Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Biostimulant Treatments
2.2. The Climate
2.3. Vegetative Growth Parameters
2.4. Yield, Morpho-Pomologicaland Physico-Chemical Parameters, Polyphenols Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Vegetative Growth Evaluation
3.2. Yield Evaluation
3.3. Morpho-Pomological Evaluation of Whole Fruits
3.4. Main Constituent Parts of Pomegranate Fruits
3.5. Colorimetric Characteristics
3.6. Physico-Chemical Parameters of Juices
3.7. Total Phenols, Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chater, J.M.; Garner, L.C. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). I. Effects on fruit mineral nutrient concentrations and internal quality. Sci. Hortic. 2019, 244, 421–427. [Google Scholar] [CrossRef]
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy, 2021; Available online: http://agri.istat.it/ (accessed on 10 January 2022).
- Cossio, F. Melograno, potenzialità e limiti di un antico frutto italiano. Riv. Fruttic. Ortofloric. 2017, 81, 52–63. [Google Scholar]
- Galindo, A.; Rodríguez, P.; Collado-González, J.; Cruz, Z.; Torrecillas, E.; Ondoño, S.; Corell, M.; Moriana, A.; Torrecillas, A. Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agric. For. Meteorol. 2014, 194, 29–35. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Kumari, M.; Mishra, P. Biofertilizers: Boon for fruit production. J. Pharm. Phytochem. 2018, 7, 3244–3247. [Google Scholar]
- Drobek, M.; Frac, M.; Cybulska, J. Plant Biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Abd El-Wahed, A.N.; Abd-Alrazik, A.M.; Khalifa, S.M. Effect of some nutrients on growth, Yield and fruit quality of “Wonderful” cultivar pomegranate. Al-Azhar J. Agric. Res. 2021, 46, 1–15. [Google Scholar]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 2016, 7, 48. [Google Scholar] [CrossRef]
- Available online: http://webapps.iihr.res.in>crop (accessed on 18 November 2022).
- Bhupenchandra, I.; Chongtham, S.K.; Devi, E.L.; Ramesh, R.; Choudhary, A.K.; Salam, M.D.; Sahoo, M.R.; Bhutia, T.L.; Devi, S.H.; Thounaojam, A.S.; et al. Role of biostimulants in mitigating the effects of climate change on crop performance. Front. Plant Sci. 2022, 13, 967665. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.E. How effective are existing phosphorus management strategies in mitigating surface water quality problems in the U.S.? Sustainability 2021, 13, 6565. [Google Scholar] [CrossRef]
- Le Mire, G.; Nnguyen, M.L.; Fassotte, P.; du Jiardin, P.; Verheggen, F.; Delaplace, P.; Ijakl, M.H. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar] [CrossRef]
- Rouphael, Y.; Spíchal, L.; Panzarová, K.; Casa, R.; Colla, G. High-throughput plant phenotyping for developing Novel biostimulants: From lab to field or from field to lab? Front. Plant Sci. 2018, 9, 1197. [Google Scholar] [CrossRef]
- Orhan, E.; Esitken, A.; Ercisli, S.; Turan, M.; Sahin, F. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 2006, 111, 38–43. [Google Scholar] [CrossRef]
- Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic plant biostimulants and fruit auality—A Review. Agronomy 2020, 10, 988. [Google Scholar] [CrossRef]
- Andreotti, C.; Rouphael, Y.; Colla, G.; Basile, B. Rate and Timing of Application of Biostimulant Substances to Enhance Fruit Tree Tolerance toward Environmental Stresses and Fruit Quality. Agronomy 2022, 12, 603. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, S.; Rana, N.; Sharma, U. Sustainable production through biostimulants under fruit orchards. CABI Agric. Biosci. 2022, 3, 38. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R. Biostmulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- Sharma, R.R.; Datta, S.C.; Varghese, E. Effect of Surround WP®, a kaolin-based particle film on sunburn, fruit cracking and postharvest quality of ‘Kandhari’pomegranates. Crop Prot. 2018, 114, 18–22. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Mihalache, D.; Sirbu, C.; Grigore, A.; Stănescu, A.M.; Calciu, I.C.; Marin, N. Physical, chemical and agrochemical characterization of some organo-mineral fertilizers. Rom. Biotechnol. Lett. 2017, 22, 12258–12266. [Google Scholar]
- Katkat, A.V.; Hakan, Ç.; Murat, A.; Tbaris, B.A. Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. Aust. J. Basic Appl. Sci. 2009, 3, 1266–1273. [Google Scholar]
- Abd El-Razek, E.; Abd-Allah, A.S.E.; Saleh, M.M.S. Yield and fruit quality of Florida prince peach trees as affected by foliar and soil applications of humic acid. J. Appl. Sci. Res. 2012, 8, 5724–5729. [Google Scholar]
- Arabloo, M.; Taheri, M.; Yazdani, H.; Shahmoradi, M. Effect of foliar application of amino acid and calcium chelate on some quality and quantity of Golden Delicious and Granny Smith apples. Trakia J. Sci. 2017, 15, 14–19. [Google Scholar] [CrossRef]
- Fathy, M.A.; Gabr, M.A.; El Shall, S.A. Effect of humic acid treatments on ‘canino’ apricot growth, yield and fruit quality. N. Y. Sci. J. 2010, 3, 109–115. [Google Scholar]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis® apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 226–234. [Google Scholar] [CrossRef]
- Lopriore, G.; Lops, F.; Tarantino, A. Vegeto-productive behaviour and fruit quality of two cultivars of apricot, ‘Orange Rubis®’ and ‘Farbaly®’, as influenced by different biostimulants. In Proceedings of the ISHS Acta Horticulturae 1242: III International Symposium on Horticulture in Europe—SHE2016199-207, Crete, Greece, 17–21 October 2019; pp. 199–207. [Google Scholar]
- El-Mohamedy, R.S.R.; Ahmed, M.A. Effect of bio-fertilizers and humic acid oncontrol of dry root-rot disease and improvement yield and quality of mandarin. Res. J. Agric. Biol. Sci. 2009, 5, 127–139. [Google Scholar]
- Mahmoudi, M.; Samavat, S.; Mostafavi, M.; Khalighi, A.; Cherati, A. The effects of proline and humic acid on quantitative properties of kiwifruit. Int. Res. J. Appl. Basic Sci. 2013, 6, 1117–1119. [Google Scholar]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera Fathy) cv Italia. Span J. Agric. Res. 2010, 8, 817–822. [Google Scholar] [CrossRef]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physico-chemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Hadi, M.; Shokouhian, A.A.; Asghari, A.; Ghanbari, A. Effect of humic acid on qualitative and quantitative characteristics of Kiwifruit cv. Hayward. Res. Pomol. 2018, 2, 96–108. [Google Scholar]
- Nargesi, M.M.; Sedaghathoor, S.; Hashemabadi, D. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi J. Biol. Sci. 2022, 29, 3473–3478. [Google Scholar] [CrossRef]
- Rostami, M.; Shokouhian, A.; Mohebodini, M. Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry ‘Paros’. Int. J. Fruit Sci. 2022, 22, 203–214. [Google Scholar] [CrossRef]
- Mugnai, S.; Azzarello, E.; Pandolfi, C.; Salamagne, S.; Briand, X.; Mancuso, S. Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J. Appl. Phycol. 2008, 20, 177–182. [Google Scholar] [CrossRef]
- Basile, B.; Rouphael, Y.; Colla, G.; Soppelsa, S.; Andreotti, C. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Sci. Hortic. 2020, 267, 109330. [Google Scholar] [CrossRef]
- Fayek, M.A.; Yehia, T.A.; El-Fakhrany, E.M.M.; Farag, A.M. Effect of ringing and amino acids application on improving fruiting of le conte pear trees. J. Hort. Sci. Ornam. Plants 2011, 3, 1–10. [Google Scholar]
- Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 2013, 93, 23–36. [Google Scholar] [CrossRef]
- Roussos, P.A.; Denaxa, N.K.; Damvakaris, T. Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci. Hortic. 2009, 119, 138–146. [Google Scholar] [CrossRef]
- Byers, R.E.; Carbaugh, D.H.; Presley, C.N. “Stayman” fruit cracking as affected by surfactants, plant growth regulators, and other chemicals. J. Am. Soc. Hortic. Sci. 1990, 115, 405–411. [Google Scholar] [CrossRef]
- Lal, S.; Ahmed, N.; Mir, J.I. Effect of different chemicals on fruit cracking in pomegranate under Karewa condition of Kashmir valley. Indian J. Plant. Physiol. 2011, 16, 326–330. [Google Scholar]
- Aziz, R.A.; Naira, A.; Moieza, A. Effect of plant biostimulants on fruit cracking and quality attributes of pomegranate cv. Kandhari kabuli. Sci. Res. Essays 2013, 8, 2171–2175. [Google Scholar] [CrossRef]
- Ibtesam, I.F.; Abou-Zaid, E.A.; Hussein, E.M. Cracking and fruit quality of “Manfalouty” pomegranate as affected by pre-harvest of chitosan, calcium chloride and gibbrellic acid spraying. Middle East J. 2019, 8, 873–882. [Google Scholar]
- Virginio, J. Use of seaweed-based biostimulants in the production of seedlings of pomegranates (Punica granatum). Acta Sci. Agric. 2020, 4, 141–143. [Google Scholar] [CrossRef]
- Morales-Payan, J.P. Biostimulants and nitrogen affect pomegranate flowering and fruiting. SHS 10.17660. I International Symposium on Reproductive Biology of Fruit Tree Species. Acta Hortic. 2022, 1342, 49. [Google Scholar]
- Khattab, M.M.; Shaban, A.E.; El-Shrief, A.H.; Mohamed, A. Effect of humic acid and amino acid on pomegranate trees under deficit irrigation. II: Growth, flowering and fruiting. Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 941–948. [Google Scholar]
- El Sayed, O.M.; Elgammal, O.H.M.; Salama, A.S.M. Effect of proline and tryptophan amino acids on yield and fruit quality of Manfalouty pomegranate variety. Scintia Hort. 2014, 169, 1–5. [Google Scholar] [CrossRef]
- Mohamed, A.K.A.; Abdel-Galil, H.A.; Naglaa, H.G. Effect of some nutrients and amino acids spraying on yield and fruit quality of Manfalouty pomegranate. SVU-Int. J. Agric. Sci. 2020, 2, 18–29. [Google Scholar] [CrossRef]
- Khodair, O.A.; Abd El-Rahman, M.M.A. Response of Manfalouty pomegranate trees to foliar application of humic acid and amino acids. SVU-Int. J. Agric. Sci. 2021, 3, 10–17. [Google Scholar] [CrossRef]
- Aseri, G.K.N.; Jain, J.; Panwar, A.V.; Rao, P.R. Meghwal, Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in indian thar desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Wassel, A.H.M.; Gobara, A.A.; Ibrahiem, H.I.M.; Shaaban-Mai, M. Response of Wonderful pomegranate trees to foliar application of amino acids, vitamins B and silicon. World Rural. Obs. 2015, 7, 91–95. [Google Scholar]
- Harhash, M.M.; Saad, R.M.; Mosa, W.F.A. Response of “Wonderful” pomegranate cultivar to the foliar application of some biostimulants. Plant Arch. 2021, 21, 474–487. [Google Scholar]
- Kamal, H.M.; Elisa, M.A.; Mohammed, A.A. Effect of mineral compounds in pomegranate yield and fruit quality. Biosci. Res. 2017, 14, 1197–1203. [Google Scholar]
- Tarantino, A.; Frabboni, L.; Mazzeo, A.; Ferrara, G.; Disciglio, G. Comparative Evaluation of Yield and Fruit Physico-Chemical Characteristics of Five Commercial Cultivars of Pomegranate Grown in Southeastern Italy in Two Consecutive Years. Horticulturae 2022, 8, 497. [Google Scholar] [CrossRef]
- Tarantino, A.; Difonzo, G.; Lopriore, G.; Disciglio, G.; Paradiso, V.M.; Caponio, F. Bioactive compounds and quality evaluation of ‘Wonderful’ pomegranate fruit and juice as affected by deficit irrigation. J. Sci. Food Agric. 2020, 100, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, A.; Difonzo, G.; Disciglio, G.; Frabboni, L.; Paradiso, V.M.; Gambacorta, G.; Caponio, F. Fresh pomegranate juices from cultivars and local ecotypes grown in southeastern Italy: Comparison of physicochemical properties, antioxidant activity and bioactive compounds. J. Sci. Food Agric. 2021, 102, 1185–1192. [Google Scholar] [CrossRef]
- Joshi, M.; Ze’ev Schmilovitch, Z.; Ginzberg, I. Pomegranate Fruit Growth and Skin Characteristics in Hot and Dry Climate. Front. Plant Sci. 2021, 12, 1797. [Google Scholar] [CrossRef]
- Ferrara, G.; Cavoski, I.; Pacifico, A.; Tedone, L.; Mondelli, D. Morpho-pomological and chemical characterization of pomegranate (Punica granatum L.) genotypes in Apulia region, Southeastern Italy. Sci. Hortic. 2011, 130, 599–606. [Google Scholar]
- Ferrara, G.; Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Matarrese, A.M.S.; Pacucci, C.; Punzi, R.; Trani, A.; Gambacorta, G.; Blanco, A.; et al. Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci. Hortic. 2014, 178, 70–78. [Google Scholar] [CrossRef]
- Passafiume, R.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Saletta, F.; Gentile, C. Chemical–physical characteristics, polyphenolic content and total antioxidant activity of Italian-grown pomegranate cultivars. NFS J. 2019, 16, 9–14. [Google Scholar] [CrossRef]
- Al-Said, F.; Opara, U.L.; Al-Yahyai, R. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 2009, 90, 129–134. [Google Scholar] [CrossRef]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, horticulture, breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Ampem, G. Physico-Chemical and Textural Properties Relevant to Processing of Pomegranate Fruit and Arils. In Quality Attributes of Pomegranate Fruit and Co-Products Relevant to Processing and Nutrition. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017; pp. 12–51. Available online: https://scholar.sun.ac.za (accessed on 14 March 2022).
- Fernandes, L.; Pereira, J.A.; Lopez-Cortes, I.; Salazar, D.M.; Gonzalez-Alvarez, J.; Ramalhosa, E. Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. Eur. Food Res. Technol. 2017, 243, 1799–1814. [Google Scholar] [CrossRef]
- Martinez, J.J.; Melgarejo, P.; Hernandez, F.; Salazar, D.M.; Martinez, R. Seed characterization of five new pomegranate (Punica granatum L.) varieties. Sci. Hortic. 2006, 110, 241–246. [Google Scholar] [CrossRef]
- Adiletta, G.; Petriccione, M.; Liguori, L.; Pizzolongo, F.; Romano, R.; Di Matteo, M. Study of pomological traits and physico-chemical quality of pomegranate (Punica granatum L.) genotypes grown in Italy. Eur. Food Res. Technol. 2018, 244, 1427–1438. [Google Scholar] [CrossRef]
- Attanayake, R.; Eeswaran, R.; Rajapaksha, P.; Weerakkody, P. Biochemical composition and some anthocyanin biosynthetic genes of a yellow peeled and pinkish ariled pomegranate (Punica granatum L.) cultivar are differentially regulated in response to agro-climatic conditions. J. Agric. Food Chem. 2018, 66, 8761–8771. [Google Scholar] [CrossRef]
ABsTreatments |
---|
HENDOPHYT PS (Iko-Hydro): a fully water-soluble powder, comprising biopolymers of polysaccharides (polyglucosamine) 60%, containing carbon 35%, organic nitrogen 4%, boron 0.25%; applied at a dose of 150 g 100 L−1 of water. ERGOSTIM XL (Isagro): a concentrated water-soluble liquid _N-acetiltiazolidin-4-carboxylic acid (AATC) 2.5%, and triazolidine-carboxylic acid (ATC) 2%; i applied at a dose of 200 mL 100 L−1 of water. SIAPTON 10L (Siapa): based on amino acids and peptides originating from chemical hydrolysis of animal epithelium, with a high content of proline, hydroxychlorine, glycine and arginine; containing organic nitrogen 8.7%, carbon 25%; C/N ratio = 2.9%; applied at a dose of 300 mL 100 L−1 of water. ALLIBIO-RAD (Fertek): a suspension–solution of humic and fulvic acids, obtained from worm compost (night crawled). Dry composition: total organic matter 60%; extractable organic substance 6% of organic matter; humified organic substance 80% extractable organic matter; organic substance 1.5% of extractable organic nitrogen; C/N ratio = 20; pH 8; applied at a dose of 150 g 100 L−1 of water. |
Month | Tmax | Tmin | RHmax | RHmin | Ws | Rad | P |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (%) | (m s−1) | (Wm−2) | (mm) | |
2018 | |||||||
April | 21.3 | 12.9 | 94.6 | 37.6 | 2.8 | 235.3 | 54.0 |
May | 26.1 | 13.4 | 95.2 | 49.1 | 2.4 | 275.8 | 58.3 |
June | 30.0 | 12.1 | 89.5 | 40.3 | 3.4 | 289.6 | 88.2 |
July | 33.3 | 19.6 | 83.6 | 35.4 | 3.0 | 318.7 | 16.8 |
Aug | 32.7 | 20.1 | 71.3 | 28.3 | 2.1 | 285.7 | 39.1 |
Sept | 29.1 | 17.1 | 81.3 | 30.0 | 3.7 | 193.6 | 80.0 |
Mean | 23.7 | 15.9 | 85.9 | 36.8 | 2.9 | 266.5 | |
Total | 366.4 | ||||||
2019 | |||||||
April | 20.6 | 8.2 | 94.4 | 51.0 | 3.7 | 190.2 | 40.3 |
May | 21.3 | 10.2 | 95.3 | 56.3 | 4.0 | 232.9 | 86.7 |
June | 33.2 | 17.5 | 85.9 | 35.1 | 3.7 | 252.2 | 9.2 |
July | 33.7 | 19.5 | 84.0 | 33.9 | 3.7 | 258.8 | 30.0 |
Aug | 34.8 | 20.3 | 79.9 | 33.9 | 3.6 | 225.6 | 5.7 |
Sept | 29.5 | 16.8 | 88.7 | 42.6 | 3.6 | 175.5 | 3.8 |
Mean | 28.8 | 15.4 | 88.0 | 42.5 | 3.7 | 222.5 | |
Total | 175.7 |
Parameter | Year | Biostimulant Treatment | Average Years | ||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | |||
Fruit average weight (g) | 2018 | 411.1 ± 72.8 | 457.0 ± 142.0 | 512.1 ± 106.2 | 476.0 ± 119.1 | 473.6 ± 124.6 | 465.9 ± 112.9 |
2019 | 414.4 ± 87.3 | 409.3 ± 69.4 | 440.0 ± 74.6 | 477.1 ± 101.4 | 393.4 ± 59.8 | 426.8 ± 78. | |
Fruit diameter (mm) | 2018 | 86.5 ± 12.2 | 91.0 ± 10.6 | 89.5 ± 12.6 | 93.2 ± 9.3 | 86.8 ± 13.4 | 89.4 ± 11.6 |
2019 | 85.6 ± 10.2 | 87.5 ± 8.2 | 90.8 ± 6.5 | 89.9 ± 6.6 | 84.8 ± 6.6 | 87.7 ± 7.6 | |
Fruit length (mm) | 2018 | 74.4 ± 10.6 | 81.9 ± 10.2 | 80.4 ± 9.1 | 82.9 ± 9.3 | 80.3 ± 9.1 | 79.9 ± 9.6 |
2019 | 74.6 ± 12.2 | 76.6 ± 8.5 | 80.2 ± 6.8 | 81.9 ± 8.6 | 75.3 ± 7.2 | 77.7 ± 8.6 |
Parameter | Year | Biostimulant Treatment | Average Years | ||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | |||
Aril weight per fruit (g) | 2018 | 210.8 ± 57.0 | 234.6 ± 81.4 | 263.0 ± 86.8 | 223.8 ± 71.5 | 230.9 ± 70.3 | 193.8 ± 73.4 |
2019 | 184.2 ± 47.6 | 184.5± 61.3 | 207.7 ± 44.0 | 217.8 ± 63.0 | 168.2 ± 59.6 | 160.4 ± 55.1 | |
Fresh weight 100 arils (g) | 2018 | 28.6 ± 4.4 | 28.8 ± 5.4 | 30.2 ± 3.1 | 29.0 ± 3.7 | 29.7 ± 4.7 | 24.4 ± 4.3 |
2019 | 24.5 ± 1.7 | 28.7 ± 4.7 | 29.8 ± 1.2 | 24.8 ± 1.8 | 24.9 ± 4.3 | 22.1 ± 2.7 | |
Aril per fruit (No) | 2018 | 734.5 ± 19.6 b | 814.6 ± 25.9 a | 870.9 ± 28.6 a | 771.7 ± 23.4 b | 864.8 ± 25.0 a | 676.1 ± 24.5 A |
2019 | 721.4 ± 16.1 c | 691.2 ± 15.3 c | 688.1 ± 18.4 c | 761.1 ± 14.6 b | 740.2 ± 16.1 b | 600.3 ± 14.1 B | |
Fruit edible portion (%) | 2018 | 48.2 ± 1.0 b | 51.3 ± 1.4 a | 51.3 ± 1.8 a | 49.5 ± 1.4 ab | 48.9 ± 1.3 ab | 41.5 ± 1.38 A |
2019 | 44.3 ± 4.0 b | 48.5 ± 7.4 ab | 46.6 ± 5.0 ab | 45.6 ± 3.9 ab | 46.9 ± 4.3 ab | 38.7 ± 4.92 B | |
Juice volume (cm3 100 g−1) | 2018 | 81.1 ± 2.3 cd | 100.8 ± 2.9 a | 96.2 ± 2.3 ab | 94.2 ± 2.3 b | 95.6 ± 2.2 ab | 78.0 ± 2.4 A |
2019 | 77.7 ± 2.1 cd | 97.3 ± 2.0 ab | 98.1 ± 1.7 ab | 82.3 ± 2.1 c | 81.3 ± 1.9 cd | 72.8 ± 1.96 B | |
Dry matter arils (%) | 2018 | 20.1 ± 0.4 | 20.3 ± 0.5 | 20.4 ± 0.4 | 20.5 ± 0.5 | 20.3 ± 0.5 | 16.9 ± 0.46 |
2019 | 23.3 ± 1.0 | 22.3 ± 0.8 | 21.1 ± 1.1 | 22.1 ± 0.9 | 21.4 ± 0.9 | 18.4 ± 0.94 |
Parameter | Year | Biostimulant Treatment | Average Years | |||||
---|---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | ||||
Skin | L* | 2018 | 42.1 ± 6.0 | 42.3 ± 5.5 | 43.1 ± 6.7 | 42.3 ± 5.3 | 42.2 ± 6.2 | 42.4 ± 5.9 |
2019 | 40.0 ± 2.6 | 42.6 ± 5.6 | 40.0 ± 2.1 | 40.2 ± 3.7 | 40.5 ± 3.7 | 40.7 ± 3.5 | ||
a* | 2018 | 34.4 ± 5.6 | 36.5 ± 4.0 | 34.0 ± 6.5 | 36.9 ± 3.5 a | 33.5 ± 4.9 | 35.1 ± 4.9 | |
2019 | 41.4 ± 2.6 | 42.5 ± 4.2 | 42.2 ± 1.7 | 42.6 ± 3.0 | 41.6 ± 3.2 | 42.1 ± 2.9 | ||
b* | 2018 | 17.3 ± 3.8 | 17.9 ± 3.4 a | 18.0 ± 4.6 | 18.0 ± 3.0 | 17.6 ± 4.4 | 17.8 ± 3.8 | |
2019 | 21.6 ± 2.6 | 26.0 ± 4.2 | 22.6 ± 2.2 | 23.7 ± 3.6 | 21.9 ± 4.1 | 23.2 ± 3.3 | ||
Aril | L* | 2018 | 24.1 ± 4.7 | 23.0 ± 7.3 | 24.6 ± 6.1 | 23.0 ± 7.3 | 23.3 ± 6.4 | 23.6 ± 6.4 |
2019 | 20.4 ± 3.1 | 22.1 ± 5.3 | 23.1 ± 4.9 | 22.5 ± 5.1 | 22.8 ± 5.9 | 22.2 ± 4.9 | ||
a* | 2018 | 18.0 ± 4.3 | 16.3 ± 5.4 | 17.9 ± 7.5 | 16.3 ± 5.4 | 16.8 ± 4.2 | 17.1 ± 5.4 | |
2019 | 19.1 ± 5.0 | 16.3 ± 4.3 | 16.2 ± 6.1 | 17.1 ± 5.1 | 16.0 ± 4.0 | 16.9 ± 4.9 | ||
b* | 2018 | 6.8 ± 1.8 | 7.2 ± 2.5 | 6.9 ± 3.4 | 6.5 ± 2.6 | 6.8 ± 1.9 | 6.8 ± 2.4 | |
2019 | 5.9 ± 1.3 | 6.3 ± 1.5 | 5.9 ± 1.9 | 7.0 ± 1.6 | 6.6 ± 2.0 | 6.4 ± 1.7 | ||
Juice | L* | 2018 | 24.0 ± 2.7 | 21.0 ± 1.1 | 23.1 ± 4.5 | 21.4 ± 1.9 | 20.8 ± 2.1 | 22.1 ± 2.5 |
2019 | 16.8 ± 1.5 | 18.3 ± 1.0 | 16.8 ± 1.4 | 16.2 ± 1.8 | 17.8 ± 2.3 | 17.2 ± 1.6 | ||
a* | 2018 | 5.6 ± 1.4 | 6.7 ± 2.7 | 6.1 ± 2.1 | 5.1 ± 2.1 | 4.2 ± 1.4 | 5.5 ± 1.9 | |
2019 | 2.2 ± 0.4 | 5.1 ± 1.0 | 2.9± 1.5 | 2.9 ± 1.1 | 3.9 ± 2.2 | 3.3 ± 1.2 | ||
b* | 2018 | 2.9 ± 0.5 | 2.6 ± 0.6 | 2.3 ± 0.6 | 1.3 ± 0.7 | 2.1 ± 0.5 | 3.3 ± 0.6 | |
2019 | 2.2 ± 0.5 | 2.5 ± 1.1 | 1.9 ± 0.4 | 2.0 ± 0.3 | 2.2 ± 0.9 | 2.2 ± 0.6 |
Parameter | Year | Biostimulant Treatment | |||||
---|---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Siapton 10L® | Allibio-Rad® | Average Yields | ||
Total soluble Solid (°Brix) | 2018 | 17.4 ± 1.3 | 17.1 ± 0.4 | 17.3 ± 0.1 | 17.4 ± 0.1 | 17.6 ± 1.1 | 17.4 ± 0.6 |
2019 | 16.9 ± 0.7 | 17.4 ± 0.1 | 17.4 ± 0.1 | 16.8 ± 0.4 | 17.5 ± 0.2 | 17.2 ± 0.3 | |
pH | 2018 | 2.9 ± 0.2 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0.1 | 2.9 ± 0. 1 |
2019 | 3.0 ± 0.1 | 3.1 ± 0.2 | 2.9 ± 0.2 | 3.2 ± 0.2 | 3.1 ± 0.1 | 3.1 ± 0.1 | |
Total acidity (g L−1 citric acid) | 2018 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.7 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 |
2019 | 1.3 ± 0.2 | 1.5 ± 0.1 | 1.7 ± 0.2 | 1.6 ± 0.2 | 1.7 ± 0.2 | 1.6 ± 0.2 | |
Maturity index (%) | 2018 | 11.6 ± 0.6 | 12.2 ± 1.1 | 10.2 ± 0.8 | 10.9 ± 0.7 | 11.0 ± 1.2 | 11.2 ± 0.8 |
2019 | 13.0 ± 0.6 | 11.6 ± 0.8 | 10.2 ± 0.8 | 10.8 ± 0.9 | 10.3 ± 0.9 | 11.2 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, A.; Disciglio, G.; Frabboni, L.; Lopriore, G. Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae 2023, 9, 164. https://doi.org/10.3390/horticulturae9020164
Tarantino A, Disciglio G, Frabboni L, Lopriore G. Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae. 2023; 9(2):164. https://doi.org/10.3390/horticulturae9020164
Chicago/Turabian StyleTarantino, Annalisa, Grazia Disciglio, Laura Frabboni, and Giuseppe Lopriore. 2023. "Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits" Horticulturae 9, no. 2: 164. https://doi.org/10.3390/horticulturae9020164
APA StyleTarantino, A., Disciglio, G., Frabboni, L., & Lopriore, G. (2023). Organo Mineral Fertilizers Increases Vegetative Growth and Yield and Quality Parameters of Pomegranate cv. Wonderful Fruits. Horticulturae, 9(2), 164. https://doi.org/10.3390/horticulturae9020164