Amplification of Cherimoya (Annona cherimola Mill.) with Chloroplast-Specific Markers: Geographical Implications on Diversity and Dispersion Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collections
2.2. DNA Extraction, Amplification, Visualization, and Sequencing
2.3. Design of Specific Primers
2.4. Amplification and Sequencing of Specific Loci
3. Results
3.1. Specific Markers
3.2. Amplification and Sequencing of Specific Loci
3.3. Sequence Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, F.; Carneiro, J.; Amorim, A. Identification of species with DNA-based technology: Current progress and challenges. Recent Pat. DNA Gene Seq. 2008, 2, 187–199. [Google Scholar] [CrossRef] [PubMed]
- CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [PubMed]
- Kress, W.J.; Erickson, D.L. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2007, 2, e508. [Google Scholar] [CrossRef]
- De Groot, G.A.; During, H.J.; Maas, J.W.; Schneider, H.; Vogel, J.C.; Erkens, R.H.J. Use of rbcL and trnL-F as a Two-Locus DNA Barcode for Identification of NW-European Ferns: An Ecological Perspective. PLoS ONE 2011, 6, e16371. [Google Scholar] [CrossRef]
- Hollingsworth, P.M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2011, 108, 19451–19452. [Google Scholar] [CrossRef] [PubMed]
- China Plant BOL Group; Li, D.Z.; Gao, L.M.; Li, H.T.; Wang, H.; Ge, X.J.; Liu, J.Q.; Chen, Z.D.; Zhou, S.L.; Chen, S.L. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 2011, 108, 19641–19646. [Google Scholar]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef] [PubMed]
- Shokralla, S.; Gibson, J.F.; Nikbakht, H.; Janzen, D.H.; Hallwachs, W.; Hajibabaei, M. Next-generation DNA barcoding: Using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 2014, 14, 892–901. [Google Scholar] [CrossRef]
- Guo, X.; Tang, C.C.; Thomas, D.C.; Couvreur, T.L.P.; Saunders, R.M.K. A mega-phylogeny of the Annonaceae: Taxonomic placement of five enigmatic genera and recognition of a new tribe, Phoenicantheae. Sci. Rep. 2017, 7, 7323. [Google Scholar] [CrossRef]
- Maas, P.J.M.; Westra, L.Y.T.; Rainer, H.; Lobão, A.Q.; Erkens, R.H.J. An updated index to genera, species, and infraspecific taxa of Neotropical Annonaceae. Nord. J. Bot. 2011, 29, 257–356. [Google Scholar] [CrossRef]
- Chatrou, L.W.; Escribano, M.P.; Viruel, M.A.; Maas, J.W.; Richardson, J.E.; Hormaza, J.I. Flanking regions of monomorphic microsatellite loci provide a new source of data for plant species-level phylogenetics. Mol. Phylogenet. Evol. 2009, 53, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Fries, R.E. Annonaceae. In Die Natürlichen Pflanzenfamilien; Engler, A., Prantl, K., Eds.; Band 17 a II; Duncker & Humblot: Berlin, Germany, 1959. [Google Scholar]
- Rosell, P.; Galán-Saúco, V.; Hernández, P.M. Cultivo del Chirimoyo en Canarias. Cuadernos de Divulgación; Departamento de Fruticultura Tropical Instituto Canario de Investigaciones Agradas; ICIA; Gobierno de Canarias Consejería de Agricultura, Ganadería, Pesca y Alimentación: Las Palmas de Gran Canaria, Spain, 1997. [Google Scholar]
- Wester, P.J. Pollination experiments with Anonas. Bull. Torrey Bot. Club 1910, 37, 529–539. [Google Scholar] [CrossRef]
- Lora, J.; Herrero, M.; Hormaza, J.I. Stigmatic receptivity in a dichogamous early-divergent angiosperm species, Annona cherimola (Annonaceae): Influence of temperature and humidity. Am. J. Bot. 2011, 98, 265–274. [Google Scholar] [CrossRef] [PubMed]
- De la Pena, E.; Perez, V.; Alcaraz, L.; Lora, J.; Larranaga, N.; Hormaza, J.I. Polinizadores y polinización en frutales subtropicales: Implicaciones en manejo, conservación y seguridad alimentaria. Ecosistemas 2018, 27, 91–101. [Google Scholar]
- Morton, J.F. Fruits of Warm Climates; Creative Resources Systems: Winterville, NC, USA, 1987. [Google Scholar]
- Bioversity International and CHERLA. Descriptors for Cherimoya (Annona cherimola Mill.); Bioversity International: Rome, Italy, 2008; CHERLA Project, Malaga, Spain. [Google Scholar]
- Larranaga, N.; Albertazzi, F.J.; Fontecha, G.; Palmeri, M.; Rainer, H.; van Zonneveld, M.; Hormaza, J.I. A Mesoamerican origin of cherimoya (Annona cherimola Mill.). Implications for the conservation of plant genetic resources. Mol. Ecol. 2017, 26, 4116–4130. [Google Scholar] [CrossRef] [PubMed]
- Larranaga, N.; Albertazzi, F.J.; Hormaza, J.I. Phylogenetics of Annona cherimola (Annonaceae) and some of its closest relatives. J. Syst. Evol. 2019, 57, 211–221. [Google Scholar] [CrossRef]
- Larranaga, N.; van Zonneveld, M.; Hormaza, J.I. Holocene land and sea-trade routes explain complex patterns of Pre-Columbian crop dispersion. New Phytol. 2021, 229, 1768–1781. [Google Scholar] [CrossRef]
- Zonneveld, M.; Larranaga, N.; Blonder, B.; Coradin, L.; Hormaza, J.I.; Hunter, D. Human diets drive range expansion of megafauna-dispersed fruit species. Proc. Natl. Acad. Sci. USA 2018, 115, 3326–3331. [Google Scholar] [CrossRef]
- Larranaga, N.; Hormaza, J.I. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae). Front. Plant Sci. 2015, 6, 589. [Google Scholar] [CrossRef]
- Chaowasku, T.; Thomas, D.C.; van der Ham, R.W.; Smets, E.F.; Mols, J.B.; Chatrou, L.W. A plastid DNA phylogeny of tribe Miliuseae: Insights into relationships and character evolution in one of the most recalcitrant major clades of Annonaceae. Am. J. Bot. 2014, 101, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Chatrou, L.W.; Pirie, M.D.; Erkens, R.H.J.; Couvreur, T.L.P.; Neubig, K.M.; Abbott, J.R.; Mols, J.B.; Maas, J.W.; Saunders, R.M.; Chase, M.W. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot. J. Linnn. Soc. 2012, 169, 5–40. [Google Scholar] [CrossRef]
- Pirie, M.D.; Balcázar Vargas, M.P.; Botermans, M.; Bakker, F.T.; Chatrou, L.W. Ancient paralogy in the cpDNA trnL-F region in Annonaceae: Implications for plant molecular systematics. Am. J. Bot. 2007, 94, 1003–1016. [Google Scholar] [CrossRef]
- Richardson, J.E.; Chatrou, L.W.; Mols, J.B.; Erkens, R.H.J.; Pirie, M.D. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Phil. Trans. R. Soc. B Biol. Sci. 2004, 359, 1495–1508. [Google Scholar] [CrossRef]
- Viruel, M.A.; Hormaza, J.I. Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae). Theor. Appl. Genet. 2004, 108, 896–902. [Google Scholar] [CrossRef]
- Kuzmina, M.; Ivanova, N. Canadian Center for DNA Barcoding (CCDB) Protocols. Primers Sets for Plants and Fungi. Available online: https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_PrimerSets-Plants.pdf (accessed on 6 June 2022).
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of the three non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Zhou, X.J.; Li, Z.Z.; Song, H.Y.; Long, Z.C.; Fu, P.C. Intra-individual heteroplasmy in the Gentiana tongolensis plastid genome (Gentianaceae). PeerJ 2019, 27, e8025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 2003, 44, 941–995. [Google Scholar] [CrossRef] [Green Version]
Country of Origin | Number of Accesions | Code | Species | Country of Origin | ||
---|---|---|---|---|---|---|
Ex situ cherimoya accessions from the IHSM La Mayora collection | Australia | 13 | Genotypes used for primer design | Che1 | A. cherimola | Spain |
Bolivia | 16 | Che2 | A. cherimola | Ecuador | ||
Chile | 9 | Che3 | A. cherimola | Peru | ||
Colombia | 5 | Ret1 | A. reticulata | Honduras | ||
Costa Rica | 1 | Ret2 | A. reticulata | Honduras | ||
Ecuador | 47 | Squ2 | A. squamosa | Unknown | ||
Italy | 3 | Squ3 | A. squamosa | Honduras | ||
Japan | 1 | Mur2 | A. muricata | Honduras | ||
Mexico | 6 | Mur3 | A. muricata | Guatemala | ||
Peru | 126 | Mac2 | A. macroprophyllata | Honduras | ||
Portugal | 26 | Mac3 | A. macroprophyllata | Guatemala | ||
Spain | 7 | Gla1 | A. glabra | Unknown | ||
USA | 36 | Gla3 | A. glabra | Unknown | ||
In situ cherimoya samples from Central America | Guatemala | 40 | Pur1 | A. purpurea | Honduras | |
Honduras | 137 | Pur3 | A. purpurea | Costa Rica | ||
Costa Rica | 73 | Lie1 | A. liebmanniana | Honduras | ||
Lon1 | A. longiflora | Mexico | ||||
Mon1 | A. montana | Unknown | ||||
Sen1 | A. senegalensis | Unknown | ||||
Ema1 | A. emarginata | Paraguay | ||||
Neo1 | A. neosalicifolia | Paraguay | ||||
Tri1 | Asimina triloba | Unknown |
Name | Direction | Sequence 5′—3′ | Annealing Temp. (°C) | Expected Size (bp) | Specificity | Reference |
---|---|---|---|---|---|---|
AChF1 | F | GTATATGAATGTGAATCGGTATTC | 65 | 396 | Annona cherimola | [23] |
AChR1 | R | TTGACTCCTTACTGCGGAAT | ||||
AChF2 | F | CCATTTTCCCCCCCTAATT | 66 | 197 | Annona cherimola | |
AChR2 | R | CAATAGTGGAGATTCCTTGCCT | ||||
1RKim | F | ACCCAGTCCATCTGGAAATCTTGGTTC | 52 | Universal-matK | [29] | |
3FKim | R | CGTACAGTACTTTTGTGTTTACGAG | ||||
C | F | CGAAATCGGTAGACGCTACG | 60 | Universal- trnL-F | [30] | |
F | R | ATTTGAACTGGTGACACGAG |
Article Code | GB Code | Country of Origin | AChF1/AChR1 | AChF2/AChF2 | GenBank Code |
---|---|---|---|---|---|
Che1 | FDJ | Spain | Yes | Yes | KM068846 [23] |
Che2 | SP74 | Peru | Yes | Yes | KM068847 [23] |
Che3 | Hach10 | Honduras | Yes | Yes | KM068848 [23] |
Che52 | HAch246 | Honduras | Yes | Yes | OP286917 |
Che53 | Bonita | U.S.A | No | Yes | OP286918 |
Che55 | Hach28 | Honduras | No | Yes | OP286919 |
Che56 | Hach38 | Honduras | No | Yes | OP286920 |
Che57 | Hach3 | Honduras | No | Yes | OP286921 |
Che58 | Hach46 | Honduras | Yes | Yes | OP286922 |
Che59 | Hach80 | Honduras | No | Yes | OP286923 |
Che60 | Hach97 | Honduras | No | Yes | OP286924 |
Che61 | Hach111 | Honduras | Yes | Yes | OP286925 |
Che63 | Hach213 | Honduras | Yes | Yes | OP286926 |
Che64 | Hach234 | Honduras | No | Yes | OP286927 |
Che65 | Hach243 | Honduras | No | Yes | OP286928 |
Che67 | Gach26 | Guatemala | No | Yes | OP286929 |
Che68 | Gach28 | Guatemala | Yes | Yes | OP286930 |
Che69 | Gach62 | Guatemala | Yes | Yes | OP286931 |
Che70 | Gach84 | Guatemala | Yes | Yes | OP286932 |
Che71 | BS2 | Bolivia | No | Yes | OP286933 |
Che72 | BS3 | Bolivía | No | Yes | OP286934 |
Che73 | Booth | U.S.A | No | Yes | OP286935 |
Che74 | Lucida | U.S.A | No | Yes | OP286936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larranaga, N.; Fontecha, G.; Albertazzi, F.J.; Palmieri, M.; Hormaza, J.I. Amplification of Cherimoya (Annona cherimola Mill.) with Chloroplast-Specific Markers: Geographical Implications on Diversity and Dispersion Studies. Horticulturae 2022, 8, 807. https://doi.org/10.3390/horticulturae8090807
Larranaga N, Fontecha G, Albertazzi FJ, Palmieri M, Hormaza JI. Amplification of Cherimoya (Annona cherimola Mill.) with Chloroplast-Specific Markers: Geographical Implications on Diversity and Dispersion Studies. Horticulturae. 2022; 8(9):807. https://doi.org/10.3390/horticulturae8090807
Chicago/Turabian StyleLarranaga, Nerea, Gustavo Fontecha, Federico J. Albertazzi, Margarita Palmieri, and Jose I. Hormaza. 2022. "Amplification of Cherimoya (Annona cherimola Mill.) with Chloroplast-Specific Markers: Geographical Implications on Diversity and Dispersion Studies" Horticulturae 8, no. 9: 807. https://doi.org/10.3390/horticulturae8090807
APA StyleLarranaga, N., Fontecha, G., Albertazzi, F. J., Palmieri, M., & Hormaza, J. I. (2022). Amplification of Cherimoya (Annona cherimola Mill.) with Chloroplast-Specific Markers: Geographical Implications on Diversity and Dispersion Studies. Horticulturae, 8(9), 807. https://doi.org/10.3390/horticulturae8090807