Effects of Biodegradable Liquid Film on the Soil and Fruit Quality of Vitis Franco-american L. Hutai-8 Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapevine Field Conditions
2.2. Treatment and Sampling
2.3. Soil Analyses
2.3.1. Total Nutrient Content
2.3.2. Available Nutrient Content
2.3.3. Total Carbon and Organic Matter Content
2.3.4. Soil pH
2.4. Berry Analyses
2.4.1. Physicochemical Indexes of Grape Berries
2.4.2. Polyphenols Content in Grape Skins
2.5. Statistical Analysis
3. Results
3.1. Soil Nutrients
3.1.1. Total Nutrients
3.1.2. Available Nutrients
3.1.3. Total Carbon and Organic Matter Content
3.1.4. Soil pH
3.1.5. Principal Component Analysis
3.2. Quality of Berries
3.2.1. Physicochemical Indexes of Grape Berries
3.2.2. Polyphenols in Grape Skin
3.2.3. Principal Component Analysis
3.3. Correlation Analysis between Soil Properties and Fruit Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xue, T.; Han, X.; Guan, L.; Zhang, L.; Wang, H.; Li, H. Kaolin Particle Film Affects Grapevine Berry Quality in cv. Meili in Humid Climate Conditions. HortScience 2020, 55, 1987–2000. [Google Scholar] [CrossRef]
- Rui, W. Relationship between Soil Quality with Grape Growth and Composition at the Eastern Foot of Helan Mountain Wine Production Regions; Northwest A&F University: Yangling, China, 2016. [Google Scholar]
- Luan, L.; Fang, Y.; Song, S.; Zhang, Z.; Wei, Q.; Cheng, B.; Qu, Y.; Zhou, Y. Soil microbe in vineyards with different tree ages and different soil depths. J. Northwest For. Univ. 2009, 24, 37–41. [Google Scholar]
- Wang, X.; Liu, F.; Shi, X.; Wang, X.; Ji, X.; Wang, Z.; Wang, B.; Zheng, X.; Wang, H. Effects of organic fertilizers on root growth and soil nutrition of grape. Acta Agric. Boreali-Sin. 2019, 34, 177–184. [Google Scholar]
- Wang, X.; Liu, F.; Shi, X.; Wang, X.; Ji, X.; Wang, Z.; Wang, B.; Zheng, X.; Wang, H. Effects of grass cover in vineyard on the vine root growth and soil nutrition. Acta Agric. Boreali-Sin. 2018, 33, 230–237. [Google Scholar]
- Ma, W.; Tong, Y. The dynamics of biomass and roots distribution in grape tree. Acta Agric. Boreali-Occident. Sin. 2013, 22, 133–137. [Google Scholar]
- Li, Y.; Liu, Y.; Wu, G. Observation of growth processes of apple tree’s root systems in the irrigated areas of Ningxia. Acta Hortic. Sin. 1993, 20, 394–396. [Google Scholar]
- Shi, Y.; Liu, Y.; Liang, Y. Growth dynamics of peach root. J. Fruit Sci. 1991, 8, 225–228. [Google Scholar]
- Huang, Z.; Luo, X. Studies on the root habits of Feicheng peach. J. Shandong Agric. Univ. 1986, 17, 27–34. [Google Scholar]
- Wu, D.; Wu, Z.; Yao, N. Effects of plastic film mulching on reducing fruit drop and increasing yield of hairy grapes. Deciduous Fruits 2005, 37, 51–52. [Google Scholar] [CrossRef]
- Hou, T.; Yan, P.; Pang, Q.; Ma, T.; Qi, Y.; Wang, R. Effects of intra-row coverage on orchard soil features and wine grape yield and quality. J. Henan Agric. Univ. 2019, 53, 869–875. [Google Scholar] [CrossRef]
- Baiamonte, G.; Minacapilli, M.; Novara, A.; Gristina, L. Time Scale Effects and Interactions of Rainfall Erosivity and Cover Management Factors on Vineyard Soil Loss Erosion in the Semi-Arid Area of Southern Sicily. Water 2019, 11, 978. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; García-Ruiz, R.; Guzmán, G.; Vicente-Vicente, J.L.; Van Wesemael, B.; Gómez, J.A. Temporal stability and patterns of runoff and runon with different cover crops in an olive orchard (SW Andalusia, Spain). CATENA 2016, 147, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Novara, A.; Cerdà, A.; Gristina, L. Sustainable vineyard floor management: An equilibrium between water consumption and soil conservation. Curr. Opin. Environ. Sci. Health 2018, 5, 33–37. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Peregrina, F.; Pérez-Álvarez, E.P.; Colina, M.; García-Escudero, E. Cover crops and tillage influence soil organic matter and nitrogen availability in a semi-arid vineyard. Arch. Agron. Soil Sci. 2012, 58, SS95–SS102. [Google Scholar] [CrossRef]
- García-González, I.; Hontoria, C.; Gabriel, J.L.; Alonso-Ayuso, M.; Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Capó-Bauçà, S.; Marqués, A.; Llopis-Vidal, N.; Bota, J.; Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 2019, 127, 285–291. [Google Scholar] [CrossRef]
- Xi, Z.M.; Yue, T.X.; Zhang, J.; Cheng, J.M.; Li, H. Relationship Between Soil Biological Characteristics and Nutrient Content Under Intercropping System of Vineyard in Northwestern Semiarid Area. Sci. Agric. Sin. 2011, 44, 2310–2317. [Google Scholar]
- Zhang, Y.; Xie, Y.; Hao, M.; She, X. Effects of different patterns surface mulching on soil properties and fruit trees growth and yild in an apple orchard. Chin. J. Appl. Ecol. 2010, 21, 279–286. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Lin, X.; Wang, J. Influence of seed soaking with uniconazole on growth and root physiological characteristics of adzuki bean under drought stress. Acta Bot. Boreali-Occident. Sin. 2017, 37, 144–153. [Google Scholar]
- Dinakar, N.; Nagajyothi, P.C.; Suresh, S.; Udaykiran, Y.; Damodharam, T. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J. Environ. Sci. 2008, 20, 199–206. [Google Scholar] [CrossRef]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of Cover Crops on Grapevines, Yield, Juice Composition, Soil Microbial Ecology, and Gopher Activity. Am. J. Enol. Vitic. 2005, 56, 19. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, D.; Yan, S.; Zhang, S.; Hou, G. Effects of mulching on soil microorganism, pear tree growth and fruit quality in pear orchard. China Fruits 2020, 6, 46–49. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Li, J.; Wang, W.; Zhao, M.; Sun, D. The effects of different mulching way on soil water thermal characteristics in pear orchard in the arid area. Acta Ecol. Sin. 2014, 34, 746–754. [Google Scholar]
- Sun, W.; Zhang, K.; Liu, X.; Zhao, M.; Ma, M.; Wang, F. Influence of plastic film-mulching on ridge and rain harvesting on root distribution characteristics of apples and soil properties in dryland orchards of longdong areas. Acta Agric. Boreali-Occident. Sin. 2012, 21, 100–105. [Google Scholar]
- Luo, L. Influence of Different Mulching Models on Soil Properties and Fruit Quality in Sheltered Vineyard; Sichuan Agriculture University: Sichuan, China, 2019. [Google Scholar]
- Liu, S.; Wang, Z.; Zhang, J. Effects of within-row mulching on soil microsites in vineyard and fruit quality. J. Northwest A F Univ. (Nat. Sci. Ed.) 2019, 47, 73–79+88. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, P. Effects of Different Mulching Measures on Soil Nutrition and the Quality Development and Yield in Walnuts Orchard. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2020, 40, 54–60. [Google Scholar]
- Luo, C.L.; Zhang, X.F.; Duan, H.X.; Mburu, D.M.; Ren, H.X.; Kavagi, L.; Dai, R.Z.; Xiong, Y.C. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 2020, 738, 139808. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhong, Q.; Wang, J.; Pan, H.; Liu, W. Influence of Different Mulching Materials on Soil Microbe and Grape Growth in Rain-Shelter Vineyard. J. Nucl. Agric. Sci. 2021, 35, 471–480. [Google Scholar]
- Zhang, Y.; Zhao, W.; Zhuang, Y.; Le, Z. Analysis of grape growth and meteorological condition inside and outside the plastic greenhouse. North Hortic. 2018, 20, 62–66. [Google Scholar]
- Yin, X.; Liu, X.; Dong, T.; Niu, J.; Sun, W.; Ma, M. Effects of different mulching materials on soil anf near-surface environment and of apple orchard tree growth. Chin. J. Eco-Agric. 2018, 26, 83–95. [Google Scholar] [CrossRef]
- Pan, Y.; Fan, J.; Hao, M.; Chen, X. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau. J. Plant. Nutr. Fertil. 2016, 22, 1558–1567. [Google Scholar]
- Zhu, L. Effects of Different Management Practices on Soil Carbon and Nitrogen and Related Microbial Processes in Pain-Fed Farmlands; Northwest A&F University: Yangling, China, 2018. [Google Scholar]
- Lamptey, S.; Li, L.; Xie, J.; Coulter, J.A. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China. Soil Tillage Res. 2020, 196, 104479. [Google Scholar] [CrossRef]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Effects of Coloured Plastic Mulch on Soil Hydrothermal Characteristics, Growth and Water Productivity of Rainfed Soybean. Irrig Drain. 2020, 69, 483–494. [Google Scholar] [CrossRef]
- Berger, S.; Kim, Y.; Kettering, J.; Gebauer, G. Plastic mulching in agriculture—Friend or foe of N2O emissions? Agric. Ecosyst. Environ. 2013, 167, 43–51. [Google Scholar] [CrossRef]
- Lee, O.N.; Park, H.Y. Effects of different colored film mulches on the growth and bolting time of radish (Raphanus sativus L.). Sci. Hortic. 2020, 266, 109271. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J. Plastics: Modifying the Microclimate for the Production of Vegetable Crops. HortTechnology 2005, 15, 477–481. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Tajarudin, H.A.; Paridah, M.T.; Rizal, S. Microbial-induced CaCO3 filled seaweed-based film for green plasticulture application. J. Clean. Prod. 2018, 199, 150–163. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Gonçalves, J.M.; Shi, H.; Tian, T.; Chen, N. Effects of residual plastic-film mulch on field corn growth and productivity. Sci. Total Environ. 2020, 729, 138901. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Thompson Richard, C.; Olsen, Y.; Mitchell Richard, P.; Davis, A.; Rowland Steven, J.; John Anthony, W.G.; McGonigle, D.; Russell Andrea, E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Sarker, A.; Deepo, D.M.; Nandi, R.; Rana, J.; Islam, S.; Rahman, S.; Hossain, M.N.; Islam, M.S.; Baroi, A.; Kim, J.E. A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective. Sci. Total Environ. 2020, 733, 139296. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.; Wang, E.; Zhou, T.; Xin, P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Dong, H.; Liu, T.; Li, Y.; Liu, H.; Wang, D. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2013, 29, 91–99. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Lira-Saldivar, R.H.; Valdez-Aguilar, L.A.; Lozano-Del Río, J. Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agric. Scand. Sect. B–Soil Plant. Sci. 2011, 61, 365–371. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, S.; Kang, S.; Yang, H.; Qin, S. Simulation of water balance in a maize field under film-mulching drip irrigation. Agric. Water Manag. 2018, 210, 252–260. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Man, L. Bamboo-derived carboxymethyl cellulose for liquid film as renewable and biodegradable agriculture mulching. Int. J. Biol. Macromol. 2021, 192, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Touchaleaume, F.; Martin-Closas, L.; Angellier-Coussy, H.; Chevillard, A.; Cesar, G.; Gontard, N.; Gastaldi, E. Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 2016, 144, 433–439. [Google Scholar] [CrossRef]
- Wang, Y. The Functional Plastic Film; China Machine Press: Beijing, China, 2005; p. 262. [Google Scholar]
- Wang, Z.; Wu, Q.; Fan, B.; Zheng, X.; Zhang, J.; Li, W.; Guo, L. Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield. Agric. Water Manag. 2019, 213, 477–485. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Cheng, M.; Zhang, F.; Wang, X.; Fan, J.; Wu, L.; Fang, D.; Zou, H.; Xiang, Y. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Sci. Hortic. 2019, 243, 357–366. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.; Cirujeda, A.; Martínez, Y. Economic Evaluation of Biodegradable Plastic Films and Paper Mulches Used in Open-Air Grown Pepper (Capsicum annum L.) Crop. Agronomy 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Li, G.; Ning, T.-Y.; Zhang, Z.-M.; Mi, Q.-H.; Lal, R. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric. Water Manag. 2018, 208, 214–223. [Google Scholar] [CrossRef]
- Gu, X.-B.; Li, Y.-N.; Du, Y.-D. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Zhao, C.X.; He, W.Q.; Liu, S.; Yan, C.R.; Cao, S.L. Degradation of Biodegradable Plastic Mulch Film and Its Effect on the Yield of Cotton in Xinjiang Region, China. J. Agro-Environ. Sci. 2011, 30, 1616–1621. [Google Scholar]
- Chen, N.; Li, X.; Shi, H.; Hu, Q.; Zhang, Y.; Leng, X. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 2021, 776, 145970. [Google Scholar] [CrossRef]
- Lan, Y.; Shen, L.; Li, R. Effects of Different Film Mulching on Soil Temperature and Moisture. Chin. Agric. Sci. Bull. 2013, 29, 120–126. [Google Scholar]
- Wang, H.; Ma, X.; Zhang, J. The Application of Humic acid in Soil and Fertilizer. Heilomgjiang Sci. 2010, 1, 59–62. [Google Scholar]
- Yang, Q.; Han, J. Progress in application of and research on chemical mulch technique. J. Henan Agric. Univ. 2003, 37, 134–137. [Google Scholar] [CrossRef]
- Wang, X.; Xu, G.B.; Ren, Z.G.; Zhang, Z.J.; Jian, Y.F.; Zhang, Y.M. Effects of environment-friendly degradable films on corn growth and soil environment. Chin. J. Eco-Agric. 2007, 15, 78–81. [Google Scholar]
- Xue, T.T.; Han, X.; Zhang, H.J.; Li, H. Study on wind erosion control of grapes by different methods in wind tunnel experiments. J. Sediment. Res. 2018, 43, 58–64. [Google Scholar] [CrossRef]
- Xi, Z.-M.; Zhang, Z.-W.; Cheng, Y.-F.; Li, H. The Effect of Vineyard Cover Crop on Main Monomeric Phenols of Grape Berry and Wine in Vitis viniferal L. cv. Cabernet Sauvignon. Agric. Sci. China 2010, 9, 440–448. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D. Effects of different organic coverage thickness on the soil physicochemical properties and fruit characters of blueberry. Non-Wood For. Res. 2021, 39, 24–32. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Q.; Ye, Y.; Wei, N. Effects of humic acid on soil nutrients and microbial community stucture of cucumber with different continuous cropping years in greenhouse. J. Henan Agric. Sci. 2022, 51, 65–74. [Google Scholar]
- Zhang, S.; Lu, J.; Zhu, Y.; Fang, Y.; Cong, R.; Li, X.; Ren, T. Rapeseed as a previous crop reduces rice N fertilizer input by improving soil fertility. Field Crops Res. 2022, 281, 108487. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Zou, W.; Wu, S.; Huang, Y.; An, H. Contrastive Analysis of Soil and Tree Mineral Nutrients Level of Kiwifruit Orchard with Different Yields. Mol. Plant. Breed. 2021, 21, 1–13. [Google Scholar]
- He, H.L.; Jun, S.; Zhang, X.K. Analysis of total organic carbon in soil by TOC analyzer. Anal. Instrum. 2014, 5, 59–61. [Google Scholar]
- Han, W. Determination of organic carbon in soil by total organic carbon analyzer. Coal Chem. Ind. 2017, 40, 72–74. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Oladotun, O.R.; Gbadebo, A.M.; Alegbeleye, W.O.; Hassan, T.M. Nutrient enhancement potentials of moringa (Moringa oleifera), neem (Azadirachta indica), and pawpaw (Carica papaya) fortified composts in contaminated soils. Environ. Monit. Assess. 2022, 194, 237. [Google Scholar] [CrossRef]
- Meng, J.F.; Fang, Y.L.; Qin, M.Y.; Zhuang, X.F.; Zhang, Z.W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-G.; Tanner, G.; Larkin, P. The DMACA–HCl Protocol and the Threshold Proanthocyanidin Content for Bloat Safety in Forage Legumes. J. Sci. Food Agric. 1996, 70, 89–101. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Sarneckis, C.J.; Dambergs, B.; Jones, P.; Mercurio, M.; Herderich, M.; Smith, P. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine Res. 2008, 12, 39–49. [Google Scholar] [CrossRef]
- Zhang, Z. Effects of Application of Humic Acid Fertilizer Combined with Straw on Grape Growth and Soil Fertility; Huazhong Agricultural University: Wuhan, China, 2017. [Google Scholar]
- Cui, Y. Effects of Soil Root-Zone Part Heating on Red Globe Grape Growth and Development Under Protect Cultivation; Ningxia University: Yingchuan, China, 2016. [Google Scholar]
- Wang, Y.; Huang, Q.; Liu, C.; Ding, Y.; Liu, L.; Tian, Y.; Wu, X.; Li, H.; Awasthi, M.K.; Zhao, Z. Mulching practices alter soil microbial functional diversity and benefit to soil quality in orchards on the Loess Plateau. J. Environ. Manag. 2020, 271, 110985. [Google Scholar] [CrossRef]
- Zhao, D. Study of the Ecological Effects and Physiological Response in Different Groundcover Pear Tree; Chinese Academy of Agricultural Sciences: Beijing, China, 2013. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China. Geoderma 2009, 149, 318–324. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Holman, J.D.; Schlegel, A.J.; Tatarko, J.; Shaver, T.M. Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Sci. Soc. Am. J. 2013, 77, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Francisco, O.; Judyson, O.; Francisco, X. Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard. Rev. Bras. Ciência Solo 2016, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xi, Q.; Li, Y. Reaserch progress on suger in grape fruit. Sino-Overseas Grapevine Wine 2005, 6, 26–30. [Google Scholar]
- Zheng, Q. Effects of Exogenous Plant. Growth Regulators on Qulity and the Sugar and Acid Accumulation Rule during Development of “Red Globe” Grape Berries; Shihezi University: Shihezi, China, 2009. [Google Scholar]
- Nogales-Bueno, J.; Hernández-Hierro, J.M.; Rodríguez-Pulido, F.J.; Heredia, F.J. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: A preliminary approach. Food Chem. 2014, 152, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Bo, L. Study on the Rules of the Flavor Components Changes of Wine Grape; Shandong Agricultural University: Tai’an, China, 2005. [Google Scholar]
- Li, H.; Wang, Y.; Meng, J.; Wang, H.; You, J.; Huo, X.; Wang, Y. The Effect of Climate Change on the Climatic Zoning for Wine Grapes in China. Acta Horticutureae Sin. 2009, 36, 313–320. [Google Scholar] [CrossRef]
- Chen, L.; Bai, R.; Tang, H.; Che, J.; Huo, Y.; Tian, Y.; Sun, H.; Wang, Z.; Li, Y. Effects of different color films covering on photosynthetic characteristics and fruit quality of blueberry ubder full illumination. Plant. Physiol. J. 2020, 56, 2007–2015. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Wang, X. Effects of different vineyard mulching on fruit quality of Red Globe. Sino-Overseas Grapevine Wine 2010, 3, 26–28. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Yam, S.; Zhao, D.; Cheng, C. Effects of different patterns surface mulching on fruit quality and mineral elements in apple orchard. China Fruits 2019, 4, 16–20+117. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Dou, Y.; Shi, M.; Guo, H. Comprehensive evaluation of effects of different rain covering measures on quality of yuluxiang pear under dry farming. J. Fruit Resour. 2020, 1, 35–40. [Google Scholar] [CrossRef]
- Mills, L.J.; Ferguson, J.C.; Keller, M. Cold-Hardiness Evaluation of Grapevine Buds and Cane Tissues. Am. J. Enol. Vitic. 2006, 57, 194. [Google Scholar]
- Li, W.; Sun, P.; Wang, Z. Effects of different soil condition on physiology and fruit quality of wine grapes. J. Fruit Sci. 2012, 29, 837–842. [Google Scholar] [CrossRef]
- Li, J. Evaluation Index for Grape Quality. Sino-Overseas Grapevine Wine 1999, 1, 56–59. [Google Scholar]
- Zhang, H. Study on the Quality of Red Wine Grape in Shaanxi Guanzhong Plain and Weibei Dryiand Ecological Area; Northwest A&F University: Yangling, China, 2018. [Google Scholar]
- Shan, J.; Liu, X.; Suo, H.; An, K.; Luo, H.; Wang, L.; Li, X. Plant anthocyanins: A review. J. South. Agric. 2019, 50, 278–285. [Google Scholar]
- Chen, Y.; Han, W.; Zhang, T.; Xie, Y. Research Progress on Grape Polyphenol. Farm. Prod. Process. 2019, 19, 83–86. [Google Scholar]
- Ting, G. Studies on the Processes of Extraction and Purification of Grape Polyphenol and its Antioxidation Capacity; Central South University: Changsha, China, 2013. [Google Scholar]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of Maturity and Vine Water Status on Grape Skin and Wine Flavonoids. Am. J. Enol. Vitic. 2002, 53, 268. [Google Scholar]
- Yuan, H.; Wang, X.; Chen, T.; Lei, X.; Zhao, P.; Tian, C. Research progress on red wine astringency. Food Ferment. Ind. 2019, 45, 269–274. [Google Scholar] [CrossRef]
- Tan, L. Relationship between Condensed Tannins Properties and Sensory Astringency of Wine; Northwest A&F University: Yangling, China, 2019. [Google Scholar]
- Federico Casassa, L.; Beaver, C.W.; Mireles, M.S.; Harbertson, J.F. Effect of extended maceration and ethanol concentration on the extraction and evolution of phenolics, colour components and sensory attributes of Merlot wines. Aust. J. Grape Wine Res. 2013, 19, 25–39. [Google Scholar] [CrossRef]
- Gambelli, L.; Santaroni, G.P. Polyphenols content in some Italian red wines of different geographical origins. J. Food Compos. Anal. 2004, 17, 613–618. [Google Scholar] [CrossRef]
- Dong, L.; Wu, S.; Lai, X.; Wang, H.; Mao, L.; Xu, J.; Mou, B. Effects of different reflective films on quality of grape fruit in greenhouse. J. Zhejiang Agric. Sci. 2020, 61, 1282–1285. [Google Scholar] [CrossRef]
- Miki, T.; Ushio, M.; Fukui, S.; Kondoh, M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proc. Natl. Acad. Sci. USA 2010, 107, 14251–14256. [Google Scholar] [CrossRef] [Green Version]
- Miao, C. Effects of the Yeast Assimilable Nitrogen on Alcohol Fermentation and Quality of Wine; Northwest A&F University: Xianyang, China, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Yan, Y.; Han, X.; Wang, Y.; Li, R.; Gao, F.; Zhang, L.; Wei, R.; Li, H.; Wang, H. Effects of Biodegradable Liquid Film on the Soil and Fruit Quality of Vitis Franco-american L. Hutai-8 Berries. Horticulturae 2022, 8, 418. https://doi.org/10.3390/horticulturae8050418
Duan X, Yan Y, Han X, Wang Y, Li R, Gao F, Zhang L, Wei R, Li H, Wang H. Effects of Biodegradable Liquid Film on the Soil and Fruit Quality of Vitis Franco-american L. Hutai-8 Berries. Horticulturae. 2022; 8(5):418. https://doi.org/10.3390/horticulturae8050418
Chicago/Turabian StyleDuan, Xinyao, Yasai Yan, Xing Han, Ying Wang, Rihui Li, Feifei Gao, Liang Zhang, Ruteng Wei, Hua Li, and Hua Wang. 2022. "Effects of Biodegradable Liquid Film on the Soil and Fruit Quality of Vitis Franco-american L. Hutai-8 Berries" Horticulturae 8, no. 5: 418. https://doi.org/10.3390/horticulturae8050418
APA StyleDuan, X., Yan, Y., Han, X., Wang, Y., Li, R., Gao, F., Zhang, L., Wei, R., Li, H., & Wang, H. (2022). Effects of Biodegradable Liquid Film on the Soil and Fruit Quality of Vitis Franco-american L. Hutai-8 Berries. Horticulturae, 8(5), 418. https://doi.org/10.3390/horticulturae8050418