Evolution of Oleuropein and Other Bioactive Compounds in Arbequina Olive Leaves under Different Agronomic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Raw Materials and Agronomic Conditions
2.3. Sample Preparation
2.4. Determination of Oleuropein and Other Phenolic Compounds
2.5. Climatic Conditions
2.6. Statistical Analysis
3. Results
3.1. Comparison between Conventional and Ecological Agronomic Conditions
3.2. Comparison between Super-Intensive and Intensive Agronomic Conditions
3.3. Influence of Climatic Conditions
3.4. Correlation between Oleuropein and Absorbance at 280 Nm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | Features | Agronomic Cycle | TM | tm | RH | SH | RF | ΔT |
---|---|---|---|---|---|---|---|---|
Location 1 | Plot 1 Super-intensive, Conventional, Rainfed 752 m above sea level | Nov | 12.26 | 6.00 | 82.26 | 7.23 | 1.02 | 6.26 |
Dec | 15.06 | −0.20 | 84.86 | 7.68 | 0.16 | 15.26 | ||
Jan | 12.12 | −1.62 | 63.88 | 8.92 | 0.00 | 13.74 | ||
Feb | 19.50 | −0.62 | 65.86 | 9.44 | 0.00 | 20.12 | ||
Mar | 14.14 | 3.80 | 72.58 | 10.58 | 0.68 | 10.34 | ||
Apr | 27.90 | 6.84 | 47.28 | 12.72 | 0.00 | 21.06 | ||
May | 33.62 | 14.66 | 51.55 | 12.90 | 0.00 | 18.96 | ||
Jul | 31.28 | 14.76 | 36.64 | 12.68 | 0.00 | 16.52 | ||
Aug | 30.72 | 14.66 | 59.08 | 11.16 | 0.02 | 16.06 | ||
Sept | 23.9 | 13.18 | 76.58 | 10.14 | 19.44 | 10.72 | ||
Oct | 21.00 | 7.96 | 79.42 | 8.22 | 0.02 | 13.04 | ||
Location 2 | Plot 2 Super-intensive, Ecological, Irrigation Plot 3 Intensive, Ecological, Irrigation 655 m above sea level | Nov | 12.66 | 4.68 | 67.10 | 7.78 | 0.18 | 7.98 |
Dec | 14.18 | 5.60 | 67.86 | 7.54 | 0.00 | 8.58 | ||
Jan | 13.80 | 4.74 | 77.82 | 7.58 | 0.04 | 9.06 | ||
Feb | 19.80 | 3.88 | 49.56 | 9.58 | 0.00 | 15.92 | ||
Mar | 21.44 | 5.14 | 35.30 | 9.98 | 0.00 | 16.3 | ||
Apr | 14.46 | 6.04 | 69.22 | 10.00 | 3.43 | 8.42 | ||
May | 26.62 | 9.30 | 57.72 | 12.62 | 0.00 | 17.32 | ||
Jun | 26.86 | 11.72 | 56.95 | 12.20 | 0.14 | 15.14 | ||
Jul | 33.18 | 16.00 | 45.24 | 12.84 | 0.00 | 17.18 | ||
Aug | 30.50 | 16.32 | 70.80 | 11.06 | 5.26 | 14.18 | ||
Sept | 26.40 | 16.20 | 78.16 | 10.22 | 0.00 | 10.2 | ||
Oct | 14.80 | 6.82 | 78.64 | 7.78 | 11.4 | 7.98 |
Plot | Agricultural System | Agronomic Cycle | Oleuropein | UV-Vis |
---|---|---|---|---|
Plot 1 | Super-intensive, Conventional | Nov | 23.80 | 2.692 |
Dec | 63.89 | 3.272 | ||
Jan | 70.69 | 2.751 | ||
Feb | 58.71 | 2.989 | ||
Mar | 73.03 | 3.664 | ||
Apr | 62.20 | 3.458 | ||
May | 46.62 | 3.153 | ||
Jul | 70.15 | 4.058 | ||
Aug | 53.49 | 3.229 | ||
Sept | 58.37 | 3.363 | ||
Oct | 13.09 | 2.537 | ||
Plot 2 | Super-intensive, Ecological | Nov | 14.66 | 2.823 |
Dec | 27.22 | 3.678 | ||
Jan | 93.57 | 3.678 | ||
Feb | 86.00 | 3.455 | ||
Mar | 58.50 | 3.026 | ||
Apr | 40.83 | 2.935 | ||
May | 63.14 | 3.237 | ||
Jun | 13.85 | 2.342 | ||
Jul | 18.60 | 2.537 | ||
Aug | 14.94 | 2.508 | ||
Sept | 33.09 | 2.970 | ||
Oct | 21.32 | 2.808 | ||
Plot 3 | Intensive, Ecological | Nov | 26.76 | 2.687 |
Dec | 25.18 | 2.382 | ||
Jan | 54.94 | 2.974 | ||
Feb | 76.15 | 3.443 | ||
Mar | 89.83 | 3.387 | ||
Apr | 73.98 | 3.243 | ||
May | 71.98 | 3.147 | ||
Jun | 13.72 | 2.552 | ||
Jul | 34.16 | 2.870 | ||
Aug | 17.75 | 2.662 | ||
Sept | 21.85 | 2.968 | ||
Oct | 14.53 | 2.406 |
References
- FAOSTAT. Food and Agriculture Organization Statitical Databases. Available online: http://www.fao.org/faostat/en/#data (accessed on 12 December 2020).
- Willer, H.; Lernoud, J. The World of Organic Agriculture, 1st ed.; FiBL, IFOAM: Rheinbreitbach, Germany, 2020; p. 333. [Google Scholar]
- UPA (Unión de Pequeños Agriculturoes). Comprometidos Con El Futuro del Olivar en España La tierra del Agricultor y Ganadero; UPA: Madrid, Spain, 2018; p. 34. [Google Scholar]
- MAPAMA (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente), 2019. Superficies y Producciones Anuales de Cultivos. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 23 May 2020).
- Díez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, M.d.M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.d.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive-derived biomass as a source of energy and chemicals. Biofuels Bioprod. Biorefining 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; Garcia, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [Green Version]
- Şahin, S.; Elhussein, E.; Bilgin, M.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. J. Food Process. Preserv. 2018, 42, e13604. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Huang, D.; Pei, D.; Wei, J.; Di, D. Isolation and purification of oleuropein from olive leaves using boric acid affinity resin and a novel solvent system. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126145. [Google Scholar] [CrossRef]
- Martínez-Navarro, E.M.; Cebrián-Tarancón, C.; Moratalla-López, N.; Lorenzo, C.; Alonso, G.L.; Salinas, R.M. Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products. J. Sci. Food Agric. 2021, 101, 1447–1453. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Int. Food Res. J. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Alcantara, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Režek Jambrak, A.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Cavaca, L.A.S.; López-Coca, I.M.; Silvero, G.; Afonso, C.A.M. Chapter 5—The olive-tree leaves as a source of high-added value molecules: Oleuropein. In Studies in Natural Products Chemistry; Atta Ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 64, pp. 131–180. [Google Scholar]
- López de las Hazas, M.-C.; Piñol, C.; Macià, A.; Romero, M.-P.; Pedret, A.; Solà, R.; Rubió, L.; Motilva, M.-J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods 2016, 22, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Román, R.; Amoros, J.; Pérez-de-los-Reyes, C.; Navarro, F.J.; Bravo, S. Estudio del contenido de elementos mayoritarios y traza en hojas de olivo. Olivae 2014, 119, 1–7. [Google Scholar] [CrossRef]
- Martínez-Navarro, M.E.; Cebrián-Tarancón, C.; Oliva, J.; Salinas, M.R.; Alonso, G.L. Oleuropein Degradation Kinetics in Olive Leaf and Its Aqueous Extracts. Antioxidants 2021, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- SIAR. Servicio Inegral de Asesoramiento al Regante de Castilla-La Mancha. Available online: http://crea.uclm.es/siar/ (accessed on 19 September 2020).
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors Affecting the Contents of Iridoid Oleuropein in Olive Leaves (Olea europaea L.). J. Agric. Food Chem. 2006, 54, 434–440. [Google Scholar] [CrossRef]
- Ortega-García, F.; Peragón, J. Phenol Metabolism in the Leaves of the Olive Tree (Olea europaea L.) cv. Picual, Verdial, Arbequina, and Frantoio during Ripening. J. Agric. Food Chem. 2010, 58, 12440–12448. [Google Scholar] [CrossRef]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit. J. Sci. Food Agric. 2017, 97, 1725–1732. [Google Scholar] [CrossRef] [Green Version]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986, 34, 823–826. [Google Scholar] [CrossRef]
- Funes, L.; Fernández-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Micol, V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem. 2009, 117, 589–598. [Google Scholar] [CrossRef]
- Ortega-García, F.; Peragón, J. HPLC analysis of oleuropein, hydroxytyrosol, and tyrosol in stems and roots of Olea europaea L. cv. Picual during ripening. J. Sci. Food Agric. 2010, 90, 2295–2300. [Google Scholar] [CrossRef]
- Dias, M.C.; Figueiredo, C.; Pinto, D.C.G.A.; Freitas, H.; Santos, C.; Silva, A.M.S. Heat shock and UV-B episodes modulate olive leaves lipophilic and phenolic metabolite profiles. Ind. Crops Prod. 2019, 133, 269–275. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Hammami, M.; Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 2020, 92, 104112. [Google Scholar] [CrossRef]
Plot | Location | Crop Management | Plantation Framework |
---|---|---|---|
P1 | L1 1 | Conventional | Super-intensive |
P2 | L2 2 | Ecological | Super-intensive |
P3 | Ecological | Intensive |
Oleuropein | Verbascoside | Hydroxytyrosol | Flavonoids | |
---|---|---|---|---|
Conventional or ecological systems Location | 1.58 | 15.21 **** | 8.88 *** | 0.04 |
Super-intensive or intensive systems | 0.08 | 0.18 | 2.37 | 7.07 ** |
Plot | Oleuropein | Verbascoside | Hydroxytyrosol | |
---|---|---|---|---|
Verbascoside | 1 | 0.5687 | ||
2 | 0.9407 **** | |||
3 | 0.8513 **** | |||
1, 2, 3 | 0.5985 **** | |||
Hydroxytyrosol | 1 | 0.2491 | −0.3744 | |
2 | 0.0557 | 0.2785 | ||
3 | −0.4759 | −0.7235 *** | ||
1, 2, 3 | −0.169 | −0.5153 *** | ||
Flavonoids | 1 | −0.1946 | 0.6001 | 0.3195 |
2 | −0.1924 | −0.0786 | 0.1975 | |
3 | −0.4112 | −0.4921 | 0.1877 | |
1, 2, 3 | −0.2022 | −0.1283 | 0.1627 |
Plot | Oleuropein | Verbascoside | Hydroxytyrosol | Flavonoids | |
---|---|---|---|---|---|
TM | 1 | 0.0363 | 0.4117 | −0.8035 *** | −0.3141 |
2 | −0.2573 | −0.3777 | −0.5751 * | 0.0064 | |
3 | −0.1539 | −0.2988 | 0.2056 | 0.2047 | |
1, 2, 3 | −0.1266 | 0.0983 | −0.3760 ** | 0.0053 | |
tm | 1 | −0.1855 | 0.2379 | −0.6504 ** | 0.0865 |
2 | −0.5169 * | −0.6242 ** | −0.5250 * | 0.2378 | |
3 | −0.5087 * | −0.6116 ** | 0.3799 | 0.4675 | |
1, 2, 3 | −0.4183 ** | −0.1522 | −0.2073 | 0.1894 | |
RH | 1 | −0.4098 | −0.6050 ** | 0.6165 ** | 0.4807 |
2 | −0.1540 | −0.1322 | 0.1585 | 0.3559 | |
3 | −0.5338 * | −0.4096 | 0.0063 | 0.3887 | |
1, 2, 3 | −0.3227 * | −0.2879 * | 0.2403 | 0.3687 ** | |
SH | 1 | 0.4230 | 0.7784 *** | −0.6414 ** | −0.5081 |
2 | −0.1716 | −0.2796 | −0.6002 ** | −0.3587 | |
3 | 0.0898 | −0.1722 | 0.2280 | −0.0669 | |
1, 2, 3 | 0.0811 | 0.2766 | −0.3024 * | −0.2333 | |
RF | 1 | 0.0602 | −0.1036 | 0.3862 | 0.2073 |
2 | −0.3281 | −0.3298 | −0.3470 | 0.2370 | |
3 | −0.3392 | −0.3640 | 0.2258 | 0.6548 ** | |
1, 2, 3 | −0.1721 | −0.1267 | 0.1889 | 0.3040 * | |
ΔT | 1 | 0.3287 | 0.3949 | −0.5062 | −0.6827 ** |
2 | 0.1677 | 0.0786 | −0.4097 | −0.2842 | |
3 | 0.3487 | 0.2090 | −0.0927 | −0.2035 | |
1, 2, 3 | 0.3125 * | 0.3677 ** | −0.3961** | −0.2330 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Navarro, M.E.; Cebrián-Tarancón, C.; Salinas, M.R.; Alonso, G.L. Evolution of Oleuropein and Other Bioactive Compounds in Arbequina Olive Leaves under Different Agronomic Conditions. Horticulturae 2022, 8, 530. https://doi.org/10.3390/horticulturae8060530
Martínez-Navarro ME, Cebrián-Tarancón C, Salinas MR, Alonso GL. Evolution of Oleuropein and Other Bioactive Compounds in Arbequina Olive Leaves under Different Agronomic Conditions. Horticulturae. 2022; 8(6):530. https://doi.org/10.3390/horticulturae8060530
Chicago/Turabian StyleMartínez-Navarro, María Esther, Cristina Cebrián-Tarancón, María Rosario Salinas, and Gonzalo L. Alonso. 2022. "Evolution of Oleuropein and Other Bioactive Compounds in Arbequina Olive Leaves under Different Agronomic Conditions" Horticulturae 8, no. 6: 530. https://doi.org/10.3390/horticulturae8060530
APA StyleMartínez-Navarro, M. E., Cebrián-Tarancón, C., Salinas, M. R., & Alonso, G. L. (2022). Evolution of Oleuropein and Other Bioactive Compounds in Arbequina Olive Leaves under Different Agronomic Conditions. Horticulturae, 8(6), 530. https://doi.org/10.3390/horticulturae8060530