Research Progress and a Prospect Analysis of Asexual Bamboo Reproduction
Abstract
:1. Introduction
2. Means of Asexual Reproduction of Bamboo
3. Research Status of Bamboo Tissue Culture
4. Culture Methods of Bamboo Tissue Culture
4.1. Embryo Culture
4.2. Rapid Tube Propagation
4.3. Callus Culture
4.4. Other Culture Methods
5. Constraints on the Tissue Culture of Bamboo
5.1. Basal Medium
5.2. Explant Types
5.3. Plant Growth Regulators
5.4. Sterilization of Explants
6. Bamboo Transformation
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.R.; Fu, J.H. Global plastic ran policy and development opportunities of bamboo industry. World Bamboo Ratt. 2021, 19, 1–7. [Google Scholar]
- Liese, W.; Khöl, M. Bamboo: The Plant and Its Uses; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zhao, Y. Landscape advantages and application of groundcover ornamental bamboo. Asian Agric. Res. 2021, 13, 21–23. [Google Scholar]
- Li, Z.Y.; Long, T.T.; Li, N.; Wu, J.Q.; Feng, Y.P.; Hao, Y. Main bamboo species and their utilization in Asia countries. World Bamboo Ratt. 2020, 18, 1–7. [Google Scholar]
- Guerreiro, C. Flowering cycles of woody bamboos native to southern South America. J. Plant Res. 2014, 127, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Shibata, S. Seed germination and seedling establishment of the monocarpic dwarf bamboo Sasa veitchii var. hirsuta. J. For. Res. 2014, 19, 166–173. [Google Scholar] [CrossRef]
- Sankhyan, H.P.; Kumar, P.; Sehgal, R.N. Seed setting in Dendrocalamus strictus Nees. (Male Bamboo) in Himachal Pradesh. Environ. Ecol. 2009, 27, 1153–1156. [Google Scholar]
- Sarma, H.; Sarma, A.M.; Sarma, A.; Borah, S. A case of gregarious flowering in bamboo, dominated lowland forest of Assam, India: Phenology, regeneration, impact on rural economy, and conservation. J. For. Res. 2010, 21, 409–414. [Google Scholar] [CrossRef]
- Taylor, A.H.; Huang, J.; Zhou, S. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 2004, 200, 347–360. [Google Scholar] [CrossRef]
- Singh, S.R.; Singh, R.; Kalia, S.; Dalal, S.; Dhawan, A.K.; Kalia, R.K. Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—A plant with extraordinary qualities. Physiol. Mol. Biol. Plants 2013, 19, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.C.; Qi, L.P. Study on seedling propagation by clones of clump bamboo. J. Bamboo Res. 1994, 13, 62–73. [Google Scholar]
- Zhang, Y.; Feng, D.; Rong, Y.J. Breeding technology of ornamental bamboo. J. Hebei For. Sci. Technol. 2007, S1, 179. [Google Scholar]
- Mudoi, K.D.; Saikia, S.P.; Goswami, A.; Gogoi, A.; Bora, D.; Borthakur, M. Micropropagation of important bamboos: A review. Afr. J. Biotechnol. 2013, 12, 2770–2785. [Google Scholar]
- Li, W.C.; Wang, S.D.; Zhong, Z.K. Cultivation techniques for Oxyternanthera braunii with culm burying and branch cottage. J. Bamboo Res. 2009, 28, 19–24. [Google Scholar]
- Yao, J.S.; He, X.D. Cultivation of hardy Bambusa multiplex ‘Dong Cui’. Flower Plant Penjing 2018, 30–32. [Google Scholar]
- Hossain, M.A.; Kumar, S.M.; Seca, G.; Maheran, A.A.; Nor-Aini, A.S. Mass propagation of Dendrocalamus asper by branch cutting. J. Trop. For. Sci. 2008, 30, 82–88. [Google Scholar]
- Alexander, P.; Rao, T.C. In vitro culture of bamboo embryos. Curr. Sci. India 1968, 37, 415. [Google Scholar]
- Mehta, U.; Ramanuja Rao, I.V.; Mohan Ram, H.Y. Somatic embryogenesis in bamboo. In Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, Tokyo, Japan, 11–16 July 1982; pp. 109–110. [Google Scholar]
- Que, G.N.; Zhuge, Q. Callus culture and plantlet regeneration of bamboo. J. Bamboo Res. 1991, 10, 79–80. [Google Scholar]
- Rao, I.U.; Rao, I.V.R.; Narang, V. Somatic embryogenesis and regeneration of plants in the bamboo Dendrocalamus strictus. Plant Cell Rep. 1985, 4, 191–194. [Google Scholar] [CrossRef]
- Yeh, M.L.; Chang, W.C. Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro). Theor. Appl. Genet. 1986, 73, 161–163. [Google Scholar] [CrossRef]
- Yeh, M.-L.; Chang, W.-C. Somatic embryogenesis and subsequent plant regeneration from inflorescence callus of Bambusa beecheyana Munro var. beecheyana. Plant Cell Rep. 1986, 5, 409–411. [Google Scholar] [CrossRef]
- Hassan, A.A.E.; Debergh, P. Embryogenesis and plantlet development in the bamboo Phyllostachys viridis (Young) McClure. Plant Cell Tissue Organ Cult. 1987, 10, 73–77. [Google Scholar] [CrossRef]
- Yeh, M.-L.; Chang, W.-C. Plant regeneration via somatic embryogenesis in mature embryo-derived callus culture of Sinocalamus latiflora (Munro) McClure. Plant Sci. 1987, 51, 93–96. [Google Scholar] [CrossRef]
- Tsay, H.S.; Yeh, C.C.; Hsu, J.Y. Embryogenesis and plant regeneration from anther culture of bamboo (Sinocalamus latiflora (Munro) McClure). Plant Cell Rep. 1990, 9, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Woods, S.H.; Phillips, G.C.; Woods, J.E.; Collins, G.B. Somatic embryogenesis and plant regeneration from zygotic embryo explants in Mexican weeping bamboo, Otatea acuminata aztecorum. Plant Cell Rep. 1992, 11, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.M.; He, Y.K.; He, Q.Y.; Li, S.Y.; Xu, X.C.; Hu, J.Q. Induction and culture of callus in bamboo Sinocalamus latiflora (Munro) McClure. J. South China Agric. Univ. 1993, 14, 131–140. [Google Scholar]
- Rout, G.R.; Das, P. Somatic embryogenesis and in vitro flowering of 3 species of bamboo. Plant Cell Rep. 1994, 13, 683–686. [Google Scholar] [CrossRef]
- Chang, W.-C.; Lan, T.-H. Somatic embryogenesis and plant regeneration from roots of bamboo (Bambusa beecheyana Munro var. beecheyana). J. Plant Physiol. 1995, 145, 535–538. [Google Scholar] [CrossRef]
- Saxena, S.; Dhawan, V. Regeneration and large-scale propagation of bamboo (Dendrocalamus strictus Nees) through somatic embryogenesis. Plant Cell Rep. 1999, 18, 438–443. [Google Scholar] [CrossRef]
- Ogita, S. Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnol. 2005, 22, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; He, G. Study on callus culture of Phyllostachys pubescens. Hunan For. Sci. Technol. 2005, 32, 41–42. [Google Scholar]
- Wu, T.; Lu, J.J.; Ding, Y.L. A primary study on callus induction and plant regeneration of Bambusa affinis ‘viridiflavus’. J. For. Eng. 2008, 22, 19–22. [Google Scholar]
- Yuan, J.L.; Gu, X.P.; Li, L.B.; Yue, J.J.; Yao, N.; Guo, G.P. Callus induction and plantlet regeneration of Bambusa multiplex. Sci. Silv. Sin. 2009, 45, 35–39. [Google Scholar]
- Zhang, N.; Fang, W.; Shi, Y.; Liu, Q.; Yang, H.; Gui, R.; Lin, X. Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult. 2010, 103, 325–332. [Google Scholar] [CrossRef]
- Qiao, G.R.; Li, H.Y.; Jiang, J.; Sun, Z.X.; Zhuo, R.Y. Anther culture and plant regeneration of Dendrocalamus latiflorus. Chin. Bull. Bot. 2010, 45, 88–90. [Google Scholar]
- Pei, H.Y.; Lin, X.C.; Fang, W.; Huang, L.C. A preliminary study of somatic embryogenesis of Phyllostachys violascens in vitro. Chin. Bull. Bot. 2011, 46, 170–178. [Google Scholar]
- Wang, J.; Bi, W.; Pu, X.L.; Chen, F.; Peng, G.S.; Yang, Y.M. Callus induction and plantlet regeneration of Dendrocalamus barbatus Hsueh et D. Z. Li. Plant Physiol. J. 2012, 48, 359–363. [Google Scholar]
- Yuan, J.-L.; Yue, J.-J.; Wu, X.-L.; Gu, X.-P. Protocol for callus induction and somatic embryogenesis in Moso Bamboo. PLoS ONE 2013, 8, e81954. [Google Scholar] [CrossRef]
- Zang, Q.; Zhou, L.; Zhuge, F.; Yang, H.; Wang, X.; Lin, X. Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. SpringerPlus 2016, 5, 1799. [Google Scholar] [CrossRef] [Green Version]
- Wang, S. Study on Establishment and Mechanism of Tissue Culture and Rapid Propagation of Acidosasa Edulis T. H. Wen; Fujian Agriculture and Forestry University: Fujian, China, 2017. [Google Scholar]
- Ye, S.; Cai, C.; Ren, H.; Wang, W.; Xiang, M.; Tang, X.; Zhu, C.; Yin, T.; Zhang, L.; Zhu, Q. An efficient plant regeneration and transformation system of Ma Bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front. Plant Sci. 2017, 8, 1298. [Google Scholar] [CrossRef] [Green Version]
- Obsuwan, K.; Duangmanee, A.; Thepsithar, C. In vitro propagation of a useful tropical bamboo, Thyrsostachys siamensis Gamble, through shoot-derived callus. Hortic. Environ. Biotechnol. 2019, 60, 261–267. [Google Scholar] [CrossRef]
- Li, J.; Gao, C.; Miao, Y.; Liu, Z.; Cui, K. Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell Tissue Organ Cult. 2021, 145, 117–125. [Google Scholar] [CrossRef]
- Li, Z.L.; Hui, C.M. Study on tissue culture of Dendrocalamus sinicus. Sci. Silv. Sin. 2006, 42, 43–48. [Google Scholar]
- Song, L.L.; Li, R.J.; Liu, Q.Q.; Lin, X.C. Rapid propagation of Fargesia fungosa by tissue culture. Acta Agri. Univ. Jiangxiensis 2013, 35, 59–62. [Google Scholar]
- Ji, L.F.; Wang, X.Q.; Lin, X.C. Rapid propagation of Fargesia yunnanensis by tissue culture. J. Bamboo Res. 2015, 34, 21–25. [Google Scholar]
- Liu, B.B.; Jiang, T.; Yan, X.Y.; Wang, X.Q.; Qiu, S.J.H. Study on shoot induction and rooting of moso bamboo. Mol. Plant Breed. 2018, 16, 8155–8161. [Google Scholar]
- Yang, H.Y.; Wang, X.Q.; Zhang, N.; Lin, X.C.; Fang, W. Tissue culture and leaf color variation of Pseudosasa japonica cv. akebonosuji. J. Bamboo Res. 2010, 29, 15–20. [Google Scholar]
- Zhang, C.X.; Luo, R.X.; Ding, X.C.; Bai, R.H.; Tian, X.L.; Li, W.C.; Wu, S.G. Tissue culture and rapid propagation of Sasa pygmaea (Miq.) E. G. Camus. Plant Physiol. J. 2010, 46, 477–478. [Google Scholar]
- Sharma, P.; Sarma, K.P. In vitro propagation of Bambusa nutan in commercial scale in Assam, India. J. Environ. Res. Dev. 2014, 9, 348–355. [Google Scholar]
- Saini, H.; Arya, I.D.; Arya, S.; Sharma, R. In vitro micropropagation of Himalayan weeping bamboo, Drepanostachyum falcatum. Am. J. Plant Sci. 2016, 7, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Que, G.N.; Zhuge, Q. Study on cell suspension culture and isolation of protoplast of Dendrocalamus membranceus. For. Res. 1994, 7, 44–47. [Google Scholar]
- Wu, Y.M.; Bian, H.W.; Wang, J.H.; Huang, C.N. Establishment of bamboo cell suspension culture and observation of the transplants of tissue culture-derived seedlings. J. Bamboo Res. 2000, 19, 52–56. [Google Scholar]
- Tseng, T.C.; Lin, D.F.; Shaio, S.Y. Isolation of protoplasts from crop plants. Bot. Bull. Acad. Sin. 1975, 16, 55–60. [Google Scholar]
- Huang, L.C.; Chen, W.L.; Huang, B.L. Tissue culture investigations of bamboo—II. A method for viable protoplast isolation from Bambusa cells of liquid suspension culture. Bot. Bull. Acad. Sin. 1989, 30, 49–57. [Google Scholar]
- Huang, L.-C.; Huang, B.-L.; Chen, W.-L. Tissue culture investigations of bamboo—IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environ. Exp. Bot. 1989, 29, 307–315. [Google Scholar] [CrossRef]
- Huang, L.C.; Huang, B.L.; Chen, W.L. Tissue culture investigations of bamboo—V. Recovery of callus from protoplasts of suspension cultured Bambusa cells. Bot. Bull. Acad. Sin. 1990, 31, 29–34. [Google Scholar]
- Mustafa, A.A.; Derise, M.R.; Yong, W.T.L.; Rodrigues, K.F. A concise review of Dendrocalamus asper and related bamboos: Germplasm conservation, propagation and molecular biology. Plants 2021, 10, 1897. [Google Scholar] [CrossRef]
- Jiang, T.; Li, C.X.; Chen, L.; Yang, Z.H.; Su, J.; Liu, B.B. Mature seed disinfection method in tissue culture of bamboo. Jiangsu J. Agric. Sci. 2017, 45, 103–106. [Google Scholar]
- Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K.; et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 2013, 45, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Zhuo, R.; Fan, H.; Wang, Y.; Xu, J.; Jin, K.; Qiao, G. An efficient genetic transformation and CRISPR/Cas9-based genome editing system for moso bamboo (Phyllostachys edulis). Front. Plant Sci. 2022, 13, 822022. [Google Scholar] [CrossRef]
- Zhuo, R.Y.; Liu, X.G. Factors effecting transgenic breeding of Dendrocalamus latiflorus. Acta Agric. Univ. Jiangxiensis 2004, 26, 551–554. [Google Scholar]
- Zhang, L.; Jiang, J.; Qiao, G.R.; Liu, M.Y.; Yang, H.Q.; Zhuo, R.Y. Getting trans-codA gene regeneration bamboo of Dendrocalamus latiflorus Munro through agrobacterium mediated method. J. Bamboo Res. 2012, 31, 1–6, 14. [Google Scholar]
- Qiao, G.; Yang, H.; Zhang, L.; Han, X.; Liu, M.; Jiang, J.; Jiang, Y.; Zhuo, R. Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell. Dev. Biol.-Plant 2014, 50, 385–391. [Google Scholar] [CrossRef]
- Sood, P.; Bhattacharya, A.; Joshi, R.; Gulati, A.; Chanda, S.; Sood, A. A method to overcome the waxy surface, cell wall thickening and polyphenol induced necrosis at wound sites—the major deterrents to Agrobacterium mediated transformation of bamboo, a woody monocot. J. Plant Biochem. Biotechnol. 2013, 23, 69–80. [Google Scholar] [CrossRef]
- Liu, Q.Q. Regeneration in Dendrocalamus asper and Genetic Transformation of Bamboo. Master’s Thesis, Zhejiang Agricultural and Forestry University, Zhejiang, China, 2012. [Google Scholar]
- Cao, H.M. The Isolation of BeCRN1 from Bambusa emeiensis ‘Viridiflavus’ and Study on Genetic Transformation. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2009. [Google Scholar]
- Li, X.R.; Hu, S.L.; Cao, Y.; Lu, X.Q.; Ren, P.; Wu, X.Y.; Zhou, M.J. Agrobacterium-mediated transformation of 4CL gene from Neosinocalamus affinis into Dendrocalamus farinosus. Sci. Silv. Sin. 2012, 48, 38–44. [Google Scholar]
- Song, L.L. Comparison of the Regeneration Capacity of Different Species of Bamboo and Genetic Transformation. Master’s Thesis, Zhejiang Agricultural and Forestry University, Zhejiang, China, 2013. [Google Scholar]
- Zang, Q.L. Observations on Biological Characteristics and Regeneration System of Mniochloa abersend. Master’s Thesis, Zhejiang Agricultural and Forestry University, Zhejiang, China, 2016. [Google Scholar]
- Zhuge, F. Regeneration System via Shoot-Tips of Dendrocalamus asper and Genetic Transformation. Master’s Thesis, Zhejiang Agricultural and Forestry University, Zhejiang, China, 2018. [Google Scholar]
Species | Explant | Basal Medium | Plant Growth Regulators (as Indicated in mg/L Except Otherwise Mentioned) | Results | References |
---|---|---|---|---|---|
D. strictus | Seeds | B5 | * 2,4-D (30 µM) | Somatic embryogenesis | [20] |
B5 (liquid) | **,***,# IBA (0.5 µM) + NAA (0.1 µM) | ||||
1/2 B5 (liquid) | |||||
D. oldhami | Young inflorescence | MS | *,# 2,4-D (3.0) + KT (2.0) | Somatic embryogenesis | [21] |
B. beecheyana | Young inflorescence | mMS | *,# 2,4-D (3.0) + KT (2.0) | Somatic embryogenesis | [22] |
P. viridis | Young leaf | MS + Nitsch | *,# 2,4-D (9.0 µM) | Somatic embryogenesis | [23] |
Sinocalamuslatiflorus | Mature zygotic embryo | MS | *,# 2,4-D (6.0) + KT (3.0) | Somatic embryogenesis | [24] |
S.latiflorus | Anther | N6 | *,# 2,4-D (1.0) + BAP (1.0) | Somatic embryogenesis | [25] |
Otatea acuminata | Zygotic embryo | B5 | *,# 2,4-D (3.0) + BAP (0.5) | Somatic embryogenesis | [26] |
S. latiflorus | Sheath of the bamboo sprout | MS | * 2,4-D (4.0–8.0) + KT (3.0) | Callus culture | [27] |
B. vulgari, D. giganteus D. strictus | Nodal segment and mature zygotic embryo | MS | *,x 2,4-D (2.0) + KT (0.5) + Ads (10.0) | Somatic embryogenesis and in vitro flowering | [28] |
1/2MS | |||||
# none | |||||
Node | 1/2MS (liquid) | ## IBA (0.25) + GA3 (0.5) + Ads (0.5) | |||
B. beecheyana | Roots | MS | *,# 2,4-D (3.0) + KT (2.0) | Somatic embryogenesis | [29] |
D. strictus | Seeds | MS | * 2,4-D (30 µM) | Somatic embryogenesis | [30] |
** NAA (5.0 µM) + KT (5.0 µM) | |||||
mMS | ***,# NAA (3.0 µM) + IBA (2.5 µM) | ||||
P. nigra | Bamboo shoots | m1/2MS | *,### 2,4-D (3.0 µM) | Callus and cell suspension culture | [31] |
m1/2MS (liquid) | |||||
P. pubescens | Bamboo shoots | MS | * 2, 4-D (3.0) + BAP (1.0) | Callus culture | [32] |
B. affinis | Bud and young sheath | MS | * 2, 4-D (5.0) + BAP (0.2–0.5) | Plant regeneration | [33] |
** BAP (5.0) + NAA (0.2) | |||||
*** BAP (1.0) + NAA (0.5–2.0) | |||||
B. multiplex | Spikelet and embryo | NB | * 2, 4-D (4.0) | Plant regeneration | [34] |
MS | xx BAP (3.0) + KT (3.0) | ||||
** none | |||||
*** NAA (2.0) | |||||
D. hamiltonii | Mature zygotic embryo | MS | * 2,4-D (1.0–3.0) | Plant regeneration | [35] |
** BAP (2.0) + KT (1.0) + NAA (1.0) | |||||
1/2MS | *** IBA (5.0) | ||||
D. latiflorus | Anther | M8 | *,xxx PAA (15.0) + NAA (2.0) + BAP (0.5) | Plant regeneration | [36] |
P. violascens | Zygotic embryo | MS | *,#,xxx Picloram (0.1) + BAP (0.1) | Somatic embryogenesis | [37] |
D. barbatus | Seeds | MS | * 2,4-D (5.0) | Plant regeneration | [38] |
** 2,4-D (0.5) + BAP (1.0) + KT (0.25) | |||||
1/2MS | *** BAP (0.5) + NAA (1.0) + IBA (0.4) | ||||
P. pubescens | Zygotic embryo | MS | * 2,4-D (4.0) + ZT (0.1) | Somatic embryogenesis | [39] |
** ZT (5.0–7.07) | |||||
***,# NAA (2.0) | |||||
D. hamiltonii | Shoot tips | MS | * 2,4-D (3.0) + BAP (1.0) | Plant regeneration | [40] |
** BAP (1.0) + KT (0.3) + NAA (0.3) | |||||
1/2MS | *** IBA (3.0) | ||||
A. edulis | Stem segment | MS | * 2,4-D (2.0) + BAP (0.5) + KT (1.0) | Plant regeneration | [41] |
** BAP (3.0) + KT (1.0) + TDZ (0.05) + NAA (0.5) | |||||
*** BAP (2.0) + KT (0.1) + NAA (0.1) | |||||
D. latiflorus | Young shoot | MS | * 2,4-D (8.0) + IBA (0.5) | Plant regeneration | [42] |
** BAP (2.0) + NAA (0.5) | |||||
1/2MS | *** IAA (1.0) | ||||
T. siamensis | Young shoot | MS | * 2,4-D (11.3 µM) + KT (4.65 µM) + IBA (1.96 µM) | In vitro propagation | [43] |
** BAP (11.1 µM) + IBA (3.43 µM) | |||||
***,# NAA (26.85 µM) | |||||
D. sinicus | Hypocotyls | MS | * 2,4-D (3.1) + BAP (2.1) | Plant regeneration | [44] |
** BAP (2.0) + KT (0.3) + NAA (0.3) | |||||
*** IBA (4.0) + NAA (1.0) |
Species | Explant | Gene | Achievements | References |
---|---|---|---|---|
D. latiflorus | Young shoots | Lc | The anthocyanin over-accumulation phenotype was generated | [42] |
P. edulis | Immature embryo | PDS | The transformation efficiency was 5%, and the pdspds2 mutant was obtained by the CRISPR/Cas9 gene editing system | [62] |
D. latiflorus | Bamboo shoots tip growing cone | GUS | The antibiotic screening system and agrobacterium-mediated transformation system were established | [63] |
D. latiflorus | Anther | CodA | Hyg concentration, pre-culture time, infection time, co-culture time, and AS concentration were the main factors affecting the efficiency of genetic transformation | [64] |
D. latiflorus | Anther | CodA | The cold resistance of transgenic plants was enhanced | [65] |
D. hamiltonii | Leaf bases | GUS | GUS was highly expressed, and positive signals were detected in PCR, slot blot, and southern hybridization | [66] |
D. hamiltonii | Mature embryo | HPT | Ten resistant regenerated plants were obtained, and the transformation rate was 35.7% | [67] |
B. emeiensis | Newly emerged buds | CRN1 | Kanamycin, PPT, and hygromycin were not suitable for resistant callus screening | [68] |
D. farinosus | Mature embryo | 4CL | The transformation efficiency was 9%, and the expression of the transgenic callus and endogenous 4CL was inhibited | [69] |
Gigantochloa brevisvagina, Gigantochloa tekserah, D. hamiltonii | Mature embryo | HTD2 | Six regenerated seedlings (four albescent seedlings) of D. hamiltonii, two tubes of callus with green spots, and one tube of callus differentiated from roots were obtained | [70] |
Mniochloa abersend | Buds | CodA | The transformation rate of the resistant callus was 26.67% | [71] |
D. asper | Shoot tips | GFP | Transient fluorescence expression of GFP was observed in the callus | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Li, J.; Chen, J.-Y.; Mei, R.-M.; Cui, K.; Lan, L. Research Progress and a Prospect Analysis of Asexual Bamboo Reproduction. Horticulturae 2023, 9, 685. https://doi.org/10.3390/horticulturae9060685
Ma S, Li J, Chen J-Y, Mei R-M, Cui K, Lan L. Research Progress and a Prospect Analysis of Asexual Bamboo Reproduction. Horticulturae. 2023; 9(6):685. https://doi.org/10.3390/horticulturae9060685
Chicago/Turabian StyleMa, Shuai, Jin Li, Jian-Ying Chen, Ren-Ming Mei, Kai Cui, and Lan Lan. 2023. "Research Progress and a Prospect Analysis of Asexual Bamboo Reproduction" Horticulturae 9, no. 6: 685. https://doi.org/10.3390/horticulturae9060685
APA StyleMa, S., Li, J., Chen, J. -Y., Mei, R. -M., Cui, K., & Lan, L. (2023). Research Progress and a Prospect Analysis of Asexual Bamboo Reproduction. Horticulturae, 9(6), 685. https://doi.org/10.3390/horticulturae9060685