Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Biostimulant Treatments
2.2. The Climate
2.3. Vegetative Growth Parameters
2.4. Yield, Morpho-Pomologicaland Physico-Chemical Parameters, Polyphenols Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Vegetative Growth Evaluation
3.2. Yield Evaluation
3.3. Morpho-Pomological Evaluation of Whole Fruits
3.4. Main Constituent Parts of Pomegranate Fruits
3.5. Colorimetric Characteristics
3.6. Physico-Chemical Parameters of Juices
3.7. Total Phenols, Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chater, J.M.; Garner, L.C. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). I. Effects on fruit mineral nutrient concentrations and internal quality. Sci. Hortic. 2019, 244, 421–427. [Google Scholar] [CrossRef]
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy, 2021; Available online: http://agri.istat.it/ (accessed on 10 January 2022).
- Cossio, F. Melograno, potenzialità e limiti di un antico frutto italiano. Riv. Fruttic. Ortofloric. 2017, 81, 52–63. [Google Scholar]
- Galindo, A.; Rodríguez, P.; Collado-González, J.; Cruz, Z.; Torrecillas, E.; Ondoño, S.; Corell, M.; Moriana, A.; Torrecillas, A. Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agric. For. Meteorol. 2014, 194, 29–35. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Kumari, M.; Mishra, P. Biofertilizers: Boon for fruit production. J. Pharm. Phytochem. 2018, 7, 3244–3247. [Google Scholar]
- Drobek, M.; Frac, M.; Cybulska, J. Plant Biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Wahed, A.N.; Abd-Alrazik, A.M.; Khalifa, S.M. Effect of some nutrients on growth, Yield and fruit quality of “Wonderful” cultivar pomegranate. Al-Azhar J. Agric. Res. 2021, 46, 1–15. [Google Scholar]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 2016, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://webapps.iihr.res.in>crop (accessed on 18 November 2022).
- Bhupenchandra, I.; Chongtham, S.K.; Devi, E.L.; Ramesh, R.; Choudhary, A.K.; Salam, M.D.; Sahoo, M.R.; Bhutia, T.L.; Devi, S.H.; Thounaojam, A.S.; et al. Role of biostimulants in mitigating the effects of climate change on crop performance. Front. Plant Sci. 2022, 13, 967665. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.E. How effective are existing phosphorus management strategies in mitigating surface water quality problems in the U.S.? Sustainability 2021, 13, 6565. [Google Scholar] [CrossRef]
- Le Mire, G.; Nnguyen, M.L.; Fassotte, P.; du Jiardin, P.; Verheggen, F.; Delaplace, P.; Ijakl, M.H. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar] [CrossRef]
- Rouphael, Y.; Spíchal, L.; Panzarová, K.; Casa, R.; Colla, G. High-throughput plant phenotyping for developing Novel biostimulants: From lab to field or from field to lab? Front. Plant Sci. 2018, 9, 1197. [Google Scholar] [CrossRef]
- Orhan, E.; Esitken, A.; Ercisli, S.; Turan, M.; Sahin, F. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 2006, 111, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic plant biostimulants and fruit auality—A Review. Agronomy 2020, 10, 988. [Google Scholar] [CrossRef]
- Andreotti, C.; Rouphael, Y.; Colla, G.; Basile, B. Rate and Timing of Application of Biostimulant Substances to Enhance Fruit Tree Tolerance toward Environmental Stresses and Fruit Quality. Agronomy 2022, 12, 603. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, S.; Rana, N.; Sharma, U. Sustainable production through biostimulants under fruit orchards. CABI Agric. Biosci. 2022, 3, 38. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R. Biostmulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.R.; Datta, S.C.; Varghese, E. Effect of Surround WP®, a kaolin-based particle film on sunburn, fruit cracking and postharvest quality of ‘Kandhari’pomegranates. Crop Prot. 2018, 114, 18–22. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Mihalache, D.; Sirbu, C.; Grigore, A.; Stănescu, A.M.; Calciu, I.C.; Marin, N. Physical, chemical and agrochemical characterization of some organo-mineral fertilizers. Rom. Biotechnol. Lett. 2017, 22, 12258–12266. [Google Scholar]
- Katkat, A.V.; Hakan, Ç.; Murat, A.; Tbaris, B.A. Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. Aust. J. Basic Appl. Sci. 2009, 3, 1266–1273. [Google Scholar]
- Abd El-Razek, E.; Abd-Allah, A.S.E.; Saleh, M.M.S. Yield and fruit quality of Florida prince peach trees as affected by foliar and soil applications of humic acid. J. Appl. Sci. Res. 2012, 8, 5724–5729. [Google Scholar]
- Arabloo, M.; Taheri, M.; Yazdani, H.; Shahmoradi, M. Effect of foliar application of amino acid and calcium chelate on some quality and quantity of Golden Delicious and Granny Smith apples. Trakia J. Sci. 2017, 15, 14–19. [Google Scholar] [CrossRef]
- Fathy, M.A.; Gabr, M.A.; El Shall, S.A. Effect of humic acid treatments on ‘canino’ apricot growth, yield and fruit quality. N. Y. Sci. J. 2010, 3, 109–115. [Google Scholar]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis® apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 226–234. [Google Scholar] [CrossRef]
- Lopriore, G.; Lops, F.; Tarantino, A. Vegeto-productive behaviour and fruit quality of two cultivars of apricot, ‘Orange Rubis®’ and ‘Farbaly®’, as influenced by different biostimulants. In Proceedings of the ISHS Acta Horticulturae 1242: III International Symposium on Horticulture in Europe—SHE2016199-207, Crete, Greece, 17–21 October 2019; pp. 199–207. [Google Scholar]
- El-Mohamedy, R.S.R.; Ahmed, M.A. Effect of bio-fertilizers and humic acid oncontrol of dry root-rot disease and improvement yield and quality of mandarin. Res. J. Agric. Biol. Sci. 2009, 5, 127–139. [Google Scholar]
- Mahmoudi, M.; Samavat, S.; Mostafavi, M.; Khalighi, A.; Cherati, A. The effects of proline and humic acid on quantitative properties of kiwifruit. Int. Res. J. Appl. Basic Sci. 2013, 6, 1117–1119. [Google Scholar]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera Fathy) cv Italia. Span J. Agric. Res. 2010, 8, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physico-chemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Hadi, M.; Shokouhian, A.A.; Asghari, A.; Ghanbari, A. Effect of humic acid on qualitative and quantitative characteristics of Kiwifruit cv. Hayward. Res. Pomol. 2018, 2, 96–108. [Google Scholar]
- Nargesi, M.M.; Sedaghathoor, S.; Hashemabadi, D. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi J. Biol. Sci. 2022, 29, 3473–3478. [Google Scholar] [CrossRef]
- Rostami, M.; Shokouhian, A.; Mohebodini, M. Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry ‘Paros’. Int. J. Fruit Sci. 2022, 22, 203–214. [Google Scholar] [CrossRef]
- Mugnai, S.; Azzarello, E.; Pandolfi, C.; Salamagne, S.; Briand, X.; Mancuso, S. Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J. Appl. Phycol. 2008, 20, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Basile, B.; Rouphael, Y.; Colla, G.; Soppelsa, S.; Andreotti, C. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Sci. Hortic. 2020, 267, 109330. [Google Scholar] [CrossRef]
- Fayek, M.A.; Yehia, T.A.; El-Fakhrany, E.M.M.; Farag, A.M. Effect of ringing and amino acids application on improving fruiting of le conte pear trees. J. Hort. Sci. Ornam. Plants 2011, 3, 1–10. [Google Scholar]
- Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 2013, 93, 23–36. [Google Scholar] [CrossRef]
- Roussos, P.A.; Denaxa, N.K.; Damvakaris, T. Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci. Hortic. 2009, 119, 138–146. [Google Scholar] [CrossRef]
- Byers, R.E.; Carbaugh, D.H.; Presley, C.N. “Stayman” fruit cracking as affected by surfactants, plant growth regulators, and other chemicals. J. Am. Soc. Hortic. Sci. 1990, 115, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lal, S.; Ahmed, N.; Mir, J.I. Effect of different chemicals on fruit cracking in pomegranate under Karewa condition of Kashmir valley. Indian J. Plant. Physiol. 2011, 16, 326–330. [Google Scholar]
- Aziz, R.A.; Naira, A.; Moieza, A. Effect of plant biostimulants on fruit cracking and quality attributes of pomegranate cv. Kandhari kabuli. Sci. Res. Essays 2013, 8, 2171–2175. [Google Scholar] [CrossRef]
- Ibtesam, I.F.; Abou-Zaid, E.A.; Hussein, E.M. Cracking and fruit quality of “Manfalouty” pomegranate as affected by pre-harvest of chitosan, calcium chloride and gibbrellic acid spraying. Middle East J. 2019, 8, 873–882. [Google Scholar]
- Virginio, J. Use of seaweed-based biostimulants in the production of seedlings of pomegranates (Punica granatum). Acta Sci. Agric. 2020, 4, 141–143. [Google Scholar] [CrossRef]
- Morales-Payan, J.P. Biostimulants and nitrogen affect pomegranate flowering and fruiting. SHS 10.17660. I International Symposium on Reproductive Biology of Fruit Tree Species. Acta Hortic. 2022, 1342, 49. [Google Scholar]
- Khattab, M.M.; Shaban, A.E.; El-Shrief, A.H.; Mohamed, A. Effect of humic acid and amino acid on pomegranate trees under deficit irrigation. II: Growth, flowering and fruiting. Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 941–948. [Google Scholar]
- El Sayed, O.M.; Elgammal, O.H.M.; Salama, A.S.M. Effect of proline and tryptophan amino acids on yield and fruit quality of Manfalouty pomegranate variety. Scintia Hort. 2014, 169, 1–5. [Google Scholar] [CrossRef]
- Mohamed, A.K.A.; Abdel-Galil, H.A.; Naglaa, H.G. Effect of some nutrients and amino acids spraying on yield and fruit quality of Manfalouty pomegranate. SVU-Int. J. Agric. Sci. 2020, 2, 18–29. [Google Scholar] [CrossRef]
- Khodair, O.A.; Abd El-Rahman, M.M.A. Response of Manfalouty pomegranate trees to foliar application of humic acid and amino acids. SVU-Int. J. Agric. Sci. 2021, 3, 10–17. [Google Scholar] [CrossRef]
- Aseri, G.K.N.; Jain, J.; Panwar, A.V.; Rao, P.R. Meghwal, Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in indian thar desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Wassel, A.H.M.; Gobara, A.A.; Ibrahiem, H.I.M.; Shaaban-Mai, M. Response of Wonderful pomegranate trees to foliar application of amino acids, vitamins B and silicon. World Rural. Obs. 2015, 7, 91–95. [Google Scholar]
- Harhash, M.M.; Saad, R.M.; Mosa, W.F.A. Response of “Wonderful” pomegranate cultivar to the foliar application of some biostimulants. Plant Arch. 2021, 21, 474–487. [Google Scholar]
- Kamal, H.M.; Elisa, M.A.; Mohammed, A.A. Effect of mineral compounds in pomegranate yield and fruit quality. Biosci. Res. 2017, 14, 1197–1203. [Google Scholar]
- Tarantino, A.; Frabboni, L.; Mazzeo, A.; Ferrara, G.; Disciglio, G. Comparative Evaluation of Yield and Fruit Physico-Chemical Characteristics of Five Commercial Cultivars of Pomegranate Grown in Southeastern Italy in Two Consecutive Years. Horticulturae 2022, 8, 497. [Google Scholar] [CrossRef]
- Tarantino, A.; Difonzo, G.; Lopriore, G.; Disciglio, G.; Paradiso, V.M.; Caponio, F. Bioactive compounds and quality evaluation of ‘Wonderful’ pomegranate fruit and juice as affected by deficit irrigation. J. Sci. Food Agric. 2020, 100, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, A.; Difonzo, G.; Disciglio, G.; Frabboni, L.; Paradiso, V.M.; Gambacorta, G.; Caponio, F. Fresh pomegranate juices from cultivars and local ecotypes grown in southeastern Italy: Comparison of physicochemical properties, antioxidant activity and bioactive compounds. J. Sci. Food Agric. 2021, 102, 1185–1192. [Google Scholar] [CrossRef]
- Joshi, M.; Ze’ev Schmilovitch, Z.; Ginzberg, I. Pomegranate Fruit Growth and Skin Characteristics in Hot and Dry Climate. Front. Plant Sci. 2021, 12, 1797. [Google Scholar] [CrossRef]
- Ferrara, G.; Cavoski, I.; Pacifico, A.; Tedone, L.; Mondelli, D. Morpho-pomological and chemical characterization of pomegranate (Punica granatum L.) genotypes in Apulia region, Southeastern Italy. Sci. Hortic. 2011, 130, 599–606. [Google Scholar]
- Ferrara, G.; Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Matarrese, A.M.S.; Pacucci, C.; Punzi, R.; Trani, A.; Gambacorta, G.; Blanco, A.; et al. Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci. Hortic. 2014, 178, 70–78. [Google Scholar] [CrossRef]
- Passafiume, R.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Saletta, F.; Gentile, C. Chemical–physical characteristics, polyphenolic content and total antioxidant activity of Italian-grown pomegranate cultivars. NFS J. 2019, 16, 9–14. [Google Scholar] [CrossRef]
- Al-Said, F.; Opara, U.L.; Al-Yahyai, R. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 2009, 90, 129–134. [Google Scholar] [CrossRef]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, horticulture, breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Ampem, G. Physico-Chemical and Textural Properties Relevant to Processing of Pomegranate Fruit and Arils. In Quality Attributes of Pomegranate Fruit and Co-Products Relevant to Processing and Nutrition. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017; pp. 12–51. Available online: https://scholar.sun.ac.za (accessed on 14 March 2022).
- Fernandes, L.; Pereira, J.A.; Lopez-Cortes, I.; Salazar, D.M.; Gonzalez-Alvarez, J.; Ramalhosa, E. Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. Eur. Food Res. Technol. 2017, 243, 1799–1814. [Google Scholar] [CrossRef]
- Martinez, J.J.; Melgarejo, P.; Hernandez, F.; Salazar, D.M.; Martinez, R. Seed characterization of five new pomegranate (Punica granatum L.) varieties. Sci. Hortic. 2006, 110, 241–246. [Google Scholar] [CrossRef]
- Adiletta, G.; Petriccione, M.; Liguori, L.; Pizzolongo, F.; Romano, R.; Di Matteo, M. Study of pomological traits and physico-chemical quality of pomegranate (Punica granatum L.) genotypes grown in Italy. Eur. Food Res. Technol. 2018, 244, 1427–1438. [Google Scholar] [CrossRef]
- Attanayake, R.; Eeswaran, R.; Rajapaksha, P.; Weerakkody, P. Biochemical composition and some anthocyanin biosynthetic genes of a yellow peeled and pinkish ariled pomegranate (Punica granatum L.) cultivar are differentially regulated in response to agro-climatic conditions. J. Agric. Food Chem. 2018, 66, 8761–8771. [Google Scholar] [CrossRef]
ABsTreatments |
---|
HENDOPHYT PS (Iko-Hydro): a fully water-soluble powder, comprising biopolymers of polysaccharides (polyglucosamine) 60%, containing carbon 35%, organic nitrogen 4%, boron 0.25%; applied at a dose of 150 g 100 L−1 of water. ERGOSTIM XL (Isagro): a concentrated water-soluble liquid _N-acetiltiazolidin-4-carboxylic acid (AATC) 2.5%, and triazolidine-carboxylic acid (ATC) 2%; i applied at a dose of 200 mL 100 L−1 of water. SIAPTON 10L (Siapa): based on amino acids and peptides originating from chemical hydrolysis of animal epithelium, with a high content of proline, hydroxychlorine, glycine and arginine; containing organic nitrogen 8.7%, carbon 25%; C/N ratio = 2.9%; applied at a dose of 300 mL 100 L−1 of water. ALLIBIO-RAD (Fertek): a suspension–solution of humic and fulvic acids, obtained from worm compost (night crawled). Dry composition: total organic matter 60%; extractable organic substance 6% of organic matter; humified organic substance 80% extractable organic matter; organic substance 1.5% of extractable organic nitrogen; C/N ratio = 20; pH 8; applied at a dose of 150 g 100 L−1 of water. |
Month | Tmax | Tmin | RHmax | RHmin | Ws | Rad | P |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (%) | (m s−1) | (Wm−2) | (mm) | |
2018 | |||||||
April | 21.3 | 12.9 | 94.6 | 37.6 | 2.8 | 235.3 | 54.0 |
May | 26.1 | 13.4 | 95.2 | 49.1 | 2.4 | 275.8 | 58.3 |
June | 30.0 | 12.1 | 89.5 | 40.3 | 3.4 | 289.6 | 88.2 |
July | 33.3 | 19.6 | 83.6 | 35.4 | 3.0 | 318.7 | 16.8 |
Aug | 32.7 | 20.1 | 71.3 | 28.3 | 2.1 | 285.7 | 39.1 |
Sept | 29.1 | 17.1 | 81.3 | 30.0 | 3.7 | 193.6 | 80.0 |
Mean | 23.7 | 15.9 | 85.9 | 36.8 | 2.9 | 266.5 | |
Total | 366.4 | ||||||
2019 | |||||||
April | 20.6 | 8.2 | 94.4 | 51.0 | 3.7 | 190.2 | 40.3 |
May | 21.3 | 10.2 | 95.3 | 56.3 | 4.0 | 232.9 | 86.7 |
June | 33.2 | 17.5 | 85.9 | 35.1 | 3.7 | 252.2 | 9.2 |
July | 33.7 | 19.5 | 84.0 | 33.9 | 3.7 | 258.8 | 30.0 |
Aug | 34.8 | 20.3 | 79.9 | 33.9 | 3.6 | 225.6 | 5.7 |
Sept | 29.5 | 16.8 | 88.7 | 42.6 | 3.6 | 175.5 | 3.8 |
Mean | 28.8 | 15.4 | 88.0 | 42.5 | 3.7 | 222.5 | |
Total | 175.7 |
Parameter | Year | Biostimulant Treatment | Average Years | ||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | |||
Fruit average weight (g) | 2018 | 411.1 ± 72.8 | 457.0 ± 142.0 | 512.1 ± 106.2 | 476.0 ± 119.1 | 473.6 ± 124.6 | 465.9 ± 112.9 |
2019 | 414.4 ± 87.3 | 409.3 ± 69.4 | 440.0 ± 74.6 | 477.1 ± 101.4 | 393.4 ± 59.8 | 426.8 ± 78. | |
Fruit diameter (mm) | 2018 | 86.5 ± 12.2 | 91.0 ± 10.6 | 89.5 ± 12.6 | 93.2 ± 9.3 | 86.8 ± 13.4 | 89.4 ± 11.6 |
2019 | 85.6 ± 10.2 | 87.5 ± 8.2 | 90.8 ± 6.5 | 89.9 ± 6.6 | 84.8 ± 6.6 | 87.7 ± 7.6 | |
Fruit length (mm) | 2018 | 74.4 ± 10.6 | 81.9 ± 10.2 | 80.4 ± 9.1 | 82.9 ± 9.3 | 80.3 ± 9.1 | 79.9 ± 9.6 |
2019 | 74.6 ± 12.2 | 76.6 ± 8.5 | 80.2 ± 6.8 | 81.9 ± 8.6 | 75.3 ± 7.2 | 77.7 ± 8.6 |
Parameter | Year | Biostimulant Treatment | Average Years | ||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | |||
Aril weight per fruit (g) | 2018 | 210.8 ± 57.0 | 234.6 ± 81.4 | 263.0 ± 86.8 | 223.8 ± 71.5 | 230.9 ± 70.3 | 193.8 ± 73.4 |
2019 | 184.2 ± 47.6 | 184.5± 61.3 | 207.7 ± 44.0 | 217.8 ± 63.0 | 168.2 ± 59.6 | 160.4 ± 55.1 | |
Fresh weight 100 arils (g) | 2018 | 28.6 ± 4.4 | 28.8 ± 5.4 | 30.2 ± 3.1 | 29.0 ± 3.7 | 29.7 ± 4.7 | 24.4 ± 4.3 |
2019 | 24.5 ± 1.7 | 28.7 ± 4.7 | 29.8 ± 1.2 | 24.8 ± 1.8 | 24.9 ± 4.3 | 22.1 ± 2.7 | |
Aril per fruit (No) | 2018 | 734.5 ± 19.6 b | 814.6 ± 25.9 a | 870.9 ± 28.6 a | 771.7 ± 23.4 b | 864.8 ± 25.0 a | 676.1 ± 24.5 A |
2019 | 721.4 ± 16.1 c | 691.2 ± 15.3 c | 688.1 ± 18.4 c | 761.1 ± 14.6 b | 740.2 ± 16.1 b | 600.3 ± 14.1 B | |
Fruit edible portion (%) | 2018 | 48.2 ± 1.0 b | 51.3 ± 1.4 a | 51.3 ± 1.8 a | 49.5 ± 1.4 ab | 48.9 ± 1.3 ab | 41.5 ± 1.38 A |
2019 | 44.3 ± 4.0 b | 48.5 ± 7.4 ab | 46.6 ± 5.0 ab | 45.6 ± 3.9 ab | 46.9 ± 4.3 ab | 38.7 ± 4.92 B | |
Juice volume (cm3 100 g−1) | 2018 | 81.1 ± 2.3 cd | 100.8 ± 2.9 a | 96.2 ± 2.3 ab | 94.2 ± 2.3 b | 95.6 ± 2.2 ab | 78.0 ± 2.4 A |
2019 | 77.7 ± 2.1 cd | 97.3 ± 2.0 ab | 98.1 ± 1.7 ab | 82.3 ± 2.1 c | 81.3 ± 1.9 cd | 72.8 ± 1.96 B | |
Dry matter arils (%) | 2018 | 20.1 ± 0.4 | 20.3 ± 0.5 | 20.4 ± 0.4 | 20.5 ± 0.5 | 20.3 ± 0.5 | 16.9 ± 0.46 |
2019 | 23.3 ± 1.0 | 22.3 ± 0.8 | 21.1 ± 1.1 | 22.1 ± 0.9 | 21.4 ± 0.9 | 18.4 ± 0.94 |
Parameter | Year | Biostimulant Treatment | Average Years | |||||
---|---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | ||||
Skin | L* | 2018 | 42.1 ± 6.0 | 42.3 ± 5.5 | 43.1 ± 6.7 | 42.3 ± 5.3 | 42.2 ± 6.2 | 42.4 ± 5.9 |
2019 | 40.0 ± 2.6 | 42.6 ± 5.6 | 40.0 ± 2.1 | 40.2 ± 3.7 | 40.5 ± 3.7 | 40.7 ± 3.5 | ||
a* | 2018 | 34.4 ± 5.6 | 36.5 ± 4.0 | 34.0 ± 6.5 | 36.9 ± 3.5 a | 33.5 ± 4.9 | 35.1 ± 4.9 | |
2019 | 41.4 ± 2.6 | 42.5 ± 4.2 | 42.2 ± 1.7 | 42.6 ± 3.0 | 41.6 ± 3.2 | 42.1 ± 2.9 | ||
b* | 2018 | 17.3 ± 3.8 | 17.9 ± 3.4 a | 18.0 ± 4.6 | 18.0 ± 3.0 | 17.6 ± 4.4 | 17.8 ± 3.8 | |
2019 | 21.6 ± 2.6 | 26.0 ± 4.2 | 22.6 ± 2.2 | 23.7 ± 3.6 | 21.9 ± 4.1 | 23.2 ± 3.3 | ||
Aril | L* | 2018 | 24.1 ± 4.7 | 23.0 ± 7.3 | 24.6 ± 6.1 | 23.0 ± 7.3 | 23.3 ± 6.4 | 23.6 ± 6.4 |
2019 | 20.4 ± 3.1 | 22.1 ± 5.3 | 23.1 ± 4.9 | 22.5 ± 5.1 | 22.8 ± 5.9 | 22.2 ± 4.9 | ||
a* | 2018 | 18.0 ± 4.3 | 16.3 ± 5.4 | 17.9 ± 7.5 | 16.3 ± 5.4 | 16.8 ± 4.2 | 17.1 ± 5.4 | |
2019 | 19.1 ± 5.0 | 16.3 ± 4.3 | 16.2 ± 6.1 | 17.1 ± 5.1 | 16.0 ± 4.0 | 16.9 ± 4.9 | ||
b* | 2018 | 6.8 ± 1.8 | 7.2 ± 2.5 | 6.9 ± 3.4 | 6.5 ± 2.6 | 6.8 ± 1.9 | 6.8 ± 2.4 | |
2019 | 5.9 ± 1.3 | 6.3 ± 1.5 | 5.9 ± 1.9 | 7.0 ± 1.6 | 6.6 ± 2.0 | 6.4 ± 1.7 | ||
Juice | L* | 2018 | 24.0 ± 2.7 | 21.0 ± 1.1 | 23.1 ± 4.5 | 21.4 ± 1.9 | 20.8 ± 2.1 | 22.1 ± 2.5 |
2019 | 16.8 ± 1.5 | 18.3 ± 1.0 | 16.8 ± 1.4 | 16.2 ± 1.8 | 17.8 ± 2.3 | 17.2 ± 1.6 | ||
a* | 2018 | 5.6 ± 1.4 | 6.7 ± 2.7 | 6.1 ± 2.1 | 5.1 ± 2.1 | 4.2 ± 1.4 | 5.5 ± 1.9 | |
2019 | 2.2 ± 0.4 | 5.1 ± 1.0 | 2.9± 1.5 | 2.9 ± 1.1 | 3.9 ± 2.2 | 3.3 ± 1.2 | ||
b* | 2018 | 2.9 ± 0.5 | 2.6 ± 0.6 | 2.3 ± 0.6 | 1.3 ± 0.7 | 2.1 ± 0.5 | 3.3 ± 0.6 | |
2019 | 2.2 ± 0.5 | 2.5 ± 1.1 | 1.9 ± 0.4 | 2.0 ± 0.3 | 2.2 ± 0.9 | 2.2 ± 0.6 |
Parameter | Year | Biostimulant Treatment | |||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | Average Yields | ||
Total soluble Solid (°Brix) | 2018 | 17.4 ± 1.3 | 17.1 ± 0.4 | 17.3 ± 0.1 | 17.4 ± 0.1 | 17.6 ± 1.1 | 17.4 ± 0.6 |
2019 | 16.9 ± 0.7 | 17.4 ± 0.1 | 17.4 ± 0.1 | 16.8 ± 0.4 | 17.5 ± 0.2 | 17.2 ± 0.3 | |
pH | 2018 | 2.9 ± 0.2 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0. 1 |
2019 | 3.0 ± 0.1 | 3.1 ± 0.2 | 2.9 ± 0.2 | 3.2 ± 0.2 | 3.1 ± 0.1 | 3.1 ± 0.1 | |
Total acidity (g L−1 citric acid) | 2018 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.7 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 |
2019 | 1.3 ± 0.2 | 1.5 ± 0.1 | 1.7 ± 0.2 | 1.6 ± 0.2 | 1.7 ± 0.2 | 1.6 ± 0.2 | |
Maturity index (%) | 2018 | 11.6 ± 0.6 | 12.2 ± 1.1 | 10.2 ± 0.8 | 10.9 ± 0.7 | 11.0 ± 1.2 | 11.2 ± 0.8 |
2019 | 13.0 ± 0.6 | 11.6 ± 0.8 | 10.2 ± 0.8 | 10.8 ± 0.9 | 10.3 ± 0.9 | 11.2 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, A.; Disciglio, G.; Frabboni, L.; Lopriore, G. Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae 2023, 9, 164. https://doi.org/10.3390/horticulturae9020164
Tarantino A, Disciglio G, Frabboni L, Lopriore G. Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae. 2023; 9(2):164. https://doi.org/10.3390/horticulturae9020164
Chicago/Turabian StyleTarantino, Annalisa, Grazia Disciglio, Laura Frabboni, and Giuseppe Lopriore. 2023. "Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits" Horticulturae 9, no. 2: 164. https://doi.org/10.3390/horticulturae9020164
APA StyleTarantino, A., Disciglio, G., Frabboni, L., & Lopriore, G. (2023). Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae, 9(2), 164. https://doi.org/10.3390/horticulturae9020164