M.; Mgadla, N.P.; Chepete, B.; Manase, S.K. Response of six vegetable crops to irrigation schedules. Agric. Water Manag. 2000, 45, 331–342. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhan, B.C.; Guo, W.Z.; Liang, Y.; Li, L.; Bai, M.Z. Optimizing irrigation amount for greenhouse lettuce production based on pan-measured evaporation. J. Irrig. Drain. 2022, 41, 13–19. [Google Scholar]
- Xu, Z.L.Y.; Guo, W.; Liang, Y.; Li, L.; Bai, M. Water consumption law of greenhouse vegetable core based on weighing lysimeter. North. Horti. Sci. 2017, 16, 85–90. [Google Scholar]
- Piccinni, G.; Marek, J.K.T.; Leskovar, D.I. Crop coefficients specific to multiple phenological stages for evapotranspiration-based irrigation management of onion and spinach. Hortscience 2009, 44, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, A.; Masseroni, D.; Facchi, A. Modelling water requirements of greenhouse spinach for irrigation management purposes. Hydrol. Res. 2017, 48, 776–788. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, M.; Akram, N.A.; Ashraf, M.; Aziz, A. Assessment of Biochemical Changes in Spinach (Spinacea oleracea L.) Subjected to Varying Water Regimes. Sains Malays. 2019, 48, 533–541. [Google Scholar] [CrossRef]
- Schlering, C.; Zinkernagel, J.; Dietrich, H.; Frisch, M.; Schweiggert, R. Alterations in the chemical composition of Spinach (Spinacia oleracea L.) as provoked by season and moderately limited water supply in open field cultivation. Horticulturae 2020, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Seymen, M. Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turk. J. Agric. For. 2021, 45, 55–67. [Google Scholar]
- Caparrotta, S.; Masi, E.; Atzori, G.; Diamanti, I.; Azzarello, E.; Mancuso, S.; Pandolfi, C. Growing spinach (Spinacia oleracea) with different seawater concentrations: Effects on fresh, boiled and steamed leaves. Sci. Hortic. 2019, 256, 108540. [Google Scholar] [CrossRef]
- Nyathi, M.K.; van Halsema, G.E.; Annandele, J.G.; Struik, P.C. Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes. Agric. Water Manag. 2018, 208, 107–119. [Google Scholar] [CrossRef]
- Ramezanifar, H.; Yazdanpanah, N.; Yazd, H.G.H.; Tavousi, M.; Mahmoodabadi, M. Spinach growth regulation due to interactive salinity, water, and nitrogen stresses. J. Plant Growth Regul. 2022, 41, 1654–1671. [Google Scholar] [CrossRef]
- Montazar, A.; Cahn, M.; Putman, A. Research advances in adopting drip irrigation for california organic spinach: Preliminary findings. Agriculture 2019, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.D. Soil Agricultural–Chemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2020. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Liu, H.; Yuan, B.; Hu, X.; Yin, C. Drip irrigation enhances water use efficiency without losses in cucumber yield and economic benefits in greenhouses in North China. Irrig. Sci. 2021, 40, 135–149. [Google Scholar] [CrossRef]
- Fernandez, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; Lopez, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509, Erratum to: Irrig. Sci. 2011, 28, 91–92.. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Chen, S.Y.; Sun, H.Y.; Pei, D.; Wang, Y.M. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig. Sci. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Leskovar, D.I.; Piccinni, G. Field and leaf quality of processing spinach under deficit irrigation. Hortscience 2005, 40, 1868–1870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yue, Y.; Sha, Z.; Kirumba, G.; Zhang, Y.; Bei, Z.; Cao, L. Spinach-irrigating and fertilizing for optimum quality, quantity, and economy. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 590–598. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Z.; Jiao, D.; Tian, X.; Wang, C. Different water and nitrogen fertilizer rates effects on growth and development of spinach. Commun. Soil Sci. Plant Anal. 2018, 49, 1922–1933. [Google Scholar] [CrossRef]
- Zhang, J.; Sha, Z.; Zhang, Y.; Bei, Z.; Cao, L. The effects of different water and nitrogen levels on yield, water and nitrogen utilization efficiencies of spinach (Spinacia oleracea L.). Can. J. Plant Sci. 2015, 95, 671–679. [Google Scholar] [CrossRef]
- Siahpoosh, M.R.; Dehghanian, E. Water use efficiency, transpiration efficiency, and uptake efficiency of wheat during drought. Agron. J. 2012, 104, 1238–1243. [Google Scholar] [CrossRef]
- Yan, H.; Acquah, S.; Zhang, J.J.; Wang, G.; Zhang, C.; Darko, R.O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Bonachela, S.; Gonzalez, A.M.; Fernandez, M.D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig. Sci. 2006, 25, 53–62. [Google Scholar] [CrossRef]
- Gong, X.W.; Liu, H.; Sun, J.S.; Ma, X.J.; Wang, W.N.; Cui, Y.S. Variation of evapotranspiration in different spatial scales for solar greenhouse tomato and its controlling meteorological factors. Trans. Chin. Soc. Agric. Eng. 2017, 33, 166–175. [Google Scholar]
- Saadon, T.; Lazarovitch, N.; Jerszurki, D.; Tas, E. Predicting net radiation in naturally ventilated greenhouses based on outside global solar radiation for reference evapotranspiration estimation. Agric. Water Manag. 2021, 257, 107102. [Google Scholar] [CrossRef]
- Okolelova, A.A.G.; Glinushkin, A.P.; Sviridova, L.L.; Podkovyrov, I.Y.; Nefedieva, E.E.; Egorova, G.S.; Kalinitchenko, V.P.; Minkina, T.M.; Sushkova, S.N.; Mandzhieva, S.S. Biogeosystem Technique (BGT*) methodology will provide semiarid landscape sustainability (A case of the south russia volgograd region soil resources). Agronomy 2022, 12, 2765. [Google Scholar] [CrossRef]
- Kalinitchenko, V.P.; Glinushkin, A.P.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Sukovatov, V.A.; Il’ina, L.P.; Makarenkov, D.A. Chemical soil-biological engineering theoretical foundations, technical means, and technology for safe intrasoil waste recycling and long-term higher soil productivity. ACS Omega 2020, 5, 17553–17564. [Google Scholar] [CrossRef] [PubMed]
- Stanhill, G. Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agric. For. Meteorol. 2002, 112, 233–236. [Google Scholar] [CrossRef]
- Liu, Y.; Costa, S. In Reference evapotranspiration. In Water and Soil Management for Sustainable Agriculture in the North China Plain; Pereira, L.S., Musy, A., Liang, R.J., Hann, M., Eds.; ISA: Lisbon, Portugal, 1998; pp. 49–57. [Google Scholar]
- Liu, H.J.; Kang, Y. Sprinkler irrigation scheduling of winter wheat in the North China Plain using a 20cm standard pan. Irrig. Sci. 2007, 25, 149–159. [Google Scholar] [CrossRef]
Season | Treatment | Irrigation Time (Month/Day) and Irrigation Water Amount (mm) | Total Irrigation Water Amount (mm) | |||||
---|---|---|---|---|---|---|---|---|
5/13 | 5/17 | 5/22 | 5/27 | 6/1 | 6/7 | |||
Spring growing season | T1 | 25 | 13.0 | 12.5 | 13.7 | 12.7 | 14.6 | 91.5 |
T2 | 25 | 17.3 | 16.7 | 18.3 | 16.9 | 19.4 | 113.6 | |
T3 | 25 | 21.6 | 20.9 | 22.9 | 21.1 | 24.3 | 135.8 | |
T4 | 25 | 25.9 | 25.1 | 27.5 | 25.3 | 29.2 | 158.0 | |
Autumn growing season | 9/21 | 9/27 | 10/10 | 10/23 | - | - | - | |
T1 | 35 | 12.8 | 14.5 | 12.0 | - | - | 74.4 | |
T2 | 35 | 17.1 | 19.4 | 16.0 | - | - | 87.5 | |
T3 | 35 | 21.4 | 24.2 | 20.0 | - | - | 100.6 | |
T4 | 35 | 25.7 | 29.0 | 24.0 | - | - | 113.7 |
Sampling Date | Treatments | Plant Height (cm) | Total Fresh Weight (g) | Leaf Fresh Weight (g) | Stem Fresh Weight (g) | Leaf Dry Weight (g) | Stem Dry Weight (g) | Total Dry Weight (g) | Fresh Weight/Dry Weight Ratio |
---|---|---|---|---|---|---|---|---|---|
5/31 | T1 | 14.1a | 37.1a | 23.7a | 13.4a | 2.1a | 0.8a | 2.9a | 12.8a |
T2 | 14.1a | 36.6a | 24.6a | 12.0a | 2.3a | 0.7a | 2.9a | 12.5a | |
T3 | 14.0a | 36.6a | 24.5a | 12.1a | 2.3a | 0.7a | 3.0a | 12.3a | |
T4 | 14.8a | 36.9a | 23.9a | 13.0a | 2.1a | 0.6a | 2.7a | 13.4a | |
6/6 | T1 | 26.2a | 102.6a | 53.0a | 49.6a | 4.3a | 2.3a | 6.6a | 15.6a |
T2 | 26.3a | 103.8a | 55.5a | 48.3a | 4.3a | 2.5a | 6.8a | 15.3a | |
T3 | 25.9a | 105.4a | 56.1a | 49.3a | 4.5a | 2.4a | 6.9a | 15.3a | |
T4 | 25.3a | 92.1a | 47.9a | 44.2a | 3.9a | 2.4a | 6.3a | 14.6a | |
6/12 | T1 | 37.2a | 203.1a | 89.7a | 113.4ab | 7.1a | 5.9a | 13.0ab | 15.6a |
T2 | 36.3a | 210.1a | 91.3a | 118.8ab | 7.6a | 6.0a | 13.7a | 15.4a | |
T3 | 36.6a | 207.8a | 86.3a | 121.6a | 7.1a | 6.0a | 13.0ab | 15.9a | |
T4 | 36.5a | 175.3a | 74.4a | 100.9b | 6.0a | 5.2a | 11.2b | 15.6a |
Sampling Date | Treatments | Plant Height (cm) | Total Fresh Weight (g) | Leaf Fresh Weight (g) | Stem Fresh Weight (g) | Leaf Dry Weight (g) | Stem Dry Weight (g) | Total Dry Weight (g) | Fresh Weight/Dry Weight Ratio |
---|---|---|---|---|---|---|---|---|---|
10/4 | T1 | 10.2a | 20.0a | 15.7b | 4.3a | 1.4a | 0.3a | 1.6a | 12.2a |
T2 | 10.0a | 19.9a | 15.5b | 4.4a | 1.4a | 0.3a | 1.7a | 12.0a | |
T3 | 10.0a | 20.3a | 15.8b | 4.5a | 1.3a | 0.3a | 1.7a | 12.2a | |
T4 | 10.4a | 22.0a | 17.2a | 4.8a | 1.5a | 0.3a | 1.8a | 12.4a | |
10/11 | T1 | 22.8a | 105.5a | 67.5a | 38.0a | 5.0a | 1.9a | 6.9a | 15.2a |
T2 | 22.4a | 106.7a | 69.9a | 36.9ab | 5.3a | 1.8a | 7.2a | 14.9a | |
T3 | 22.8a | 105.1a | 67.9a | 37.2ab | 5.2a | 1.8a | 7.0a | 15.1a | |
T4 | 21.7a | 93.2a | 60.9a | 32.3b | 4.7a | 1.6a | 6.4a | 14.6a | |
10/28 | T1 | 34.0a | 231.7a | 116.8a | 114.9a | 13.7a | 10.0a | 23.7a | 9.8a |
T2 | 32.9ab | 219.7a | 115.8a | 103.9ab | 13.7a | 9.6ab | 23.3a | 9.4a | |
T3 | 33.0ab | 210.9a | 111.6a | 99.3b | 13.2a | 9.2b | 22.3a | 9.4a | |
T4 | 31.8b | 208.4a | 111.6a | 96.8b | 13.5a | 9.5ab | 22.9a | 9.1a |
Sampling Date | Treatment | Spring Growing Season | Autumn Growing Season | ||||||
---|---|---|---|---|---|---|---|---|---|
LAI | Leaf Areas (cm2) | Specific Leaf Weight (mg cm−2) | SPAD | LAI | Leaf Areas (cm2) | Specific Leaf Weight (mg cm−2) | SPAD | ||
Initial season | T1 | 1.4a | 61.1a | 3.50a | 41.3a | 0.76a | 38.3a | 3.62a | 43.8a |
T2 | 1.6a | 63.1a | 3.64a | 41.4a | 0.77a | 38.5a | 3.53a | 43.7a | |
T3 | 1.7a | 64.2a | 3.56a | 41.1a | 0.79a | 39.7a | 3.39a | 43.4a | |
T4 | 1.5a | 63.5a | 3.38a | 41.6a | 0.84a | 42.0a | 3.47a | 43.6a | |
Mid-season | T1 | 3.8a | 160.7a | 2.67a | 42.1a | 3.7a | 185.4a | 2.73a | 44.6a |
T2 | 4.5a | 163.4a | 2.64a | 41.8a | 3.8a | 190.2a | 2.80a | 45.2a | |
T3 | 4.4a | 158.4a | 2.84a | 42.0a | 3.7a | 186.0a | 2.75a | 44.5a | |
T4 | 3.6a | 149.3a | 2.61a | 42.3a | 3.4a | 170.0a | 2.79a | 44.3a | |
Late season | T1 | 6.4a | 274.1a | 2.60a | 44.3a | 7.0a | 352.4a | 3.88b | 49.7a |
T2 | 6.9a | 275.4a | 2.78a | 44.7a | 7.0a | 350.3a | 3.92b | 49.4a | |
T3 | 6.7a | 262.8a | 2.69a | 44.3a | 6.5a | 324.4a | 4.07ab | 49.2a | |
T4 | 5.7a | 235.4a | 2.56a | 45.1a | 6.5a | 326.7a | 4.15a | 49.5a |
Seasons | Treatments | Days after Sowing (d) | ||||
---|---|---|---|---|---|---|
1–8 | 9–14 | 15–20 | 21–26 | 27–32 | ||
Spring | T1 | 0.9 | 0.5 | 0.7 | 0.6 | 0.5 |
T2 | 1.0 | 0.7 | 0.8 | 0.7 | 0.5 | |
T3 | 1.0 | 0.9 | 0.9 | 0.9 | 0.6 | |
T4 | 1.1 | 1.1 | 1.0 | 1.0 | 0.8 | |
Autumn | 1–7 | 8–14 | 15–21 | 22–30 | 31–38 | |
T1 | 0.7 | 0.7 | 0.6 | 0.6 | 0.5 | |
T2 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | |
T3 | 0.6 | 0.8 | 0.8 | 0.8 | 0.8 | |
T4 | 0.6 | 0.9 | 0.9 | 0.9 | 0.9 | |
FAO-recommended Kc values | 0.70 | 0.7 | 0.7–1.0 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Feng, J.; Liu, S.; Jia, S.; Fan, F. A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse. Horticulturae 2023, 9, 706. https://doi.org/10.3390/horticulturae9060706
Niu J, Feng J, Liu S, Jia S, Fan F. A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse. Horticulturae. 2023; 9(6):706. https://doi.org/10.3390/horticulturae9060706
Chicago/Turabian StyleNiu, Junfang, Junxia Feng, Shengyao Liu, Songnan Jia, and Fengcui Fan. 2023. "A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse" Horticulturae 9, no. 6: 706. https://doi.org/10.3390/horticulturae9060706
APA StyleNiu, J., Feng, J., Liu, S., Jia, S., & Fan, F. (2023). A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse. Horticulturae, 9(6), 706. https://doi.org/10.3390/horticulturae9060706