Using Respirometry to Investigate Biological Stability of Growing Media in Aerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physico-Chemical Characteristics
2.2. Stability Testing
2.3. Data Analysis
3. Results
3.1. Microbial Activity of Single Materials
3.2. Moisture Effects on Test
3.3. Nutrient Effect on Test
3.4. Interaction Effects
4. Discussion
4.1. Respirometry
4.2. Stability of Individual Raw Materials
4.3. Interaction Effects of Mixing Raw Materials on Stability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmilewski, G. Growing Medium Constituents Used in the EU. Acta Hortic. 2009, 819, 33–46. [Google Scholar] [CrossRef]
- Bragg, N.; Brough, W. The Development of Responsibly Sourced Growing Media Components and Mixes©. Acta Hortic. 2014, 1055, 141–144. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving Environmentally Sustainable Growing Media for Soilless Plant Cultivation Systems—A Review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- HTA Growing Media Monitor Report. Trend in the Composition of UK Growing Media Supplied 2011 to 2022. Available online: https://projectbluearchive.blob.core.windows.net/media/Default/Research%20Papers/Horticulture/CP%20203_Final%20report%202011-2022.pdf (accessed on 12 September 2023).
- Gruda, N.; Schnitzler, W.H. Suitability of Wood Fiber Substrate for Production of Vegetable Transplants: I. Physical Properties of Wood Fiber Substrates. Sci. Hortic. 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Durand, S.; Jackson, B.E.; Fonteno, W.C.; Michel, J.-C. The Use of Wood Fiber for Reducing Risks of Hydrophobicity in Peat-Based Substrates. Agronomy 2021, 11, 907. [Google Scholar] [CrossRef]
- Pitman, R.M.; Webber, J. The Character of Composted Bracken (Pteridium Aquilinum L. Kuhn) and Its Potential as a Peat Replacement Medium. Eur. J. Hortic. Sci. 2013, 78, 145–152. [Google Scholar]
- Nguyen, V.T.H.; Kraska, T.; Winkler, W.; Aydinlik, S.; Jackson, B.E.; Pude, R. Primary Mechanical Modification to Improve Performance of Miscanthus as Stand-Alone Growing Substrates. Agronomy 2022, 12, 420. [Google Scholar] [CrossRef]
- Lemaire, F. Physical, Chemical and Biological Properties of Growing Medium. Acta Hortic. 1995, 396, 273–284. [Google Scholar] [CrossRef]
- Jackson, B.E.; Wright, R.D.; Seiler, J.R. Changes in Chemical and Physical Properties of Pine Tree Substrate and Pine Bark During Long-Term Nursery Crop Production. HortScience 2009, 44, 791–799. [Google Scholar] [CrossRef]
- Montagne, V.; Charpentier, S.; Cannavo, P.; Capiaux, H.; Grosbellet, C.; Lebeau, T. Structure and Activity of Spontaneous Fungal Communities in Organic Substrates Used for Soilless Crops. Sci. Hortic. 2015, 192, 148–157. [Google Scholar] [CrossRef]
- Montagne, V.; Capiaux, H.; Barret, M.; Cannavo, P.; Charpentier, S.; Grosbellet, C.; Lebeau, T. Bacterial and Fungal Communities Vary with the Type of Organic Substrate: Implications for Biocontrol of Soilless Crops. Environ. Chem. Lett. 2017, 15, 537–545. [Google Scholar] [CrossRef]
- Pot, S.; Tender, C.D.; Ommeslag, S.; Delcour, I.; Ceusters, J.; Vandecasteele, B.; Debode, J.; Vancampenhout, K. Elucidating the Microbiome of the Sustainable Peat Replacers Composts and Nature Management Residues. Front. Microbiol. 2022, 13, 1–18. [Google Scholar] [CrossRef]
- Verhagen, H. Stability of Growing Media from a Physical, Chemical and Biological Perspective. Acta Hortic. 2009, 819, 135–142. [Google Scholar] [CrossRef]
- Aspray, T.J.; Dimambro, M.E.; Wallace, P.; Howell, G.; Frederickson, J. Static, Dynamic and Inoculum Augmented Respiration Based Test Assessment for Determining in-Vessel Compost Stability. Waste Manag. 2015, 42, 3–9. [Google Scholar] [CrossRef]
- Grigatti, M.; Cavani, L.; Ciavatta, C. The Evaluation of Stability during the Composting of Different Starting Materials: Comparison of Chemical and Biological Parameters. Chemosphere 2011, 83, 41–48. [Google Scholar] [CrossRef]
- Blok, C.; Eveleens, B.; Van Winkel, A. Oxygen Use in Compost Storage as Influenced by Moisture, Temperature and Degradability. Acta Hortic. 2019, 1266, 291–300. [Google Scholar] [CrossRef]
- Adani, F.; Gigliotti, G.; Valentini, F.; Laraia, R. Respiration Index Determination: A Comparative Study of Different Methods. Compost Sci. Util. 2003, 11, 144–151. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Hoyos, L.V.; Gonzales, S.; Barrena, R.; Komilis, D.; Sanchez, A. Stability and Maturity of Biowaste Composts Derived by Small Municipalities: Correlation among Physical, Chemical and Biological Indices. Waste Manag. 2015, 44, 63–71. [Google Scholar] [CrossRef]
- Vandecasteele, B. Oxygen Uptake Rate versus CO2 Based Respiration Rate for Assessment of the Biological Stability of Peat, Plant Fibers and Woody Materials with High C:N Ratio versus Composts. Waste Manag. 2023, 167, 74–80. [Google Scholar] [CrossRef]
- Turrell, J.; Godley, A.; Agbasiere, N.; Lewin, K. Guidance on Monitoring of MBT and Other Treatment Processes for the Landfill Allowances Schemes (LATS and LAS) for England and Wales; Environment Agency: Bristol, UK, 2009.
- Llewelyn, R.H. Development of Standard Laboratory Based Test to Measure Compost Stability. The Waste & Resources Action Programme: The Old Academy. 2005. Available online: https://wrap.org.uk/sites/default/files/2020-10/WRAP-DevLabTestCompostStability.pdf (accessed on 12 September 2023).
- B.S.I. PAS100: 2018 Specification for Composted Materials; BSI Committee: London, UK, 2018. [Google Scholar]
- Adani, F.; Lozzi, P.; Genevini, P. Determination of Biological Stability by Oxygen Uptake on Municipal Solid Waste and Derived Products. Compost Sci. Util. 2001, 9, 163–178. [Google Scholar] [CrossRef]
- Grunert, O.; Reheul, D.; Van Labeke, M.-C.; Perneel, M.; Hernandez-Sanabria, E.; Vlaeminck, S.E.; Boon, N. Growing Media Constituents Determine the Microbial Nitrogen Conversions in Organic Growing Media for Horticulture. Microb. Biotechnol. 2016, 9, 389–399. [Google Scholar] [CrossRef]
- Grunert, O.; Hernandez-Sanabria, E.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Perneel, M.; Van Labeke, M.-C.; Reheul, D.; Boon, N. Mineral and Organic Growing Media Have Distinct Community Structure, Stability and Functionality in Soilless Culture Systems. Sci. Rep. 2016, 6, 18837. [Google Scholar] [CrossRef]
- BS EN 13040; Soil Improvers and Growing Media. Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. CEN: Brussels, Belgium, 2007.
- BS EN 13039; Soil Improvers and Growing Media—Determination of Organic Matter Content and Ash. CEN: Brussels, Belgium, 2012.
- Lighton, J.R.B.; Halsey, L.G. Flow-through Respirometry Applied to Chamber Systems: Pros and Cons, Hints and Tips. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 158, 265–275. [Google Scholar] [CrossRef]
- Adani, F.; Ubbiali, C.; Generini, P. The Determination of Biological Stability of Composts Using the Dynamic Respiration Index: The Results of Experience after Two Years. Waste Manag. 2006, 26, 41–48. [Google Scholar] [CrossRef]
- Komilis, D.; Kanellos, D. A Modified Dynamic Respiration Test to Assess Compost Stability: Effect of Sample Size and Air Flowrate. Bioresour. Technol. 2012, 117, 300–309. [Google Scholar] [CrossRef]
- Almeira, N.; Komilis, D.; Barrena, R.; Gea, T.; Sánchez, A. The Importance of Aeration Mode and Flowrate in the Determination of the Biological Activity and Stability of Organic Wastes by Respiration Indices. Bioresour. Technol. 2015, 196, 256–262. [Google Scholar] [CrossRef]
- Guillen Ferrari, D.; Howell, G.; Aspray, T.J. Improved Precision and Efficiency of a Modified ORG0020 Dynamic Respiration Test Setup for Compost Stability Assessment. Sustainability 2017, 9, 2358. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Pot, S.; Maenhout, K.; Delcour, I.; Vancampenhout, K.; Debode, J. Acidification of Composts versus Woody Management Residues: Optimizing Biological and Chemical Characteristics for a Better Fit in Growing Media. J. Environ. Manag. 2021, 277, 111444. [Google Scholar] [CrossRef]
- Gurusamy, N.N.; Puffer, N.; de Jongh, C.; Rodriguez Gil, C.; Aspray, T.J. Effect of Initial Moisture Content and Sample Storage Duration on Compost Stability Using the ORG0020 Dynamic Respiration Test. Waste Manag. 2021, 125, 215–219. [Google Scholar] [CrossRef]
- Cannavo, P.; Recous, S.; Valé, M.; Bresch, S.; Paillat, L.; Benbrahim, M.; Guénon, R. Organic Fertilization of Growing Media: Response of N Mineralization to Temperature and Moisture. Horticulturae 2022, 8, 152. [Google Scholar] [CrossRef]
- Lasaridi, K.; Stentiford, E. A Simple Respirometric Technique for Assessing Compost Stability. Water Resour. 1998, 32, 3717–3723. [Google Scholar] [CrossRef]
- Hoitink, H.A.J. Status of Compost-Amended Potting Mixes Naturally Suppressive to Soilborne Diseases of Floricultural Crops. Plant Dis. 1991, 75, 869. [Google Scholar] [CrossRef]
- Bréchet, L.M.; Lopez-Sangil, L.; George, C.; Birkett, A.J.; Baxendale, C.; Castro Trujillo, B.; Sayer, E.J. Distinct Responses of Soil Respiration to Experimental Litter Manipulation in Temperate Woodland and Tropical Forest. Ecol. Evol. 2018, 8, 3787–3796. [Google Scholar] [CrossRef]
Parameter | ORG0020 | DR4 |
---|---|---|
Intended use | Composted materials | Compost process feedstock and product |
Sample size | 100 g fresh weight (FW) | 100 g dry solids |
Aeration | Flow through headspace | Air forced through sample |
Aeration rate | 50 ± 25 mL/min/100 g FW | 400 ± 100 mL/min/400 g FW |
Moisture | “hand squeeze test” | 50% dry matter (DM) |
Inoculum | None | 100 g dry solids, mature green compost |
Nutrient addition | None | NPK |
Temperature | 30 °C | 35 °C |
Data collection | Days 4–7 inclusive | Days 1–4 |
Sample | Bulk Density g/cm3 | Dry Matter % FW as Received | DM at “Hand Squeeze Test” % FW | Loss on Ignition % DM | C % DM | N % DM |
---|---|---|---|---|---|---|
WF1 | n/a | 48.77 (1.18) | 23.7 (2.6) | 99.99 (0.01) | 45.9 (0.2) | 0.08 (0.01) |
WF2 | 0.080 (0.004) | 46.58 (0.59) | * 21.9 (0.4) | 100.00 (0.01) | 46.2 (0.1) | 0.06 (0.00) |
BC | 0.434 (0.003) | 31.86 (0.59) | * 27.3 (0.3) | 84.71 (3.1) | 41.4 (0.8) | 1.08 (0.02) |
CR | 0.320 (0.002) | 22.50 (2.93) | * 18.3 (0.2) | 79.04 (4.9) | 39.7 (0.5) | 0.75 (0.04) |
AD1 | 0.159 (0.011) | 57.02 (4.2) | * 28.3 (0.3) | 88.02 (0.9) | 40.1 (0.9) | 1.96 (0.08) |
AD2 | n/a | 39.25 (1.16) | 28.2 (0.05) | 81.40 (0.6) | 35.1 (0.8) | 2.57 (0.05) |
GC | 0.425 (0.001) | 63.82 (0.97) | 47.5 (0.06) | 46.79 (2.9) | 21.4 (0.4) | 1.13 (0.03) |
Reference (Cellulose) | n/a | 93.19 (0.05) | n/a | 99.99 (0.01) | 44.44 | 0 |
Sample | 4-Day CO2, g/kgVS (DR4) | Days 3–7 CO2 g/kgVS (ORG0020) | 7-Day CO2 g/kgVS | 28-Day CO2 g/kgVS | 28-Day O2 g/kgVS | 42 Days %C Loss |
---|---|---|---|---|---|---|
AD1 | 156.5 (7.2) | 99.4 (5.8) *** | 225.9 (11.2) | 464.9 (21.6) | 495.4 (19.2) | 30.1 (1.6) |
AD2 | 133.6 (9) | 135.3 (4.4) *** | 226.6 (7.5) | 461.3 (13.3) | 498.5 (3.2) | 31.9 (0.8) |
GC | 32.4 (1.9) | 22.2 (1.7) * | 48.6 (3.1) | 124.4 (5) | 164.3 (61.8) | 7.7 (0.1) |
WF1 | 18.7 (1.6) | 9.7 (1) * | 25.5 (2.1) | 43 (0.9) | 47.9 (7) | 3.1 (0.2) |
WF2 | 17.4 (0.3) | 11.1 (0.3) * | 24.8 (0.3) | 40.9 (1.2) | 57.2 (40.7) | 2.8 (0.2) |
CR | 4 (0.3) | 4.8 (0.3) * | 7.7 (0.5) | 63 (1.6) | 67 (14.3) | 4.6 (0.2) |
BC | 3.3 (0.4) | 3.6 (0.9) * | 5.9 (1.1) | 31.8 (13.3) | 33 (12.6) | 2.6 (1.3) |
Mixes | ||||||
AD + WF | 94.4 (6.2) | 53.5 (5.3) ** | 131.9 (9.8) | 254.3 (18) | 267.9 (6.4) | 19.1 (1.6) |
GC + WF | 34.4 (1.4) | 15.5 (0.2) * | 45.8 (1.4) | 112.4 (1.6) | 115.3 (16.2) | 7.9 (0.1) |
CR + WF | 19.1 (0.6) | 6.9 (0.2) * | 23.8 (0.7) | 53.8 (1.6) | 56.1 (14.0) | 3.9 (0.1) |
BC + WF | 13 (1.1) | 5.9 (0.2) * | 17.1 (1.1) | 34.1 (0.6) | 34.5 (17.7) | 2.4 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newman, S.; Alexander, P.; Bragg, N.; Howell, G. Using Respirometry to Investigate Biological Stability of Growing Media in Aerobic Conditions. Horticulturae 2023, 9, 1258. https://doi.org/10.3390/horticulturae9121258
Newman S, Alexander P, Bragg N, Howell G. Using Respirometry to Investigate Biological Stability of Growing Media in Aerobic Conditions. Horticulturae. 2023; 9(12):1258. https://doi.org/10.3390/horticulturae9121258
Chicago/Turabian StyleNewman, Sonia, Paul Alexander, Neil Bragg, and Graham Howell. 2023. "Using Respirometry to Investigate Biological Stability of Growing Media in Aerobic Conditions" Horticulturae 9, no. 12: 1258. https://doi.org/10.3390/horticulturae9121258
APA StyleNewman, S., Alexander, P., Bragg, N., & Howell, G. (2023). Using Respirometry to Investigate Biological Stability of Growing Media in Aerobic Conditions. Horticulturae, 9(12), 1258. https://doi.org/10.3390/horticulturae9121258