Behavior, Characteristics and Sources of Microplastics in Tea
Abstract
:1. Introduction
2. Pollution Status of Microplastics in Tea
2.1. Microplastics in Empty Tea Bags
2.2. Microplastics in Tea Bags
2.3. Microplastics in Tea Beverages
3. Sources of Microplastics Pollution in Tea
3.1. Microplastics from Agricultural Plastic Film and Plastic Packaging of Tea Garden Inputs
3.2. Microplastics from Organic Fertilizers
3.3. Atmospheric Deposition
3.4. Microplastics Released by Tools or Containers during Production
4. Suggestions for Prevention and Control of Microplastics in Tea
5. Conclusions and Outlook
- (1)
- Standardization of microplastic detection methods for tea
- (2)
- Study on the safety threshold of microplastics in tea and tea plantations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Z.; Dan, L. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment. Environ. Chem. 2021, 40, 28–40. (In Chinese) [Google Scholar]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Hu, M.; Zhang, Y.; Pang, Y.; Qu, W.; Zhou, Y. Analysis of the characteristics of micro-and nanoplastics exposure to Chinese population via in-gestion and inhalation. Chin. J. Dis. Control Prev. 2021, 25, 1245–1250. (In Chinese) [Google Scholar]
- Richard, C.T.; Ylva, O.; Richard, P.M.; Anthony, D.; Steven, J.R.; Anthony, W.G.J.; Daniel, F.M.; Andrea, E.R. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar]
- Wu, G.; Li, C.; Zhang, M. Study on the current situation and prevention countermeasures of microplastics pollution in food. Food Mach. 2021, 37, 1–7. (In Chinese) [Google Scholar]
- Chen, L.; Yang, X.; Zhang, L.; Hu, H.; Wang, J.; Wu, B.; Ren, H. Hazard and Management of Emerging Environmental Pollutants in Food of China. Chin. J. Eng. Sci. 2022, 24, 99. (In Chinese) [Google Scholar] [CrossRef]
- Mercogliano, R.; Avio, C.G.; Regoli, F.; Anastasio, A.; Colavita, G.; Santonicola, S. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J. Agric. Food Chem. 2020, 68, 5296–5301. [Google Scholar] [CrossRef]
- Milene, F.D.; Juan, A.C.; Andres, F. Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability 2020, 12, 5514. [Google Scholar]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020, 714, 136823. [Google Scholar] [CrossRef]
- Nithin, A.; Sundaramanickam, A.; Surya, P.; Sathish, M.; Soundharapandiyan, B.; Balachandar, K. Microplastic contamination in salt pans and commercial salts—A baseline study on the salt pans of Marakkanam and Parangipettai, Tamil Nadu, India. Mar. Pollut. Bull. 2021, 165, 112101. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D.; Olasehinde, E.F. Microparticles and microplastics contamination in African table salts. Mar. Pollut. Bull. 2021, 164, 112006. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Wang, J.; Li, H.Y.; Zhang, H.M.; Zhang, D.L. Microplastic pollution of bottled water in China. J. Water Process Eng. 2021, 40, 101884. [Google Scholar] [CrossRef]
- Qipei, L.; Zhihua, F.; Tao, Z.; Cuizhu, M.; Huahong, S. Microplastics in the commercial seaweed nori. J. Hazard. Mater. 2020, 388, 122060. [Google Scholar]
- Zhang, L.; Li, J.; Hu, X.; Guo, F.; Zhao, H.; Wang, Y.; Wang, P.; Ni, D. Research Progresses of Tissue Culture in Tea Plant (Camellia sinensis). Mol. Plant Breed. 2021, 1–14. (In Chinese) [Google Scholar]
- Mei, Y.; Liang, X. Analysis of China’s Tea Production and Domestic Sales in 2021. J. China Tea. 2022, 44, 17–22. (In Chinese) [Google Scholar]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar]
- Li, Y.; Peng, L.; Fu, J.; Dai, X.; Wang, G. A microscopic survey on microplastics in beverages: The case of beer, mineral water and tea. Analyst 2022, 147, 1099–1105. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar]
- Zhang, S.; Gao, W.; Cai, K.; Liu, T.; Wang, X. Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy 2022, 12, 2692. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Ding, L.; Zhang, G.; Bai, B.; Han, Y.; Xiao, L.; Song, Y.; Li, Y.; Wan, S.; et al. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. J. Hazard. Mater. 2023, 443, 130384. [Google Scholar] [CrossRef]
- Dong, R.; Liu, R.; Xu, Y.; Liu, W.; Sun, Y. Effect of foliar and root exposure to polymethyl methacrylate microplastics on biochemistry, ultrastructure, and arsenic accumulation in Brassica campestris L. Environ. Res. 2022, 215, 114402. [Google Scholar] [CrossRef] [PubMed]
- Busse, K.; Ebner, I.; Humpf, H.; Lvleva, N.; Kaeppler, A.; Barbara, E.O.; Schymanski, D. Comment on “Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea”. Environ. Sci. Technol. 2020, 54, 14134–14135. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lin, X.; Hugelier, S.; Herrero-Langreo, A.; Aoife, A.G. Spectral imaging for characterization and detection of plastic substances in branded teabags. J. Hazard. Mater. 2021, 418, 126328. [Google Scholar] [CrossRef] [PubMed]
- Mei, T.; Wang, J.; Xiao, X.; Lv, J.; Li, Q.; Dai, H.; Liu, X.; Pi, F. Identification and Evaluation of Microplastics from Tea Filter Bags Based on Raman Imaging. Foods 2022, 11, 2871. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Rahman, M.; Akbor, A.; Siddique, M.A.B.; Uddin, M.K.; Malafaia, G. Is there tea complemented with the appealing flavor of microplastics? A pioneering study on plastic pollution in commercially available tea bags in Bangladesh. Sci. Total Environ. 2022, 837, 155833. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—Future research and environmental considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef]
- Emmanouil, D.T.; Joao, A.L.; Oliver, K.; Thomas, T.; Eddo, J.H. Quantification of PET cyclic and linear oligomers in teabags by a validated LC-MS method—In silico toxicity assessment and consumer’s exposure. Food Chem. 2020, 317, 126427. [Google Scholar]
- Bo, L.; Li, B.; Zhang, K.; Ma, R.; Li, Y.; Wang, Y.; Sun, B.; Liu, Y. Distribution, Sources and Behavioral Characteristics of Microplastics in Farmland Soil. Environ. Sci. 2022, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Hu, J. A Study on Pollution Characteristics of Microplasticsin Agricultural Soils and Environmental Behaviors of Typical Mulching Films. Master’s Thesis, East China Normal University, Shanghai, China, 2021. (In Chinese). [Google Scholar]
- Huang, Y.; Liu, Q.; Jia, W.Q.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Huang, Y.; He, T.; Yan, M.; Yang, L.; Gong, H.; Wang, W.; Qing, X.; Wang, J. Atmospheric transport and deposition of microplastics in a subtropical urban environment. J. Hazard. Mater. 2021, 416, 126168. [Google Scholar] [CrossRef] [PubMed]
- Peñalver, R.; Costa-Gómez, I.; Arroyo-Manzanares, N.; Moreno, J.M.; López-García, I.; Moreno-Grau, S.; Córdoba, M.H. Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area. Sci. Total Environ. 2021, 787, 147656. [Google Scholar] [CrossRef]
- Zhou, Q.; Tian, C.; Luo, Y. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin. Sci. Bull. 2017, 62, 3902–3909. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Y.; Chen, X.; Jiang, X.; Li, J.; Yang, L.; Yin, X.; Zhang, X. Occurrence and distribution of microplastics in organic fertilizers in China. Sci. Total Environ. 2022, 844, 157061. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.V.; Sheela, A.M. Effect of plastic film mulching on the distribution of plastic residues in agricultural fields. Chemosphere 2020, 273, 128590. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Z.; Cai, Y.; Li, H.; Ying, G. Agricultural Plastic Pollution in China: Generation of Plastic Debris and Emission of Phthalic Acid Esters from Agricultural Films. Environ. Sci. Technol. 2021, 55, 12459–12470. [Google Scholar] [CrossRef]
- Yang, R.; Che, Z.; He, C.; Tang, J.; Zhou, T.; Zhang, J.; Lu, B.; Wu, K.; Cui, H. Effect of residual film on soil quality of cultivated land. Gansu Agric. Sci. Technol. 2021, 52, 88–92. (In Chinese) [Google Scholar]
- Geng, S.; Ma, L.; Yang, X.; Fang, L.; Jiang, Y.; Ruan, J.; Zhang, J. Effects of Organic Manure Replacing Chemical Fertilizer on Soil Quality and Young Shoots Nutrient Uptake in Tea Plantation. China Tea 2021, 43, 52–57. (In Chinese) [Google Scholar]
- Melanie, B.; Wulf, A. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar]
- Rachid, D.; Johnny, G.; Vincent, R.; Saad, M.; Bruno, T. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar]
- Rachid, D.; Johnny, G.; Mohamed, S.; Cécile, M.; Bruno, T. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar]
- Rachid, D.; Johnny, G.; Cécile, M.; Corinne, M.; Mohamed, G.; Valérie, L.; Bruno, T. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar]
- Xu, A.; Shi, M.; Xing, X.; Su, Y.; Li, X.; Liu, W.; Mao, Y. Status and prospects of atmospheric microplastics: A review of methods, occurrence, composition, source and health risks. Environ. Pollut. 2022, 303, 119173. [Google Scholar] [CrossRef] [PubMed]
- Manish, K.; Xinni, X.; Mingjing, H.; Daniel, C.W.T.; Juhi, G.; Eakalak, K.; Stuart, H.; Deyi, H.; Yong, S.O.; Nanthi, S.B. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastics in soils—A review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Shi, Q.; Lin, Z.; Jl, Y. Study on the Source, Transfer Mechanism and Degradation Methods of Microplastics in the Environment. Appl. Chem. Ind. 2022, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Veerasingam, S.; Saha, M.; Suneel, V.; Vethamony, P.; Rodrigues, A.C.; Bhattacharyya, S.; Naik, B.G. Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India. Chemosphere 2016, 159, 496–505. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, M.; Chen, Y.; Jin, X.; Shangguan, J.; Cui, J.; Chang, S.; Guo, M.; Wang, Y. The neglected potential source of microplastics from daily necessities: A study on protective mobile phone cases. J. Hazard. Mater. 2022, 441, 129911. [Google Scholar] [CrossRef]
- Caldwell, J.; Taladriz Blanco, P.; Rothen Rutishauser, B.; Petri-Fink, A. Additional Commentary on the Detection and Quantification of Plastic Micro- and Nanoparticles in Tea Samples. Chimia 2021, 75, 882–885. [Google Scholar] [CrossRef]
Sample | Year | Country | Abundance | Size | Shape | Materials | Literature |
---|---|---|---|---|---|---|---|
Empty plastic tea bags | 2019 | Canada | 1.16 × 1011 pcs/pack | 200–1000 nm | Particles, fragments | Nylon, PET | [16] |
Empty plastic tea bags | 2020 | Germany | 800~20,400 pcs/pack | 200–1000 nm | Particles, fragments | Nylon, PET, PP | [23] |
Empty tea bags | 2020 | Dublin | 1.3 × 1010 pcs/pack | 0.5~5000 μm | Debris, fiber | Cellulose, PP | [24] |
Empty tea bags | 2022 | China | 34 pcs/30 mL | 0~5000 μm | Fibers, fragments, particles | PET, PE | [25] |
Empty tea bags | 2022 | China | 18 pcs/30 mL | 0~5000 μm | Fibers, fragments, particles | PET, PE | [25] |
Empty tea bags | 2022 | China | 15 pcs/30 mL | 0~5000 μm | Fibers, fragments, particles | PP | [25] |
Empty tea bags | 2020 | Bangladesh | 477 pcs | 202.67~238.53 μm | Debris, fiber | EVA, CA, PTFE, HDPE, PC, ABS, PVC, PETE | [26] |
Tea bags | 2020 | Bangladesh | 504 pcs | 200.38~241.02 μm | Debris, fiber | EVA, CA, PTFE, HDPE, PC, ABS, PVC, PETE | [26] |
Cold Tea | 2020 | Mexico | 5.74—16.26 pcs/L | 0~5000 μm | Fiber | PA, PEA, BP | [27] |
Green Tea | 2022 | China | 1.1003 × 104 pcs /20 g | 0~5000 μm | Debris, fiber | PET | [18] |
Black Tea | 2022 | China | 4.9033 × 103 pcs /20 g | 0~5000 μm | Debris, fiber | [18] | |
Dark Tea | 2022 | China | 4.5033 × 103 pcs /20 g | 0~5000 μm | Debris, fiber | PE | [18] |
White Tea | 2022 | China | 5.4699 × 103 pcs /20 g | 0~5000 μm | Debris, fiber | [18] |
Sample | Year | Country | Abundance | Size | Shape | Materials | Literature |
---|---|---|---|---|---|---|---|
Tea Garden | 2019 | China | 740 items/kg | 0~5000 μm | Fibers, debris | PE, PP, PET, CL | [17] |
Orchard | 2021 | China | 188~279 pcs/pack | 0~5000 μm | Debris and fibers | PE, PP, PS, PVC | [30] |
Vegetable field | 2021 | China | 79~112 pcs/pack | 0~5000 μm | Debris and fibers | PE, PP, PS, PVC | [30] |
Cotton field | 2020 | China | 80.3~1076.5 pcs/pack | 0~5000 μm | Fragments and films | PE | [31] |
Atmospheric deposition | 2021 | China | 114 ± 40 pcs/m/d | 50~5000 μm | Fibers, chips, films, microbeads | PET, PAN, PP, PA | [32] |
Atmospheric deposition | 2021 | Spain | 35.97 ng·m−3 | - | - | PS | [33] |
Atmospheric deposition | 2017 | China | 1.46 × 105 pcs/(m2 a) | 0~5000 μm | Fibers, chips, films and Foaming | PET, PE, PVC, PS | [34] |
Organic fertilizer | 2022 | China | 325 ± 511 pcs/kg | 1000~3000 μm | Film | - | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, D.; Hu, Y.; Sun, B.; Song, F.; Pan, Y.; Liu, S.; Zheng, P. Behavior, Characteristics and Sources of Microplastics in Tea. Horticulturae 2023, 9, 174. https://doi.org/10.3390/horticulturae9020174
Xing D, Hu Y, Sun B, Song F, Pan Y, Liu S, Zheng P. Behavior, Characteristics and Sources of Microplastics in Tea. Horticulturae. 2023; 9(2):174. https://doi.org/10.3390/horticulturae9020174
Chicago/Turabian StyleXing, Daiman, Yang Hu, Binmei Sun, Fan Song, Yiyu Pan, Shaoqun Liu, and Peng Zheng. 2023. "Behavior, Characteristics and Sources of Microplastics in Tea" Horticulturae 9, no. 2: 174. https://doi.org/10.3390/horticulturae9020174
APA StyleXing, D., Hu, Y., Sun, B., Song, F., Pan, Y., Liu, S., & Zheng, P. (2023). Behavior, Characteristics and Sources of Microplastics in Tea. Horticulturae, 9(2), 174. https://doi.org/10.3390/horticulturae9020174