Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Crop Selection
2.3. Water-Saving Technologies
2.4. Hydrogel
2.5. Growboxx
2.6. Experimental Design
2.7. Before Planting
2.8. During Planting
2.9. Harvesting
2.10. Statistical Analysis
3. Results
3.1. Broccoli
3.2. Cucumber
3.3. Pepper
3.4. Tomato
3.5. Watermelon
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampedro, C.; Pizzitutti, F.; Quiroga, D.; Walsh, S.; Mena, C. Food supply system dynamics in the Galapagos Islands: Agriculture, livestock and imports. Renew. Agric. Food Syst. 2020, 35, 234–248. [Google Scholar] [CrossRef]
- Jaramillo, P.; Calle-Loor, A.; Gualoto, E.; Bolaños, C.; Cevallos, D. Adoption of Sustainable Agriculture Practices Through Participatory Research: A Case Study on Galapagos Islands Farmers Using Water-Saving Technologies. Plants 2022, 21, 2848. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, M.C. System Dynamics in Food Security: Agriculture, Livestock, and Imports in the Galapagos Islands. Master’s Thesis, San Francisco de Quito University (USFQ) Press, Quito, Ecuador, 2017. [Google Scholar]
- Koford, C.B. Economic Resources of the Galápagos Islands. In The Galápagos Proceedings of the Symposia of the Galapagos International Scientific Project; University of California Press: Berkeley, CA, USA, 1966. [Google Scholar]
- Jaramillo, P.; Lorenz, S.; Ortiz, G.; Cueva, P.; Jiménez, E.; Ortiz, J.; Rueda, D.; Freire, M.; Gibbs, J.P.; Tapia, W. Galapagos Verde 2050: An Opportunity to Restore Degraded Ecosystems and Promote Sustainable Agriculture in the Archipelago. In Galapagos Report 2013–2014; GNPD: Puerto Ayora, Ecuador, 2015; pp. 133–143. [Google Scholar]
- Echeverría, M.C.; Ortega-Andrade, S.; Obando, S.; Marco, N. Scientific, Technical, and Social Challenges of Coffee Rural Production in Ecuador. In Sustainable Agricultural Value Chain; Alem, H., Jena, P.R., Eds.; IntechOpen: London, UK, 2022; pp. 1–23. [Google Scholar] [CrossRef]
- Reyes, M.F.; Trifunovic, N.; Sharma, S.; Behzadian, K.; Kapelan, Z.; Kennedy, M.D. Mitigation Options for Future Water Scarcity: A Case Study in Santa Cruz Island (Galapagos Archipelago). Water 2017, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Gerzabek, M.H.; Bajraktarevic, A.; Keiblinger, K.; Mentler, A.; Rechberger, M.; Tintner, J.; Wriessnig, K.; Gartner, M.; Valenzuela, X.; Troya, A.; et al. Agriculture changes soil properties on the Galápagos Islands-two case studies. Soil Res. 2019, 57, 201–214. [Google Scholar] [CrossRef]
- Barrera, V.; Valverde, M.; Escudero, L.; Allauca, J. Productividad y Sostenibilidad de los Sistemas de Producción Agropecuaria; INIAP: Quito, Ecuador, 2019; Available online: https://repositorio.iniap.gob.ec/bitstream/41000/5 (accessed on 7 May 2023).
- DCGREG. Censo de Unidades de producción Agropecuaria. Directorio del Consejo de Gobierno del Régimen Especial Galápagos. 2014. Available online: https://siig.gobiernogalapagos.gob.ec/php/publico/publicaciones (accessed on 7 May 2023).
- Gerhard, W.A.; Choi, W.S.; Houck, K.M.; Stewart, J.R. Water quality at points-of-use in the Galapagos Islands. Int. J. Hyg. Environ. Health 2017, 220, 485–493. [Google Scholar] [CrossRef]
- Hanson, C.; Campbell, K. Floreana Island Ecological Restoration: Rodent and Cat Eradication Feasibility Analysis; Island Conservation: Santa Cruz, CA, USA, 2013. [Google Scholar]
- D’Ozouville, N. Fresh water: The reality of a critical resource. In Galapagos Report 2006–2007; Charles Darwin Foundation: Puerto Ayora, Galápagos; Galapagos National Park: Puerto Ayora, Galápagos; Galapágos National Institute INGALA: Puerto Ayora, Galápagos, 2007; pp. 146–150. [Google Scholar]
- Klassen, C. El Junco, la Única Laguna de Agua Dulce de Galápagos, Nuevamente Libre de Especies Invasoras. Metropolitan Touring. Puerto Baquerizo, Galápagos. 2022. Available online: https://www.metropolitantouring.com/noticias-ecuador-y-galapagos/el-junco-la-unica-laguna-de-agua-dulce-de-galapagos-nuevamente-libre-de-especies-invasoras (accessed on 13 December 2022).
- Consejo de Gobierno del Régimen Especial de Galápagos. In Plan de Desarrollo Sustentable y Ordenamiento Territorial del Régimen Especial de Galápagos 2015–2020; Consejo de Gobierno del Régimen Especial de Galápagos: Puerto Baquerizo Moreno, Ecuador, 2016; Available online: https://www.google.com/search?q=Plan+de+Desarrollo+Sustentable+y+Ordenamiento+Territorial+del+R%C3%A9gimen+Especial+de+Gal%C3%A1pagos+2015%E2%80%932020.&oq=Plan+de+Desarrollo+Sustentable+y+Ordenamiento+Territorial+del+R%C3%A9gimen+Especial+de+Gal%C3%A1pagos+2015%E2%80%932020.&aqs=chrome..69i57.1830j0j1&sourceid=chrome&ie=UTF-8 (accessed on 7 May 2023).
- Guyot-Téphany, J.; Grenier, C.; Orellana, D. Uses, perceptions and management of water in Galapagos. In Galapagos Report; GNPD: Puerto Ayora, Galápagos, 2012; pp. 67–74. Available online: https://www.researchgate.net/publication/298792852_Perceptions_uses_and_management_of_water_in_Galapagos (accessed on 1 June 2022).
- Mateus, C.; Guerrero, C.A.; Quezada, G.; Lara, D.; Ochoa-Herrera, V. An Integrated Approach for Evaluating Water Quality between 2007–2015 in Santa Cruz Island in the Galapagos Archipelago. Water 2019, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Negoita, L.; Gibbs, J.P.; Jaramillo, P. Cost-effectiveness of water-saving technologies for restoration of tropical dry forest: A case study from the Galapagos Islands, Ecuador. Restor. Ecol. 2022, 30, e13576. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Chen, H.; Cheng, D. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Sci. Total Environ. 2022, 846, 157303. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef]
- Landis, T.D.; Haase, D.L. Applications of Hydrogels in the Nursery and During Outplanting. In National Proceedings: Forest and Conservation Nursery Associations; Haase, D.L., Pinto, J.R., Riley, L.E., Eds.; USDA Forest Service, Rocky Mountain Research Station: Eds Fort Collins, CO, USA, 2012; pp. 53–58. [Google Scholar]
- Jaramillo, P.; Cornejo, F.; Solís, M.; Mayorga, P.; Negoita, L. Effect of water-saving technologies on productivity and profitability of tomato cultivation in Galapagos, Ecuador. J. Appl. Hortic. 2023, 24, 296–301. [Google Scholar] [CrossRef]
- Ruzmetov, M.I. Status quo of pastures in Uzbekistan and their effective utilization. Earth Environ. Sci. 2021, 937, 32069. [Google Scholar] [CrossRef]
- GVS. A Satellite-Based Environmental Monitoring System for the Galapagos Archipelago; Galapagos Conservancy: Santa Cruz, Galápagos, 2022; Available online: https://www.galapagosvitalsigns.org/terrestrial/santacruz/precipitation/ (accessed on 18 January 2023).
- Barrera, V.; Monteros-Altamirano, A.; Valverde, M.; Escudero, L.; Allauca, J.; Zapata, A. Characterization and Classification of Agricultural Production Systems in the Galapagos Islands (Ecuador). Agric. Sci. 2021, 12, 481–502. [Google Scholar] [CrossRef]
- Allauca, J.; Valverde, M.; Tapia, C. Conocimiento, Manejo y Uso de la Agrobiodiversidad en la Isla San Cristóbal; Boletín Técnico 173; INIAP: Quito, Ecuador, 2018. [Google Scholar]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.; Gupta, D.; Ujjwal, N. Hydrogel: Preparation, Characterization and Applications. Asian Pac. J. Nurs. Health Sci. 2020, 3, 1–11. [Google Scholar]
- Cosecha Lluvia. Cosecha de Lluvia. Cosecha de lluvia. 2015. Available online: https://www.cosechadelluvia.com/cosecha-de-lluvia-contacto?lang=en (accessed on 7 May 2023).
- Cosecha Lluvia. Cosecha de Lluvia: El Primer Hidroretenedor en Ecuador Con Hidrogel. Cosecha de Lluvia. Innovación Futurista. 2015. Available online: https://www.cosechadelluvia.com/cosecha-de-lluvia-conoce-mas (accessed on 7 May 2023).
- Accreviri. Manual de plantación con Growboxx en Español. © Groasis BV: Steenbergen, The Netherlands. 2019. Available online: https://accreviri.com/wp-content/uploads/2019/10/10-20180601-Manual-plantacio%CC%81n-con-Growboxx-en-Espan%CC%83ol.pdf (accessed on 7 May 2023).
- Lobo, D.; Torres, D.; Gabriels, D.; Rodríguez, N.; Rivero, D. Effect of organic waste compost and a water absorbent polymeric soil conditioner (hydrogel) on the water use efficiency in a Capsicum annum (green pepper) cultivation. In Proceedings of the Agro Environ, Ghent, Belgium, 4–7 September 2006; pp. 453–459. [Google Scholar]
- Sannino, A. Application of Superabsorbent Hydrogels for The Optimization of Water Resources in Agriculture. In Proceedings of the 3rd International Conference on Water Resources and Arid Environments (2008) and the 1st Arab Water Forum, Riyadh, Saudi Arabia, 16–19 November 2008. [Google Scholar]
- Pedroza-Sandoval, A.; Yáñez-Chávez, L.G.; Sánchez-Cohen, I.; Samaniego-Gaxiola, J.A. Efecto del hidrogel y vermicomposta en la producción de maíz. Rev. Fitotec. Mex. 2015, 38, 375–381. [Google Scholar] [CrossRef]
- Sarvaš, M.; Pavlenda, P.; Takáčová, E. Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J. For. Sci. 2007, 53, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Albalasmeh, A.A.; Mohawesh, O.; Gharaibeh, M.A.; Alghamdi, A.G.; Alajlouni, M.A.; Alqudah, A.M. Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. J. Saudi Soc. Agric. Sci. 2022, 21, 518–524. [Google Scholar] [CrossRef]
- Peyrusson, F. Effect of Hydrogel on the Plants Growth; Catholic University of Louvain-Belgium: Ottignies-Louvain-la-Neuve, Belgium, 2018. [Google Scholar]
- R Core Team. R a Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 7 May 2023).
- Tapia, P.I.; Negoita, L.; Gibbs, J.P.; Jaramillo, P. Effectiveness of water-saving technologies during early stages of restoration of endemic Opuntia cacti in the Galápagos Islands, Ecuador. PeerJ 2019, 7, e8156. [Google Scholar] [CrossRef] [Green Version]
- Varela, L.G. Evaluación del Efecto del Poliacrilato de Potasio Sobre la Productividad del Cultivo de Brócoli Híbrido Avenger, en Suelos del CADER; Universidad Central del Ecuador Press: Quito, Ecuador, 2018. [Google Scholar]
- Gholamhoseini, M.; Habibzadeh, F.; Ataei, R.; Hemmati, P.; Ebrahimian, E. Zeolite and hydrogel improve yield of greenhouse cucumber in soil-less medium under water limitation. Rhizosphere 2018, 6, 7–10. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Al-Omran, A.M.; Shalaby, A.A.; Choudhary, M.I. Efficacy of a Hydrophilic Polymer Declines with Time in Greenhouse Experiments. HortScience 1999, 34, 223–224. [Google Scholar] [CrossRef]
- Nassaj-Bokharaei, S.; Motesharezedeh, B.; Etesami, H.; Motamedi, E. Effect of hydrogel composite reinforced with natural char nanoparticles on improvement of soil biological properties and the growth of water deficit-stressed tomato plant. Ecotoxicol. Environ. Saf. 2021, 223, 112576. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, P.; Tapia, W.; Negoita, L.; Plunkett, E.; Guerrero, M.; Mayorga, P.; Gibbs, J.P. The Galapagos Verde 2050 Project; Charles Darwin Foundation: Puerto Ayora, Galápagos, 2020; Volume 1. [Google Scholar]
- Pereira, B.J.; Rodrigues, G.A.; Santos, A.R.; Anjos, G.L.; Costa, F.M. Watermelon initial growth under different hydrogel concentrations and shading conditions. Rev. Caatinga 2019, 32, 915–923. [Google Scholar] [CrossRef]
- Kuşçu, H.; Turhan, A.; Özmen, N.; Aydınol, P.; Büyükcangaz, H.; Demir, A.O. Deficit irrigation effects on watermelon (Citrullus vulgaris) in a sub humid environment. J. Anim. Plant Sci. 2015, 25, 1652–1659. [Google Scholar]
- Medina, R.; Salinas, J.; Gómez, J.; Torres, J. Aceptación de un gel polímero en la zona agrícola de la comuna “El Azúcar”. J. Sci. Res. 2020, 6, 18–28. [Google Scholar]
- Satriani, A.; Catalano, M.; Scalcione, E. The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: A case-study in Southern Italy. Agric. Water Manag. 2018, 195, 114–119. [Google Scholar] [CrossRef]
- Campaña, I.A. Evaluación de la Capacidad de Retención Hídrica en Sustratos con Poliacrilato de Potasio Para Cultivos de Haba en Ambiente Controlado. In Tesis de Licenciatura (Ingeniero Agrónomo); Universidad Central del Ecuador: Quito, Ecuador, 2016; Available online: https://www.dspace.uce.edu.ec/handle/25000/10155 (accessed on 7 May 2023).
- Mudhanganyi, A.; Ndagurwa, H.G.; Maravanyika, C.; Mwase, R. The influence of hydrogel soil amendment on the survival and growth of newly transplanted Pinus patula seedlings. J. For. Res. 2018, 29, 103–109. [Google Scholar] [CrossRef]
- Felippe, D.; Navroski, M.C.; Sampietro, J.A.; Mota, C.S.; Pereira, M.O.; Albuquerque, J.A.; de Andrade, R.S.; Moraes, C. Hydrogel and irrigation frequencies in survival, growth and gas exchanges in Eucalyptus urograndis. Cienc. Florest. 2021, 31, 1569–1590. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Zapata, L.; Chalbi, N.; Carvajal, M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobiotechnol. 2016, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Radian, R.; Ichwan, B.; Hayat, I. Nanotechnology for dryland agriculture water saving: Biodegradable hydrogel application in sweet corn (Zea mays saccharate Sturt) productio. Emir. J. Food Agric. 2022, 34, 800–805. [Google Scholar] [CrossRef]
- Krasnopeeva, E.L.; Panova, G.G.; Yakimansky, A.V. Agricultural Applications of Superabsorbent Polymer Hydrogels. Int. J. Mol. Sci. 2022, 23, 15134. [Google Scholar] [CrossRef]
Period | 2017–2018 | 2021 | |||
---|---|---|---|---|---|
Crop | Treatments | ||||
Broccoli | Hydrogel | Control | N/A | N/A | N/A |
Cucumber | Hydrogel | Control | N/A | N/A | N/A |
Pepper | Hydrogel | Control | Growboxx | Control | |
Tomato | Hydrogel | Control | Hydrogel | Growboxx | Control |
Watermelon | Hydrogel | Control | N/A | N/A | N/A |
Trait | Treatments | Broccoli | Cucumber | Pepper | Tomato | Watermelon |
---|---|---|---|---|---|---|
Productivity age (days) | Hydrogel | 202.408 | 59.401 | 82.214 | 101.215 | 89.181 |
Control | 171.471 | 57.751 | 79.277 | 95.835 | 88.5 | |
Difference | 18% | 3% | 4% | 6% | 1% | |
Productivity (kg) | Hydrogel | 0.455 | 2.255 | 4.418 | 2.255 | 4.049 |
Control | 0.479 | 2.197 | 3.666 | 2.365 | 4.492 | |
Difference | 5% | 3% | 21% | 5% | 10% | |
Fruits per plant | Hydrogel | - | 6.851 | 44.501 | 14.556 | 1.181 |
Control | - | 6.651 | 33.222 | 17.247 | 1.285 | |
Difference | - | 3% | 34% | 16% | 8% | |
Individual fruit weight (IFW) (kg) | Hydrogel | - | 0.323 | 0.101 | 0.161 | 2.954 |
Control | - | 0.333 | 0.111 | 0.147 | 3.404 | |
Difference | - | 3% | 9% | 10% | 13% |
Treatment | Comparison | ||||||
---|---|---|---|---|---|---|---|
Pepper | Traits | H | G | C | HC | GC | HG |
Productivity age (days) | 93.801 | 95.666 | 94.115 | 0% | 2% | 2% | |
Productivity (kg) | 0.171 | 0.256 | 0.306 | 44% | 16% | 33% | |
Fruits per plant | 2.251 | 3.111 | 3.653 | 38% | 15% | 28% | |
Individual fruit weight (IFW) (kg) | 0.084 | 0.065 | 0.101 | 17% | 36% | 29% | |
Tomato | Productivity age (days) | 107.458 | 109.962 | 107.008 | 0% | 3% | 2% |
Productivity (kg) | 0.281 | 0.216 | 0.302 | 7% | 28% | 30% | |
Fruits per plant | 3.166 | 3.012 | 3.463 | 9% | 13% | 5% | |
Individual fruit weight (IFW) (kg) | 0.087 | 0.067 | 0.086 | 1% | 22% | 30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo Díaz, P.; Calle-Loor, A.; Velasco, N.; Cevallos, D. Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability. Horticulturae 2023, 9, 683. https://doi.org/10.3390/horticulturae9060683
Jaramillo Díaz P, Calle-Loor A, Velasco N, Cevallos D. Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability. Horticulturae. 2023; 9(6):683. https://doi.org/10.3390/horticulturae9060683
Chicago/Turabian StyleJaramillo Díaz, Patricia, Anna Calle-Loor, Nicolás Velasco, and David Cevallos. 2023. "Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability" Horticulturae 9, no. 6: 683. https://doi.org/10.3390/horticulturae9060683
APA StyleJaramillo Díaz, P., Calle-Loor, A., Velasco, N., & Cevallos, D. (2023). Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability. Horticulturae, 9(6), 683. https://doi.org/10.3390/horticulturae9060683