Recycling Cigarette Filters as Plant Growing Substrate in Soilless System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Treatment of CB
2.2. Analytical Determinations
2.3. Evaluation of Substrates as Plant Growing Media in Soilless System
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of CB Treatment
3.2. Evaluation of Recycled CAF as Plant Growing Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acuña, R.A.; Bonachela, S.; Magán, J.J.; Marfà, O.; Hernández, J.H.; Cáceres, R. Reuse of rockwool slabs and perlite grow-bags in a low-cost greenhouse: Substrates’ physical properties and crop production. Sci. Hortic. 2013, 160, 139–147. [Google Scholar] [CrossRef]
- López-Pérez, J.A.; Edwards, S.; Ploeg, A. Control of root-knot nematodes on tomato in stone wool substrate with biological nematicides. J. Nematol. 2011, 43, 110–117. [Google Scholar] [PubMed]
- Bar-Tal, A.; Saha, U.K.; Raviv, M.; Tuller, M. Inorganic and synthetic organic components of soilless culture and potting mixtures. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–301. ISBN 9780444636966. [Google Scholar]
- de la Hera, G.; Muñoz-Díaz, I.; Cifrian, E.; Vitorica, R.; Gutierrez San Martin, O.; Viguri, J.R. Comparative Environmental Life Cycle Analysis of Stone Wool Production Using Traditional and Alternative Materials. Waste Biomass Valorization 2017, 8, 1505–1520. [Google Scholar] [CrossRef] [Green Version]
- Yap, Z.S.; Khalid, N.H.A.; Haron, Z.; Mohamed, A.; Tahir, M.M.; Hasyim, S.; Saggaff, A. Waste Mineral Wool and Its Opportunities—A Review. Materials 2021, 14, 5777. [Google Scholar] [CrossRef] [PubMed]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar] [CrossRef]
- Kurmus, H.; Mohajerani, A. The toxicity and valorization options of cigarette butts. Waste Manag. 2020, 104, 104–118. [Google Scholar] [CrossRef]
- Hoffmann, D.; Hoffmann, I. The changing cigarette, 1950–1995. J. Toxicol. Environ. Health 1997, 50, 307–364. [Google Scholar] [CrossRef]
- World Health Organization. Tobacco and Its Environmental Impact: An Overview; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241512497. [Google Scholar]
- Oliva, M.; De Marchi, L.; Cuccaro, A.; Pretti, C. Bioassay-based ecotoxicological investigation on marine and freshwater impact of cigarette butt littering. Environ. Pollut. 2021, 288, 117787. [Google Scholar] [CrossRef]
- Selmar, D.; Radwan, A.; Abdalla, N.; Taha, H.; Wittke, C.; El-Henawy, A.; Alshaal, T.; Amer, M.; Kleinwächter, M.; Nowak, M.; et al. Uptake of nicotine from discarded cigarette—A so far unconsidered path of contamination of plant-derived commodities. Environ. Pollut. 2018, 238, 972–976. [Google Scholar] [CrossRef]
- Booth, D.J.; Gribben, P.; Parkinson, K. Impact of cigarette butt leachate on tidepool snails. Mar. Pollut. Bull. 2015, 95, 362–364. [Google Scholar] [CrossRef]
- Rebischung, F.; Chabot, L.; Biaudet, H.; Pandard, P. Cigarette butts: A small but hazardous waste, according to European regulation. Waste Manag. 2018, 82, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Marinello, S.; Lolli, F.; Gamberini, R.; Rimini, B. A second life for cigarette butts? A review of recycling solutions. J. Hazard. Mater. 2020, 384, 121245. [Google Scholar] [CrossRef]
- Yousefi, M.; Kermani, M.; Farzadkia, M.; Godini, K.; Torkashvand, J. Challenges on the recycling of cigarette butts. Environ. Sci. Pollut. Res. 2021, 28, 30452–30458. [Google Scholar] [CrossRef] [PubMed]
- Korobushkin, D.I.; Garibian, P.G.; Pelgunova, L.A.; Zaitsev, A.S. The earthworm species Eisenia fetida accelerates the decomposition rate of cigarette butts on the soil surface. Soil Biol. Biochem. 2020, 151, 108022. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.N.M.; dos Reis, M.V.; Gomes, M.P. Phytoremediation by ornamental plants: A beautiful and ecological alternative. Environ. Sci. Pollut. Res. 2022, 29, 3336–3354. [Google Scholar] [CrossRef] [PubMed]
- Huarancca Reyes, T.; Scartazza, A.; Bretzel, F.; Di Baccio, D.; Guglielminetti, L.; Pini, R.; Calfapietra, C. Urban conditions affect soil characteristics and physiological performance of three evergreen woody species. Plant Physiol. Biochem. 2022, 171, 169–181. [Google Scholar] [CrossRef]
- Mariotti, L.; Huarancca Reyes, T.; Ramos-Diaz, J.M.; Jouppila, K.; Guglielminetti, L. Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. Plants 2021, 10, 858. [Google Scholar] [CrossRef]
- Huarancca Reyes, T.; Pompeiano, A.; Ranieri, A.; Volterrani, M.; Guglielminetti, L.; Scartazza, A. Photosynthetic performance of five cool-season turfgrasses under UV-B exposure. Plant Physiol. Biochem. 2020, 151, 181–187. [Google Scholar] [CrossRef]
- Poppendieck, D.G.; Khurshid, S.S.; Emmerich, S.J. Measuring Airborne Emissions from Cigarette Butts: Literature Review and Experimental Plan; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.
- Raveau, R.; Fontaine, J.; Bert, V.; Perlein, A.; Tisserant, B.; Ferrant, P.; Lounès-Hadj Sahraoui, A. In situ cultivation of aromatic plant species for the phytomanagement of an aged-trace element polluted soil: Plant biomass improvement options and techno-economic assessment of the essential oil production channel. Sci. Total Environ. 2021, 789, 147944. [Google Scholar] [CrossRef]
- Affholder, M.-C.; Laffont-Schwob, I.; Coulomb, B.; Rabier, J.; Borla, A.; Boudenne, J.-L.; Demelas, C.; Prudent, P. Implication of phytometabolites on metal tolerance of the pseudo-metallophyte -Rosmarinus officinalis- in a Mediterranean brownfield. Chemosphere 2020, 249, 126159. [Google Scholar] [CrossRef]
- Pistelli, L.; D’Angiolillo, F.; Morelli, E.; Basso, B.; Rosellini, I.; Posarelli, M.; Barbafieri, M. Response of spontaneous plants from an ex-mining site of Elba Island (Tuscany, Italy) to metal(loid) contamination. Environ. Sci. Pollut. Res. 2017, 24, 7809–7820. [Google Scholar] [CrossRef] [PubMed]
- Masciandaro, G.; Di Biase, A.; Macci, C.; Peruzzi, E.; Iannelli, R.; Doni, S. Phytoremediation of dredged marine sediment: Monitoring of chemical and biochemical processes contributing to sediment reclamation. J. Environ. Manag. 2014, 134, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Caniani, D.; Masi, S.; Mancini, I.M.; Trulli, E. Innovative reuse of drinking water sludge in geo-environmental applications. Waste Manag. 2013, 33, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Masi, S.; Caniani, D.; Grieco, E.; Lioi, D.S.; Mancini, I.M. Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manag. 2014, 34, 702–710. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, T.; Wakeel, A.; Cheema, Z.A. Differential response of maize and mungbean to tobacco allelopathy. Exp. Agric. 2014, 50, 611–624. [Google Scholar] [CrossRef]
- Cheng, Y.-D.; Bai, Y.-X.; Jia, M.; Chen, Y.; Wang, D.; Wu, T.; Wang, G.; Yang, H.-W. Potential risks of nicotine on the germination, growth, and nutritional properties of broad bean. Ecotoxicol. Environ. Saf. 2021, 209, 111797. [Google Scholar] [CrossRef]
- Alkhatib, R.; Alkhatib, B.; Abdo, N. Impact of exogenous nicotine on the morphological, physio-biochemical, and anatomical characteristics in Capsicum annuum. Int. J. Phytoremediation 2021, 1–9. [Google Scholar] [CrossRef]
- Tadeo, J.; Sánchez-Brunete, C.; Pérez, R.; Fernández, M. Analysis of herbicide residues in cereals, fruits and vegetables. J. Chromatogr. A 2000, 882, 175–191. [Google Scholar] [CrossRef]
- Sanders, G.E.; Pallett, K.E. Studies into the differential activity of the hydroxybenzonitrile herbicides. Pestic. Biochem. Physiol. 1986, 26, 116–127. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.; Yu, X. Uptake and accumulation of di-n-butyl phthalate in six leafy vegetables under hydroponic conditions. Food Prod. Process. Nutr. 2019, 1, 9. [Google Scholar] [CrossRef]
- Virgin, H.I.; Holst, A.-M.; Morner, J. Effect of di-n-butylphthalate on the carotenoid synthesis in green plants. Physiol. Plant. 1981, 53, 158–163. [Google Scholar] [CrossRef]
- Kumari, A.; Kaur, R. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant. Growth Regul. 2020, 91, 327–347. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Huang, H.-B.; Du, H.; Xiang, L.; Mo, C.-H.; Li, Y.-W.; Cai, Q.-Y.; Li, H.; Liu, J.-S.; Zhou, D.-M.; et al. Global Picture of Protein Regulation in Response to Dibutyl Phthalate (DBP) Stress of Two Brassica parachinensis Cultivars Differing in DBP Accumulation. J. Agric. Food Chem. 2018, 66, 4768–4779. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Song, Z.; Liu, Y.; Gao, M. Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality. Environ. Pollut. 2021, 278, 116871. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant Sci. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Herms, D.A.; Mattson, W.J. The Dilemma of Plants: To Grow or Defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef] [Green Version]
Retention Time (min) | Compound | Relative Abundance (Kcounts) | |
---|---|---|---|
1st Boil | 2nd Boil | ||
5.666 | benzonitrile | 25 | 22.5 |
5.737 | silane, methoxytripropyl | 35 | 20 * |
5.873 | 1,2,3-propanetriol, diacetate | 45 | ND |
6.630 | pyridine, 3-(1-methyl-2-pyrrolidinyl) | 800 | 30 * |
7.097 | silane, trimethyl[(1-propylpentyl)oxy] | 400 | 75 * |
8.577 | pyridine, 3-(1-methyl-1H-pyrrol-2-yl) | 80 | 6.5 * |
9.116 | benzoic acid, 4-ethoxy-, ethyl ester | 6 | 3.5 * |
9.646 | dodecane, 1-chloro | 7 | 4 * |
9.698 | octadecanol | 3 | 3 |
10.407 | 2-cyclohexen-1-one, 4(3-hydroxy-1-butenyl)-3-5-5- trimethyl | 6.5 | 6 |
11.494 | eicosanol | 6 | 4 * |
12.043 | 1H-indole-3-acetonitrile | 7 | ND |
12.737 | 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester | 9 | 2.75 * |
13.370 | pentadecanoic acid, 14-methyl-, methyl ester | 20 | ND |
13.660 | dibutyl phthalate | 25 | 10 * |
13.986 | 3-indoleacetonitrile, 7-methoxy | 6 | ND |
14.747 | hexadecenenitrile | 5.5 | ND |
15.845 | docosane | 13 | ND |
16.652 | tricosane | 20 | ND |
17.463 | hexanedioic acid, mono(2-ethylhexyl)ester | 25 | ND |
18.256 | pentacosane | 8 | ND |
19.023 | hexacosane | 8 | ND |
18.568 | bis(2-ethylhexyl)phthalate | 5.5 | ND |
20.572 | squalen | 20 | ND |
Total (kcounts) | 1585.5 | 187.25 | |
Residual (%) | 11.81 |
Species | Substrate | Chla | Chlb | Car | Chla/Chlb | Car/Chla + b |
---|---|---|---|---|---|---|
Spanish broom | CAF | 0.139 | 0.159 | 0.099 | 0.87 | 0.33 |
SW | 0.242 * | 0.205 * | 0.147 * | 1.17 * | 0.32 | |
Lavender | CAF | 0.611 | 0.327 | 0.344 | 1.86 | 0.36 |
SW | 0.665 * | 0.384 | 0.370 | 1.73 | 0.35 | |
Sage | CAF | 0.888 | 0.362 | 0.422 | 2.45 | 0.33 |
SW | 1.113 * | 0.360 | 0.497 * | 3.09 * | 0.33 | |
Rosemary | CAF | 0.856 | 0.288 | 0.368 | 2.97 | 0.32 |
SW | 0.863 | 0.330 | 0.396 * | 2.61 | 0.33 |
Species | Substrate | Fv/Fm | ΦPSII |
---|---|---|---|
Spanish broom | CAF | 0.836 | 0.730 |
SW | 0.827 | 0.721 | |
Lavender | CAF | 0.812 | 0.672 |
SW | 0.813 | 0.653 | |
Sage | CAF | 0.820 | 0.744 |
SW | 0.821 | 0.754 | |
Rosemary | CAF | 0.826 | 0.714 |
SW | 0.823 | 0.724 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti, L.; Huarancca Reyes, T.; Curadi, M.; Guglielminetti, L. Recycling Cigarette Filters as Plant Growing Substrate in Soilless System. Horticulturae 2022, 8, 135. https://doi.org/10.3390/horticulturae8020135
Mariotti L, Huarancca Reyes T, Curadi M, Guglielminetti L. Recycling Cigarette Filters as Plant Growing Substrate in Soilless System. Horticulturae. 2022; 8(2):135. https://doi.org/10.3390/horticulturae8020135
Chicago/Turabian StyleMariotti, Lorenzo, Thais Huarancca Reyes, Maurizio Curadi, and Lorenzo Guglielminetti. 2022. "Recycling Cigarette Filters as Plant Growing Substrate in Soilless System" Horticulturae 8, no. 2: 135. https://doi.org/10.3390/horticulturae8020135
APA StyleMariotti, L., Huarancca Reyes, T., Curadi, M., & Guglielminetti, L. (2022). Recycling Cigarette Filters as Plant Growing Substrate in Soilless System. Horticulturae, 8(2), 135. https://doi.org/10.3390/horticulturae8020135