Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (Solanum lycopersicon L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Plant Materials
2.3. Tomato Field Trails
2.4. Specimen’s Sampling Techniques
2.4.1. Pitfall Trapping
2.4.2. Yellow Sticky Trap
2.5. Specimen Identification
2.6. Measurements
2.7. Data Analysis
3. Results
3.1. Abundance of Insects Pests as Affected by Tomato Genotypes and Planting Spacing
3.2. The Temporal Distribution of Insects as Affected by Tomato Genotypes and Plant Spacing
3.3. Tomato Agronomic Traits
3.4. Correlation between Insect Pests and Agronomic Traits of Tomatoes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warnock, S.J. National habitats of lycopersicon species. Hortscienc 1991, 26, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.S.; Huda, M.N.; Rahman, M.S.; Azad, A.K.M.; Rahman, M.M.; Molla, M.M. Character association and path analysis of tomato (Solanum lycopersicum L.). J. Biosci. Agric. Res. 2019, 22, 1815–1822. [Google Scholar] [CrossRef]
- Huda, M.N.; Jahan, T.; Taj, H.F.E.; Asiry, K.A. A Newly Emerged Pest of Tomato [Tomato Leaf Miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)]: In Bangladesh—A Review on Its Problems and Management Strategies. J. Agric. Ecol. Res. Int. 2020, 21, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bugti, G.A. Varietal Preference of Insect Pests on Tomato Crop in District Naseerabad Balochistan Pakistan. J. Entomol. Zool. Stud. 2016, 4, 328–330. [Google Scholar]
- FAOSTAT. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 September 2022).
- Ofori, E.S.K.; Yeboah, S.; Nunoo, J.; Quartey, E.K.; Torgby-Tetteh, W.; Gasu, E.K.; Ewusie, E.A. Preliminary studies of insect diversity and abundance on twelve accessions of tomato, Solanum lycopersicon L. grown in a coastal Savannah Agro-ecological zone. J. Agric. Sci. 2014, 6, 72–82. [Google Scholar] [CrossRef]
- Mungai, J.; Ouko, J.; Heiden, M. Processing of Fruits and Vegetables in Kenya; Printed by Agricultural Information Centre: Nairobi, Kenya, 2000. [Google Scholar]
- Thomine, E.; Mumford, J.; Rusch, A.; Desneux, N. Using crop diversity to lower pesticide use: Socio-ecological approaches. Sci. Total Environ. 2022, 804, 150156. [Google Scholar] [CrossRef]
- Matthews, G.A. Attitudes and behaviours regarding use of crop protection products—A survey of more than 8500 smallholders in 26 countries. J. Crop Prot. 2008, 27, 834–846. [Google Scholar] [CrossRef]
- Son, D.; Somda, I.; Legreve, A.; Schiffers, B. Effect of plant diversification on pest abundance and tomato yields in two cropping systems in Burkina Faso: Farmer practices and integrated pest management. Int. J. Biol. Chem. Sci. 2018, 12, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Akinkunmi, O.Y.; Akintoye, H.A.; Umeh, V.C.; AdeOluwa, O.O. Influence of spacing on the feeding activities of major pests of sunflower and their associated damage. Agric. Biol. J. N. Am. 2012, 3, 233–236. [Google Scholar] [CrossRef]
- Amare, G.; Gebremedhin, H. Effect of Plant Spacing on Yield and Yield Components of Tomato (Solanum lycopersicum L.) in Shewarobit, Central Ethiopia. Scientifica 2020, 2020, 8357237. [Google Scholar] [CrossRef] [PubMed]
- Ara, N.; Bashar, M.; Begum, S.; Kakon, S. Effect of spacing and stem pruning on the growth and yield of tomato. Int. J. Sustain. Crop Prod. 2007, 2, 35–39. [Google Scholar]
- Asghar, M.; Hassan, T.; Arshad, M.; Aziz, A.; Latif, M.T.; Sabir, A.M. Effect of plant spacing on incidence of rice planthoppers in transplanted rice crop. Int. J. Trop. Insect Sci. 2021, 41, 575–585. [Google Scholar] [CrossRef]
- Soroja, R.; Raja, N. Effect of nitrogen fertilizer levels and spacing on rice gall midge and leaf folder damage. Int. Rice Res. Newsl. 1982, 7, 10. [Google Scholar]
- Wetzel, W.C.; Kharouba, H.M.; Robinson, M.; Holyoak, M.; Karban, R. Variability in plant nutrients reduces insect herbivore performance. Nature 2016, 539, 425–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousa, M.A.A.; Al-Qurashi, A.D. Growth and yield of cowpea (Vigna unguiculata L.) cultivars under water Deficit at different growth stages. Legum. Res. 2018, 41, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Mousa, M.A.A.; Al-Qurashi, A.D.; Bakhashwain, A.A.S. Response of tomato genotypes at early growing stages to irrigation water salinity. J. Food Agric. Environ. 2013, 11, 501–507. [Google Scholar]
- Thomas, D.B. Nontoxic Antifreeze for Insect Traps. Entomol. News 2008, 119, 361–365. [Google Scholar] [CrossRef]
- Blatchley, W.S. An Illustrated Descriptive Catalogue of the Coleoptera or Beetles (Exclusive of the Rhynchophora) Known to Occur in Indiana: With Bibliography and Descriptions of New Species; Nature Pub. Co.: Indianapolis, Indiana, 1910; p. 1386. [Google Scholar] [CrossRef]
- Borror, D.J.; White, R.E. A Field Guide to Insects: America North of Mexico; Houghton Mifflin Company: Boston, MA, USA, 1970; Volume 19. [Google Scholar]
- Brues, C.T.; Melansder, A.L. Classifications of Insects; Harvard College: Cambridge, MA, USA, 1932; p. 673. [Google Scholar]
- Choate, P.M. Introductions to the Identifications of Insects and Related Arthropods; 2003; pp. 1–13. Available online: https://entnemdept.ufl.edu/choate/insectid.pdf (accessed on 25 September 2022).
- Gibb, P.T.; Oseto, C. Insect Collections and Identifications; Academic Press Publishing: London, UK, 2019; p. 354. [Google Scholar]
- Richards, O.W.; Davies, R.G. Imms’ General Textbook of Entomology: Classification and Biology, 10th ed.; Chapman and Hall: London, UK, 1977; Volume 2. [Google Scholar]
- Westwood, J.O. An Introductions to the Moderns Classifications of Insects; London, Longman, Orme, Brown, Green, and Longmans: London, UK, 1840; p. 599. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw Hill Book Co.: Singapore, 1984; pp. 207–208. [Google Scholar]
- Arif, M.J.; Gogi, M.D.; Mirza, M.; Zia, K.; Hafeez, F. Impact of Plant Spacing and Abiotic Factors on Population Dynamics of Sucking Insect Pests of Cotton. Pak. J. Biol. Sci. 2006, 9, 1364–1369. [Google Scholar] [CrossRef] [Green Version]
- Momtaz, M.B.; Yeasmin, K.; Khatun, M.R.; Ahmad, M. Impact of Plant Spacing on Population Dynamics of Sucking Pest of Cotton. J. Environ. Sci. Nat. Resour. 2018, 11, 241–243. [Google Scholar] [CrossRef]
- Mesbah, A.H.; El-Husseini, M.M.; El-Zoghbey, A.A. The Effect of Cotton Plant Spacing on Important Insect Pests and Their Related Predators and Yield. J. Agric. Sci. Mansoura Univ. 2009, 34, 3943–3948. [Google Scholar] [CrossRef]
- Mohamed, S.O.S. Effects of Cotton Plant Spacing on Insect Infestation, Natural Enemies and Yield, Gezira State, Sudan. Master’s Dissertation, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Singh, H.; Kaur, P.; Mukherjee, J. Impact of weather parameters and plant spacing on population dynamics of sucking pests of cotton in south western Punjab. J. Agric. Phys. 2015, 15, 167–174. [Google Scholar]
- Mohamed, M.A.; El-Aassar, M.R.; Mourad, A.A. Effect of planting dates and spaces on the infestation of cucumber varieties with two-spotted spider mite, Tetranychus urticae Koch. Menoufia J. Plant Prot. 2017, 2, 249–256. [Google Scholar] [CrossRef]
- Mohamed, M.A. Impact of planting dates, spaces and varieties on infestation of cucumber plants with whitefly, Bemisia tabaci (Genn.). J. Basic Appl. Zool. 2012, 65, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Malak, V.S.G.; Salem, A.A. Influence of planting spaces and hybrid on the population of six arthropods attacking sweet potato plant. Ann. Agric. Moshtohor. 2002, 40, 1797–1806. [Google Scholar]
- Emam, A.K.; Hegab, M.F.A.H.; Tantawy, M.A.M. Effect of planting space and date on the population densities of certain insect pests infesting sweetpea plants at Qalyobia Governorate. Ann. Agric. Sci. Moshtohor. 2006, 44, 299–308. [Google Scholar]
- Alvi, A.; Iqbal, N.; Iqbāl, J.; Ali, K.; Shahid, M.; Jaleel, W.; Khan, H.; Khan, T. Population Dynamics of Whitefly and Thrips under Different Row Spacing and Plant Density Conditions in a Cotton Field of Punjab, Pakistan. Pak. J. Zool. 2021, 53, 685. [Google Scholar] [CrossRef]
- Solangi, B.K.; Khoso, F.N.; Shafique, M.A.; Ahmed, A.M.; Gilal, A.A.; Talpur, M.M.A.; Dhiloo, K.H. Host plant preference of sucking pest complex to different tomato genotypes. J. Entomol. Zool. Stud. 2017, 5, 293–297. [Google Scholar]
- Amro, M.A.R.M. Population fluctuation of certain arthropod pests inhabiting selected cucurbit varieties and their resistance status to the main sap sucking pests. Egypt. J. Agric. Res. 2008, 86, 697–709. [Google Scholar]
- El-Lakwah, F.A.; El-Khayat, E.F.; Rady, G.H.H.; Mona, M.A.; Ghallab, M.; Wahba, B.S. Impact of varieties on infestation of common bean plants with pests. Egypt. J. Agric. Res. 2010, 88, 1121–1140. [Google Scholar] [CrossRef]
- Majeed, M.Z.; Javed, M.; Riaz, M.A.; Afzal, M. Population Dynamics of Sucking Pest Complex on Some Advanced Genotypes of Cotton under Unsprayed Conditions. Pak. J. Zool. 2016, 48, 475–480. [Google Scholar]
- Iqbal, J.; Hasan, M.; Ashfaq, M.; Sahi, S.T.; Ali, A. Screening of okra genotypes against jassid, amrasca biguttula biguttula (ishida) (homoptera: Cicadellidae). Pak. J. Agric. Sci. 2008, 45, 448–451. [Google Scholar]
- Hussen, S.; Kemal, M.; Wasie, M. Effect of Intra-row Spacing on Growth and Development of Tomato (Lycopersicum esculentum Mill.) Var. Roma VF, at the experimental site of Wollo University, South Wollo, Ethiopia. Int. J. Sci. Basic Appl. Res. 2013, 10, 19–24. [Google Scholar]
- Guade, Y.F. Effect of Intra-Row Spacing on Growth and Development of Tomato (Solanum lycopersicum L.) Variety Roma-VF under the Irrigated Conditions of East Gojjam Zone, Ethiopia. Am. Eurasian J. Agric. Environ. Sci. 2017, 17, 174–178. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. Response of Field-Grown Indeterminate Tomato to Plant Density and Stem Pruning on Yield. Int. J. Veg. Sci. 2018, 24, 612–621. [Google Scholar] [CrossRef]
- Tuan, N.; Mao, N. Effect of Plant Density on Growth and Yield of Tomato (Solanum lycopersicum L.) at Thai Nguyen, Vietnam. Int. J. Plant Soil Sci. 2015, 7, 357–361. [Google Scholar] [CrossRef]
- Falodun, E.J.; Emede, T.O. Influence of plant spacing on the growth and yield of tomato (Lycopersicon esculentum Mill.) Varieties. Agrosearch 2019, 19, 46–58. [Google Scholar] [CrossRef]
pH (Unit) | EC (ds/m) | Sandy Loam Soil Particle Size (%) | Organic Matter (%) | Organic Carbon (%) | Available Macro Nutrients (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | N | P | K | ||||||
7.83 | 1.79 | 84.21 | 14.05 | 1.74 | 0.453 | 0.500 | 0.215 | 0.070 | 0.781 | ||
Total elements (mg/kg) | |||||||||||
Cr | Pb | Ni | Cd | Mn | Fe | Ca (%) | Mg (%) | Cu | Zn | Na (%) | |
0.11 | 4.21 | 0.52 | 0.06 | 144.44 | 239.40 | 1.38 | 1.15 | 4.78 | 32.98 | 0.14 |
Abundance of Pests | Total Number | F Values | Mean ± SE | ||
---|---|---|---|---|---|
30 cm | 60 cm | 90 cm | |||
Variety Areenez F1 | |||||
Empoasca fabae | 11359 | 12.37 ** | 1057.50 ± 29.09 a | 915.50 ± 29.55 b | 866.75 ± 23.95 b |
Orosius orientalis | 1397 | 61.14 *** | 133.50 ± 2.02 a | 112.25 ± 1.65 b | 103.50 ± 2.02 c |
Bemisia tabaci | 5762 | 8.14 ** | 548.75 ± 18.85 a | 458.75 ± 22.59 b | 433.00 ± 21.57 b |
Tuta absoluta | 254 | 0.63 N | 18.25 ± 1.65 a | 21.25 ± 1.70 a | 24.00 ± 4.78 a |
Nezara viridula | 236 | 3.53 N | 22.75 ± 1.38 a | 14.25 ± 1.11 a | 22.00 ± 4.43 a |
Heliothrips sp. | 91 | 0.97 N | 7.50 ± 0.50 a | 6.50 ± 1.04 a | 8.75 ± 1.44 a |
Neoceratitis cyanescens | 145 | 1.44 N | 11.00 ± 0.41 a | 12.50 ± 0.65 a | 12.75 ± 1.11 a |
Acheta domesticus | 462 | 13.15 ** | 29.50 ± 1.94 c | 38.75 ± 3.45 b | 47.25 ± 1.89 a |
Melanoplus bispinosus | 294 | 1.09 N | 23.25 ± 1.11 a | 24.50 ± 1.55 a | 25.75 ± 0.85 a |
Trimerotropis pellidipennis | 61 | 0.56 N | 4.25± 1.31 a | 5.25± 0.25 a | 5.75 ± 1.31 a |
Melanoplus differentialis | 69 | 1.05 N | 5.25 ± 0.63 a | 5.50 ± 0.65 a | 6.50 ± 0.65 a |
Otiorhynchus sulcatus | 170 | 0.31 N | 13.25 ± 1.49 a | 14.25 ± 2.29 a | 15.00 ± 1.00 a |
Lasius niger | 402 | 121.98 *** | 23.75 ± 0.85 c | 32.75 ± 0.85 b | 44.00 ± 0.91 a |
Leptysma marginicollis | 77 | 0.73 N | 7.00 ± 0.91 a | 5.75 ± 0.48 a | 6.50 ± 0.65 a |
Variety Tala F1 | |||||
Empoasca fabae | 12324 | 8.58 ** | 1136.00 ± 36.54 a | 1012.50 ± 37.17 b | 932.50 ± 29.13 b |
Orosius orientalis | 1417 | 159.30 *** | 134.50 ± 1.32 a | 114.25 ± 1.11 b | 105.50 ± 1.04 c |
Bemisia tabaci | 5893 | 8.07 ** | 558.75 ± 20.56 a | 470.00 ± 20.73 b | 444.50 ± 20.61 b |
Tuta absoluta | 233 | 3.76 N | 17.50 ± 1.19 a | 15.50 ± 2.10 a | 25.25 ± 3.82 a |
Nezara viridula | 253 | 1.67 N | 19.00 ± 1.58 a | 21.50 ± 1.44 a | 22.75 ± 1.49 a |
Heliothrips sp. | 83 | 0.43 N | 7.75 ± 1.11 a | 6.50 ± 0.96 a | 6.50 ± 0.87 a |
Neoceratitis cyanescens | 140 | 0.27 N | 11.25 ± 0.75 a | 11.75 ± 0.63 a | 12.00 ± 00.82 a |
Acheta domesticus | 475 | 6.35 * | 30.50 ± 2.78 b | 39.75 ± 3.33 ab | 48.25 ± 4.80 a |
Melanoplus bispinosus | 284 | 0.77 N | 22.75 ± 1.11 a | 23.75 ± 0.85 a | 24.50 ± 1.04 a |
Trimerotropis pellidipennis | 70 | 3.79 N | 4.00 ± 1.00 a | 5.75 ± 1.03 a | 7.75 ± 0.95 a |
Melanoplus differentialis | 77 | 1.08 N | 5.75 ± 1.03 a | 6.25 ± 0.63 a | 7.25 ± 0.63 a |
Otiorhynchus sulcatus | 138 | 0.37 N | 11.00 ± 1.41 a | 11.00 ± 2.61 a | 12.50 ± 1.26 a |
Lasius niger | 413 | 170.28 *** | 24.50 ± 0.65 c | 33.50 ± 0.65 b | 45.25 ± 1.11 a |
Leptysma marginicollis | 80 | 3.46 N | 7.25 ± 0.85 a | 5.25 ± 0.48 a | 7.50 ± 0.65 a |
Plant Height (cm) | No. of Fruits/Plant | Fruit Yield/Plant (g) | Total Yield(ton/ha) | Dry Mass/ Plant (g) | |
---|---|---|---|---|---|
Plant Spacing (T) | |||||
30 × 50 cm | 76.50 ± 2.74 a | 11.73 ± 0.75 c | 671.54 ± 36.83 c | 40.28 ± 2.21 b | 82.19 ± 3.67 b |
60 × 50 cm | 69.50 ± 2.62 ab | 21.85 ± 1.04 b | 1691.87 ± 42.13 b | 53.15 ± 1.32 a | 103.99 ± 3.95 a |
90 × 50 cm | 65.75 ± 2.24 b | 24.85 ± 1.55 a | 1969.99 ± 104.24 a | 39.38 ± 2.08 b | 113.76 ± 5.48 a |
F-test | * | * | *** | *** | *** |
LSD | 7.6246 | 2.972 | 205.56 | 5.7505 | 12.482 |
Variety (V) | |||||
Areenez F1 | 69.75 ± 2.26 a | 17.83 ± 1.71 b | 1427.35 ± 178.20 a | 43.73 ± 2.38 a | 95.67 ± 4.75 a |
Tala F1 | 71.42 ± 2.57 a | 21.12 ± 1.01 a | 1461.58 ± 175.46 a | 44.81 ± 2.48 a | 104.29 ± 5.55 a |
F-test | NS | * | NS | NS | NS |
LSD | 6.2255 | 2.4266 | 167.84 | 4.6952 | 10.191 |
T x V | |||||
F-test | NS | NS | NS | NS | NS |
Pests | Plant Spacing | Agronomic traits | ||||
---|---|---|---|---|---|---|
Plant Height (cm) | Number of Fruits/Plant | Fruit Yield/ Plant (g) | Total Yield/ Ha (ton) | Dry Mass/ Plant (g) | ||
Empoasca fabae | 30 cm | −0.42 | −0.98 * | −0.66 | −0.66 | 0.84 |
60 cm | 0.49 | 0.54 | 0.50 | 0.50 | −0.73 | |
90 cm | −0.32 | −0.73 | −0.66 | −0.66 | 0.57 | |
Orosius orientalis | 30 cm | 0.141 | −0.049 | 0.082 | 0.0815 | −0.016 * |
60 cm | −0.130 | 0.647 | 0.601 | 0.6009 | −0.484 | |
90 cm | −0.001 | −0.580 | −0.605 | −0.6055 | 0.589 | |
Bemisia tabaci | 30 cm | 0.75 | −0.14 | 0.06 | 0.06 | −0.02 |
60 cm | −0.05 | 0.20 | 0.14 | 0.14 | −0.62 | |
90 cm | −0.20 | −0.80 | −0.63 | −0.63 | 0.49 | |
Tuta absoluta | 30 cm | −0.003 * | 0.249 | −0.021 * | −0.0208 * | −0.008 * |
60 cm | −0.171 | −0.093 | −0.113 | −0.1128 | −0.133 | |
90 cm | 0.327 | −0.819 | −0.952 | −0.9529 | 0.996 | |
Nezara viridula | 30 cm | −0.126 | −0.529 | −0.799 | −0.8001 | 0.825 |
60 cm | −0.822 | 0.035 | 0.032 | 0.0321 | −0.756 | |
90 cm | 0.594 | −0.656 | −0.691 | −0.6905 | 0.665 | |
Acheta domesticus | 30 cm | 0.295 | 0.887 | 0.293 | 0.2941 | −0.571 |
60 cm | 0.058 | 0.023 | 0.010 * | 0.0097 * | −0.002 | |
90 cm | −0.059 | 0.986 | 0.905 | 0.904 | −0.784 | |
Melanoplus bispinosus | 30 cm | 0.061 | −0.147 | 0.034 | 0.034 | 0.8 × 10−5 |
60 cm | 0.061 | −0.674 | −0.625 | −0.6246 | 0.372 | |
90 cm | −0.602 | 0.476 | 0.486 | 0.485 | −0.453 | |
Lasius niger | 30 cm | 0.219 | 0.250 | 0.590 | 0.5898 | −0.547 |
60 cm | −0.821 | 0.470 | 0.477 | 0.477 | −0.983 | |
90 cm | 0.959 | −0.920 | −0.435 | −0.436 | 0.529 |
Pests | Plant Spacing | Agronomic Traits | ||||
---|---|---|---|---|---|---|
Plant Height (cm) | No. of Fruits/Plant | Fruit Yield/ Plant (g) | Total Yield (ton/ha) | Dry Mass/ Plant (g) | ||
Empoasca fabae | 30 cm | −0.10 | 0.89 | 0.77 | 0.77 | −0.14 |
60 cm | −0.79 | −0.82 | −0.89 | −0.89 | −0.01 | |
90 cm | 0.009 | 0.64 | 0.61 | 0.61 | 0.17 | |
Orosius orientalis | 30 cm | 0.388 | −0.760 | −0.828 | −0.828 | −0.083 |
60 cm | 0.694 | −0.059 | −0.002 | −0.002 | 0.003 * | |
90 cm | −0.427 | −0.122 | −0.238 | −0.239 | 0.099 | |
Bemisia tabaci | 30 cm | −0.10 | 0.89 | 0.77 | 0.77 | −0.14 |
60 cm | −0.71 | −0.14 | −0.14 | −0.45 | 0.55 | |
90 cm | 0.26 | −0.49 | −0.47 | −0.47 | 0.95 * | |
Tuta absoluta | 30 cm | −0.172 | −0.362 | −0.132 | −0.131 | 0.148 |
60 cm | −0.693 | −0.61 | −0.731 | −0.731 | −0.002 | |
90 cm | 0.323 | −0.664 | −0.502 | −0.501 | 0.726 | |
Nezara viridula | 30 cm | 0.958 | −0.024 | −0.184 | −0.185 | −0.496 |
60 cm | 0.178 | 0.003 * | −0.015 * | −0.015 * | 0.943 | |
90 cm | 0.006* | 0.983 | 0.981 | 0.981 | −0.197 | |
Acheta domesticus | 30 cm | 0.138 | 0.149 | 0.068 | 0.068 | −0.895 |
60 cm | 0.397 | −0.024 | 0.021 * | 0.021 * | −0.254 | |
90 cm | −0.8 E−05 | −0.988 | −0.975 | −0.975 | 0.359 | |
Melanoplus bispinosus | 30 cm | 0.068 | 0.639 | 0.376 | 0.375 | −0.509 |
60 cm | −0.012 * | 0.706 | 0.707 | 0.707 | −0.244 | |
90 cm | −0.067 | −0.914 | −0.981 | −0.981 | 0.125 | |
Lasius niger | 30 cm | −0.618 | −0.083 | −0.6 × 10−6 | −0.2 × 10−6 | 0.508 |
60 cm | −0.580 | −0.002 | 0.2 × 10−5 | 0.2 × 10−5 | −0.592 | |
90 cm | −0.002 | −0.994 | −0.987 | −0.986 | 0.290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asiry, K.A.; Huda, M.N.; Mousa, M.A.A. Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (Solanum lycopersicon L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method. Horticulturae 2022, 8, 976. https://doi.org/10.3390/horticulturae8100976
Asiry KA, Huda MN, Mousa MAA. Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (Solanum lycopersicon L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method. Horticulturae. 2022; 8(10):976. https://doi.org/10.3390/horticulturae8100976
Chicago/Turabian StyleAsiry, Khalid A., Md. Nurul Huda, and Magdi A. A. Mousa. 2022. "Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (Solanum lycopersicon L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method" Horticulturae 8, no. 10: 976. https://doi.org/10.3390/horticulturae8100976
APA StyleAsiry, K. A., Huda, M. N., & Mousa, M. A. A. (2022). Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (Solanum lycopersicon L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method. Horticulturae, 8(10), 976. https://doi.org/10.3390/horticulturae8100976