Development and Cross-Species Transferability of Novel Genomic-SSR Markers and Their Utility in Hybrid Identification and Trait Association Analysis in Chinese Cherry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. SSR Identification, Primer Design, and Selection
2.3. PCR Amplification and Gel Electrophoresis
2.4. Data Analysis
2.5. Hybrids Identification
2.6. Association Analysis
3. Results
3.1. Development of SSR Markers
3.2. Characteristics of SSR Markers
3.2.1. Transferability in Chinese Cherry and Relatives
3.2.2. Specificity in Chinese Cherry
3.2.3. Polymorphism in Chinese Cherry
3.3. Application of SSR Markers
3.3.1. Hybrid Identification
3.3.2. Trait-Marker Association Analysis
4. Discussion
4.1. Efficient Development of SSR Markers
4.2. Efficient Application of Novel Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yü, D. Taxonomy of Fruit Trees in China; Agricultural Press: Beijing, China, 1979. [Google Scholar]
- Wang, Y.; Du, H.; Zhang, J.; Chen, T.; Chen, Q.; Tang, H.; Wang, X. Ploidy level of Chinese cherry (Cerasus pseudocerasus Lindl.) and comparative study on karyotypes with four Cerasus species. Sci. Hortic. 2018, 232, 46–51. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Chen, T.; Chen, Q.; Wang, L.; Liu, Z.; Wang, H.; Xie, R.; He, W.; Li, M.; et al. Evolution of Rosaceae plastomes highlights unique Cerasus diversification and independent origins of fruiting cherry. Front. Plant Sci. 2021, 12, 736053. [Google Scholar] [CrossRef]
- Yü, D.; Li, C. Flora of China; Science Press: Beijing, China, 1986. [Google Scholar]
- Chen, T.; Li, L.; Zhang, J.; Huang, Z.; Zhang, H.; Liu, Y.; Chen, Q.; Tang, H.; Wang, X. Investigation, collection and preliminary evaluation of genetic resources of Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. J. Fruit Sci. 2016, 33, 917–933. [Google Scholar]
- Liu, Y.; Chen, T.; Zhang, J.; Wang, J.; Wang, X. Genetic diversity analysis of Chinese cherry landraces (Prunus pseudocerasus) based on phenotypic traits. Acta Hortic. Sinica 2016, 43, 2119–2132. [Google Scholar]
- Huang, X.; Wang, X.; Chen, T.; Chen, J.; Tang, H. Research progress of germplasm diversity in Chinese cherry (Cerasus pseudocerasus). J. Fruit Sci. 2013, 30, 470–479. [Google Scholar]
- Wang, Y.; Wang, H.; Zhang, J.; Liu, Z.; Chen, Q.; He, W.; Yang, S.; Lin, Y.; Zhang, Y.; Li, M.; et al. Survey on intra-specific crossing and F1 seedling cultivation in seven combinations of Chinese cherry. Hort. J. 2022. [Google Scholar] [CrossRef]
- Du, H.; Wang, X.; Chen, T.; Zhang, H.; Du, T. Preliminary study on intraspecific hybridization of Cerasus pseudocerasus and interspecific hybridization with C. avium. Guihaia 2015, 35, 227–230. [Google Scholar]
- Calle, A.; Grimplet, J.; Le Dantec, L.; Wünsch, A. Identification and characterization of DAMs mutations associated with early blooming in sweet cherry, and validation of DNA-based markers for selection. Front. Plant Sci. 2021, 12, 621491. [Google Scholar] [CrossRef]
- Wu, B.; Shen, F.; Wang, X.; Zheng, W.; Xiao, C.; Deng, Y.; Wang, T.; Yu, H.; Zhou, Q.; Wang, Y.; et al. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. Plant Biotechnol. J. 2021, 19, 1022–1037. [Google Scholar] [CrossRef]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights into deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef]
- Hasanbegovic, J.; Hadziabulic, S.; Kurtovic, M.; Gasi, F.; Lazovic, B.; Dorbic, B.; Skender, A. Genetic characterization of almond (Prunus amygdalus L) using microsatellite markers in the area of Adriatic Sea. Turk. J. Agric. For. 2021, 45, 797–806. [Google Scholar] [CrossRef]
- Grover, A.; Sharma, P.C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 2016, 36, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, T.; Cheng, C.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K.; et al. 15 years of GDR: New data and functionality in the genome database for Rosaceae. Nucleic Acids Res. 2019, 47, D1137–D1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peace, C.P. DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Hortic Res. 2017, 4, 17006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranzana, M.J.; Decroocq, V.; Dirlewanger, E.; Eduardo, I.; Gao, Z.S.; Gasic, K.; Iezzoni, A.; Jung, S.; Peace, C.; Prieto, H.; et al. Prunus genetics and applications after de novo genome sequencing: Achievements and prospects. Hortic Res. 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Iezzoni, A.F.; McFerson, J.; Luby, J.; Gasic, K.; Whitaker, V.; Bassil, N.; Yue, C.; Gallardo, K.; McCracken, V.; Coe, M.; et al. RosBREED: Bridging the chasm between discovery and application to enable DNA-informed breeding in Rosaceous crops. Hortic Res. 2020, 7, 177. [Google Scholar] [CrossRef]
- Tan, Q.; Li, S.; Zhang, Y.; Chen, M.; Wen, B.; Jiang, S.; Chen, X.; Fu, X.; Li, D.; Wu, H.; et al. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. Hortic Res. 2021, 8, 231. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, Y.; Zhu, Y.; Shao, X.; Guo, W. Development and validation of SSR markers based on transcriptomic data of Chinese cherry (Prunus pseudocerasus). Acta Hortic. Sinica 2016, 43, 1566–1576. [Google Scholar]
- Zhang, J.; Chen, T.; Wang, Y.; Chen, Q.; Sun, B.; Luo, Y.; Zhang, Y.; Tang, H.; Wang, X. Genetic diversity and domestication footprints of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] as revealed by nuclear microsatellites. Front. Plant Sci. 2018, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, G.; Liu, Z.; Zhang, J.; Ma, L.; Tian, T.; Wang, H.; Chen, T.; Chen, Q.; He, W.; et al. Phenotyping in flower and main fruit traits of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don]. Sci. Hortic. 2022, 296, 110920. [Google Scholar] [CrossRef]
- Tamazian, G.; Dobrynin, P.; Krasheninnikova, K.; Komissarov, A. Chromosomer: A reference-based genome arrangement tool for producing draft chromosome sequences. Gigascience 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Huang, X.; Zhang, J.; Chen, Q.; Liu, Y.; Tang, H.; Pan, D.; Wang, X. Genetic diversity and population structure patterns in Chinese cherry (Prunus pseudocerasus Lindl) landraces. Plant Mol. Biol. Rep. 2016, 34, 440–453. [Google Scholar] [CrossRef]
- Francis, C.Y.; Rong, C.Y.; Boyle, T. Popgene, Microsoft Window-Based Freeware for Population Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999; pp. 1–31. [Google Scholar]
- Liu, J. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Rohlf, F.J. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System. Version 2.1.; State University of New York: New York, NY, USA, 2000. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.J.; Donnelly, P.J. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Shirasawa, K.; Isuzugawa, K.; Ikenaga, M.; Saito, Y.; Yamamoto, T.; Hirakawa, H.; Isobe, S. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res. 2017, 24, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 2017, 18, 225. [Google Scholar] [CrossRef] [Green Version]
- Calle, A.; Wünsch, A. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Hortic Res. 2020, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Li, Y.; Deng, C.; Gardiner, S.E.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wang, L. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach. Plant Biotechnol. J. 2019, 17, 1954–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Xiao, Y.; Mount, S.; Liu, Z. An Atlas of genomic resources for studying Rosaceae fruits and ornamentals. Front. Plant Sci. 2021, 12, 644881. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, C.; Lin, X.; Cui, B.; Wu, R.; Pang, X. De novo assembly and characterization of the fruit transcriptome of Chinese jujube (Ziziphus jujuba Mill.) using 454 pyrosequencing and the development of novel tri-nucleotide SSR markers. PLoS ONE 2014, 9, e106438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakawa, H.; Shirasawa, K.; Kosugi, S.; Tashiro, K.; Nakayama, S.; Yamada, M.; Kohara, M.; Watanabe, A.; Kishida, Y.; Fujishiro, T.; et al. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res. 2014, 21, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, Z.; Zhou, J.; Chen, H.; Hu, Z.; Gao, L.; Chen, L.; Ren, S.; Ma, H.; Lu, L.; et al. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Res. 2017, 45, e88. [Google Scholar] [CrossRef] [Green Version]
- Daware, A.; Das, S.; Srivastava, R.; Badoni, S.; Singh, A.K.; Agarwal, P.; Parida, S.K.; Tyagi, A.K. An efficient strategy combining SSR markers and advanced QTL-seq-driven QTL mapping unravels candidate genes regulating grain weight in rice. Front. Plant Sci. 2016, 7, 1535. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Wang, X.; Zhan, G.; Wei, G.; Zhou, X.; Zhao, J.; Huang, L.; Kang, Z. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the wheat stripe rust fungus. PLoS ONE 2015, 10, e130362. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, S.; Chen, Y.; Zhang, S.; Zhao, Q.; Li, M.; Gao, Y.; Yang, L.; Bennetzen, J.L. Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genom. 2018, 19, 500. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Luo, J.; Wang, X.; Shi, C. A study on efficient screening of the primers for selecting polymorphic SSR markers based on the re-sequencing data in Pyrus. J. Fruit Sci. 2019, 36, 129–136. [Google Scholar]
- Primmer, C.R.; Ellegren, H. Patterns of molecular evolution in avian microsatellites. Mol. Biol. Evol. 1998, 15, 997–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, N.; Jenkins, N.; Gilbert, D.; Eppig, J.; Maltais, L.; Miller, J.; Dietrich, W.; Weaver, A.; Lincoln, S.; Steen, R. A genetic linkage map of the mouse: Current applications and future prospects. Science 1993, 262, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, X.; Song, J.; Zhu, Y.; Xu, H.; Huang, L.; Chen, S. Applying plant DNA barcodes for Rosaceae species identification. Cladistics 2011, 27, 165–170. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Campos, G.; Alves, G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and phytochemical composition of 23 Portuguese sweet cherries as conditioned by variety (or genotype). Food Chem. 2021, 335, 127637. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Blanco, C.; Ruiz-García, L.; Martínez-Zapater, J.M.; Ausín, I.; Jarillo, J.A. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 2004, 36, 162–166. [Google Scholar]
- Spartz, A.K.; Lee, S.H.; Wenger, J.P.; Gonzalez, N.; Itoh, H.; Inze, D.; Peer, W.A.; Murphy, A.S.; Overvoorde, P.J.; Gray, W.M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 2012, 70, 978–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Marker | Linkage Group | Primer Sequence (5’-3’) | Cerasus pseudocerasus | Relatives (17 Accessions from 13 Species) | |
---|---|---|---|---|---|
Landrace (92 Accessions) | Wild (2 Accessions) | ||||
SAUCps101 | 1 | F: ATAATGGAGGTGACAGACGAGC R: GACCAAAAGAAAGCAACAAAATC | 92 | 2 | 17 |
SAUCps305 | 3 | F: ACAGAGCAGGCATCCGTATC R: CAGCAGCAACAACAACAACAG | 92 | 2 | 17 |
SAUCps503 | 5 | F: AGCCAACCAGCCACAACT R: CGCACCACGCCTTTCAAA | 92 | 2 | 17 |
SAUCps602 | 6 | F: TGAGGCCAGCCGAAGATGA R: TAGAGAGTGAAAGAGAGAAAGAGAC | 92 | 2 | 17 |
SAUCps704 | 7 | F: TTTTCTGGGAATCGGGATG R: GCAGTCGCTGTTTCAAACTCA | 92 | 2 | 17 |
SAUCps705 | 7 | F: CTATTGAATGAGGGTAAAGCG R: GAAGTAGAGGCCCGGATGA | 92 | 2 | 17 |
SAUCps801 | 8 | F: TCATTGGAGGAATCATATCGTGTTC R: AGTCTGTCGTGGCTGGAGA | 92 | 2 | 17 |
SAUCps807 | 8 | F: GAACTGCTGCGACTATGATTGA R: GCTCAACTGCCGTTTCTTCA | 92 | 2 | 17 |
SAUCps601 | 6 | F: AGGACAAAATCCAAGCATCA R: CCCACCACAATCTAAACACC | 92 | 2 | 16 (hu) |
SAUCps202 | 2 | F: CCACTTGCTCTTCTATCTTCTT R: GCCCACCATCCACATCAA | 92 | 2 | 15 (gl, ja) |
SAUCps703 | 7 | F: CCGAAGAACAGAAGAAGAAAGAAAG R: TGAGGATTGAGGAAGTGGGAAA | 92 | 2 | 15 (gl, ja) |
SAUCps502 | 5 | F: CATAACATTCAGCCAACCTTT R: GACTTGAAGCCCTACACCAG | 92 | 2 | 15 (gl, ja) |
SAUCps204 | 2 | F: GCACCGTATCTCATATCTTCC R: ACCCAGAGGCTTTCAATGT | 92 | 2 | 15 (gl, ja) |
SAUCps605 | 6 | F: AACGGCATTGACTGGAGAT R: CTGTTGTTGATCGCCATAATTG | 92 | 2 | 15 (ma, av×ps) |
SAUCps402 | 4 | F: CAAGTCTGTTAGAGGAGGAGGAG R: TGTGAGGATGAGGGCTGCTA | 92 | 2 | 14 (gl, ja, to) |
SAUCps504 | 5 | F: AGATGGTCCTTCCGATTATTAT R: CTTGTTTTCTCTGTTATTGCGT | 92 | 2 | 14 (cer, gl, ja) |
SAUCps301 | 3 | F: AACCCAACAAACGCTGATGTAT R: GCAAAGACCAAGGCTGACTC | 92 | 2 | 12 (yed, hu, gl, ja, to) |
SAUCps205 | 2 | F: ACCAAAGAGGCAAACGATG R: TTTAGACCAATATGCAAGAAGAG | 92 | 2 | 8 (av, vu, hu, gl, to) |
SAUCps203 | 2 | F: CGAACCTAAGACTACTGATCTA R: CTTGCTGCTTGTGGTAGAG | 92 | 2 | 1 (av, av×ps, vu, cam, yed, ser, cer, ma, hu, gl, ja, to) |
SAUCps302 | 3 | F: GAGGGAAGGAGATGGGGACT R: GAAGGGTATGGCTTGGGACA | 92 | 1 | 17 |
SAUCps401 | 4 | F: CCTCTTCATCCGTCTTCTTCCT R: CAATCATCGTCACACTTCTTCCT | 92 | 1 | 17 |
SAUCps701 | 7 | F: GTGTCGATGTCATTGATGATGCTTA R: GTATGGAGAGGTGTCAGTGGAAG | 92 | 1 | 17 |
SAUCps806 | 8 | F: TTTGCCCACAACACCAGC R: GAAAGAAAGAAGACAGAGGAGG | 92 | 1 | 16 (ja) |
SAUCps803 | 8 | F: AAATGACCGCACCCTAAAGCC R: GGAAAATCCCCACCAAAGACC | 92 | 1 | 16 (cer) |
SAUCps802 | 8 | F: ACTTGCCTGTTTGTTCGT R: TGTCTTTGCCTTACCTTGA | 92 | 1 | 1 (av, av×ps, vu, cam, yed, ser, cer, ma, hu, gl, ja, to) |
SAUCps604 | 6 | F: CCAAGTTCAGCCACAGAAG R: CATCCCGTTTCCGTTTCC | 92 | 0 | 7 (av×ps, cam, yed, ser, cer, ma, hu, gl, ja, to) |
SAUCps607 | 6 | F: GCCTCTGCTTCTGCCTTCT R: GGGTTTGAACGGTCGGAAC | 91 | 2 | 17 |
SAUCps501 | 5 | F: AACCCTCCATTCCCATTTC R: CAATCAAAGACGCAACAAAGT | 91 | 2 | 16 (gl) |
SAUCps606 | 6 | F: TTCCTCTTCCCACTCAATCACT R: CCTCCAACCACCGACACAT | 91 | 2 | 16 (ma) |
SAUCps804 | 8 | F: AGTCTAAGACCATCCGATCTACTTT R: CACCAGCAATCACTTCCTACAA | 91 | 2 | 16 (ma) |
SAUCps702 | 7 | F: TTGCCTAACAAACAACTCTATCT R: TATCTCATCCATTTTTACCCTCC | 91 | 2 | 13 (hu, gl, ja, to) |
SAUCps808 | 8 | F: CCTACTTTGTTCATTTCTTTCC R: ATCACGCACTACTAACTCCATT | 91 | 2 | 8 (av, vu, ser, cer, ma, hu, gl, ja, to) |
SAUCps206 | 2 | F: TGTAATGACACTACTGCAACCA R: CCTTCCCAATGATGCTAATA | 90 | 2 | 17 |
SAUCps104 | 1 | F: GCCATTTCGTTTTATTCCTTTT R: TTTCTCCGTGCTCTCTCTGTTT | 90 | 2 | 17 |
SAUCps805 | 8 | F: TAAAGGGCGGTTCAAGTAGGA R: TGGGCATTCGTGTAGCAGAC | 90 | 1 | 12 (yed, hu, gl, ja, to) |
SAUCps103 | 1 | F: ATCAGTCCAGCGAAGGG R: AACGCAATCTAGAAGAGGTATG | 87 | 0 | 6 (av, av×ps, vu, cam, yed, ser, cer, ma, gl, ja, to) |
SAUCps603 | 6 | F: GATTAAACACTTGGATGCGATTGG R: GCCCATTGCGGATGCTCTA | 81 | 1 | 13 (cam, gl, ja, to) |
SAUCps304 | 3 | F: AGATGTCCTCGTGTTGTAAGC R: CGTAGTTGGTCAGTTGGTCA | 72 | 1 | 13 (hu, gl, ja, to) |
SAUCps201 | 2 | F: AATGGAAGAGGAAGGTATTTGAGTA R: CAGTTGTGGATTTAATCGAAGTTTT | 64 | 2 | 17 |
Mating Design (♀ × ♂) | Number of Progeny | Number | SAUCps303 | SAUCps102 | SAUCps706 | SAUCps202 | SAUCps304 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | F | T | F | T | F | T | F | T | F | T | F | ||
NZH×HF | 211 | 204 (96.68%) | 7 | 158 | 5 | 84 | 4 | 203 | 6 | 180 | 3 | NA | NA |
HF×NZH | 145 | 133 (91.72%) | 10 | 109 | 6 | 0 | 4 | 65 | 10 | 85 | 3 | NA | NA |
HF×PJHH | 766 | 744 (97.12%) | 3 | NA | NA | NA | NA | 635 | 1 | 372 | 2 | 478 | 3 |
Total | 1122 | 1081 (96.34%) | 20 | 267 | 11 | 84 | 8 | 903 | 17 | 637 | 8 | 478 | 3 |
Efficiency | 98.13% (1101/1122) | 78.00% | 25.84% | 82.00% | 57.49% | 62.40% |
Traits | Locus | R2 (%) | Linkage Group | Position 1 (Mb) | Position 2 (Mb) | Position 3 (Mb) | p-Value | Candidate Genes (Ppseudocerasus_HiC_scaffold) | Functional Annotation |
---|---|---|---|---|---|---|---|---|---|
Total soluble solids | SAUCps202–308 | 13.68 | 2 | 31.5 | 12.74 | 19.22 | 0.005 | ||
SAUCps301–93 | 15.29 | 3 | 1.4 | 0.76 | 1.17 | 0.005 | |||
SAUCps302–255 | 16.72 | 3 | 7.7 | 5.97 | 6.24 | 0.002 | |||
SAUCps302–234 | 12.98 | 3 | 7.7 | 5.97 | 6.24 | 0.01 | |||
SAUCps303–330 | 26.35 | 3 | 27.8 | 18.92 | 24.59 | 0.001 | |||
SAUCps501–211 | 17.25 | 5 | 2.0 | 0.77 | 0.99 | 0.002 | |||
SAUCps704–248 | 17.18 | 7 | 22.2 | 12.60 | 15.73 | 0.002 | scaffold_7_1573 | Response to salicylic acid | |
SAUCps805–206 | 15.49 | 8 | 17.6 | - | - | 0.01 | |||
SAUCps807–277 | 15.23 | 8 | 25.0 | 12.76 | 16.08 | 0.005 | |||
SAUCps808–238 | 13.91 | 8 | 30.3 | 18.50 | 20.49 | 0.005 | |||
Longitudinal diameter | SAUCps103–204 | 14.91 | 1 | 36.7 | 27.45 | 32.94 | 0.01 | ||
SAUCps103–201 | 15.56 | 1 | 36.7 | 27.45 | 32.94 | 0.01 | |||
SAUCps103–198 | 19.74 | 1 | 36.7 | 27.45 | 32.94 | 0.002 | |||
SAUCps103–195 | 14.85 | 1 | 36.7 | 27.45 | 32.94 | 0.01 | |||
SAUCps303–324 | 14.61 | 3 | 27.8 | 18.92 | 24.59 | 0.01 | scaffold_3_2691 | Pectin biosynthetic process | |
SAUCps503–218 | 12.61 | 5 | 20.8 | 13.53 | 15.20 | 0.005 | |||
SAUCps705–296 | 12.60 | 7 | 27.9 | 18.30 | 20.85 | 0.005 | |||
Transverse diameter | SAUCps206–171 | 12.32 | 2 | 43.3 | 12.74 | 28.87 | 0.01 | scaffold_2_3446 | Cell differentiation |
SAUCps701–353 | 9.02 | 7 | 0.5 | 0.35 | 3.60 | 0.01 | |||
SAUCps805–210 | 12.45 | 8 | 17.6 | - | - | 0.01 | scaffold_8_1113, scaffold_8_1116 | Response to auxin | |
scaffold_8_1115 | Positive effectors of cell expansion (modulate auxin transport) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, J.; Wang, Y.; Wang, H.; Wang, L.; Zhang, L.; Xiong, M.; He, W.; Yang, S.; Chen, Q.; et al. Development and Cross-Species Transferability of Novel Genomic-SSR Markers and Their Utility in Hybrid Identification and Trait Association Analysis in Chinese Cherry. Horticulturae 2022, 8, 222. https://doi.org/10.3390/horticulturae8030222
Liu Z, Zhang J, Wang Y, Wang H, Wang L, Zhang L, Xiong M, He W, Yang S, Chen Q, et al. Development and Cross-Species Transferability of Novel Genomic-SSR Markers and Their Utility in Hybrid Identification and Trait Association Analysis in Chinese Cherry. Horticulturae. 2022; 8(3):222. https://doi.org/10.3390/horticulturae8030222
Chicago/Turabian StyleLiu, Zhenshan, Jing Zhang, Yan Wang, Hao Wang, Lei Wang, Lu Zhang, Muran Xiong, Wen He, Shaofeng Yang, Qing Chen, and et al. 2022. "Development and Cross-Species Transferability of Novel Genomic-SSR Markers and Their Utility in Hybrid Identification and Trait Association Analysis in Chinese Cherry" Horticulturae 8, no. 3: 222. https://doi.org/10.3390/horticulturae8030222
APA StyleLiu, Z., Zhang, J., Wang, Y., Wang, H., Wang, L., Zhang, L., Xiong, M., He, W., Yang, S., Chen, Q., Chen, T., Luo, Y., Zhang, Y., Tang, H., & Wang, X. (2022). Development and Cross-Species Transferability of Novel Genomic-SSR Markers and Their Utility in Hybrid Identification and Trait Association Analysis in Chinese Cherry. Horticulturae, 8(3), 222. https://doi.org/10.3390/horticulturae8030222