HPLC Characterization of Phytochemicals and Antioxidant Potential of Alnus nitida (Spach) Endl.
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical Reagents
2.2. Collection of Plant Material
2.3. Extract Preparation
2.4. Estimation of Total Phenolic Content (TPC)
2.5. Estimation of Total Flavonoids Content (TFC)
2.6. Extracts Preparation for HPLC Characterization
2.7. DPPH Free Radical Scavenging Potential
2.8. ABTS Free Radical Scavenging Potential
2.9. Statistical Analysis
3. Results
3.1. Total Phenolic and Flavonoid Contents
3.2. DPPH Free Radical Scavenging Activity of A. nitida Methanolic Extracts
3.3. ABTS Free Radical Scavenging Activity of A. nitida Methanolic Extracts
3.4. The Correlation of Total Phenolic/Flavonoid contents versus Antioxidant Activity
3.5. Characterization of Phenolic Compounds through HPLC Technique
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A. nitida | Alnus nitida |
HPLC | High-performance liquid chromatography |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2-azinobis [3-ethylbenzthiazoline]-6-sulfonic acid |
IC50 | Half maximal inhibitory concentration |
B.G.H | Botanical Garden Herbarium |
TPC | Total phenolic content |
TFC | Total flavonoid content |
DAD | Diode array detector |
UVAD | Ultraviolet array detector |
ANOVA | Analysis of variance |
References
- Bhukta, A. Traditional Knowledge: An Overview. Legal Protection for Knowledge; Emerald Publishing Limited: Bingley, UK, 2020. [Google Scholar]
- Maxted, N.; Brehm, J.M. Key steps in conservation and use of plant genetic resources: An overview. Plant. Genet. Resour. 2021, 15, 103–137. [Google Scholar]
- Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol. Adv. 2021, 48, 107729. [Google Scholar] [CrossRef]
- Maliński, M.P.; Kikowska, M.A.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Thiem, B. Phytochemical screening, phenolic compounds and antioxidant activity of biomass from Lychnis flos-cuculi L. In vitro cultures and intact plants. Plants 2021, 10, 206. [Google Scholar] [CrossRef]
- Sajid, M.; Khan, M.R.; Shah, S.A.; Majid, M.; Ismail, H.; Maryam, S.; Batool, R.; Younis, T. Investigations on anti-inflammatory and analgesic activities of Alnus nitida spach (Endl.) stem bark in sprague dawley rats. J. Ethnopharmacol. 2017, 198, 407–416. [Google Scholar] [CrossRef]
- Shaukat, U.; Ahemad, S.; Wang, M.; Khan, S.I.; Ali, Z.; Tousif, M.I.; Abdallah, H.H.; Khan, I.A.; Saleem, M.; Mahomoodally, M.F. Phenolic contents, chemical profiling, in silico and in vitro anti-inflammatory and anticancer properties of Alnus nitida (spach) Endl. S. Afr. J. Bot. 2021, 138, 148–155. [Google Scholar] [CrossRef]
- Sajid, M.; Khan, M.R.; Shah, N.A.; Shah, S.A.; Ismail, H.; Younis, T.; Zahra, Z. Phytochemical, antioxidant and hepatoprotective effects of Alnus nitida bark in carbon tetrachloride challenged sprague dawley rats. BMC Complement. Altern. Med. 2016, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Haq, Z.; Khan, S.; Ahmad, Z.; Shah, S.; Mustafa, G.; Razzaq, A.; Manan, F.; Ullah, A.; Hussai, M. An evaluation of conservation status and ecological zonation of Alnus nitida; a monophyletic species of the sino-Japanese region. J. Anim. Plant. Sci. 2020, 30, 1224–1235. [Google Scholar]
- Uddina, G.; Raufa, A.; Bibib, S.; Khanc, H.; Haddad, T.B.; Ramadan, M.F. Bioactive compounds and biological activities of Alnus nitida. Alles Nur Kopiert Und Geklaut? 2017, 1, 121. [Google Scholar]
- Sati, S.C.; Sati, N.; Sati, O. Bioactive constituents and medicinal importance of genus alnus. Pharmacogn. Rev. 2011, 5, 174. [Google Scholar] [CrossRef] [Green Version]
- Mingarro, D.M.; Acero, N. Methanolic Alnus glutinosa bark extract affect ROS and TNF-α production. Planta Med. 2011, 77, PM165. [Google Scholar] [CrossRef]
- León-Gonzalez, A.; Acero, N.; Muñoz-Mingarro, D.; López-Lázaro, M.; Martín-Cordero, C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine 2014, 21, 866–870. [Google Scholar] [CrossRef]
- Sajid, M.; Yan, C.; Li, D.; Merugu, S.B.; Negi, H.; Khan, M.R. Potent anti-cancer activity of Alnus nitida against lung cancer cells; in vitro and in vivo studies. Biomed. Pharmacother. 2019, 110, 254–264. [Google Scholar] [CrossRef]
- Nazir, N.; Zahoor, M.; Nisar, M.; Khan, I.; Karim, N.; Abdel-Halim, H.; Ali, A. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: Pharmacological and computational approach. BMC Complement. Altern. Med. 2018, 18, 332. [Google Scholar] [CrossRef]
- Shirazi, O.U.; Khattak, M.; Shukri, N.A.M.; Nasyriq, M.N. Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. J. Pharmacogn. Phytochem. 2014, 3, 104–108. [Google Scholar]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Alam, Z. A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Anal. Methods. 2015, 7, 7753–7757. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Re, Y.M. Antioxidant activity applying an improved FBTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 7–1231. [Google Scholar] [CrossRef]
- Afsar, T.; Trembley, J.H.; Salomon, C.E.; Razak, S.; Khan, M.R.; Ahmed, K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci. Rep. 2016, 6, 23077. [Google Scholar] [CrossRef]
- Moncayo, S.; Cornejo, X.; Castillo, J.; Valdez, V. Preliminary phytochemical screening for antioxidant activity and content of phenols and flavonoids of 18 species of plants native to western Ecuador. Trends Phytochem. Res. 2021, 5, 93–104. [Google Scholar]
- Dahija, S.; Čakar, J.; Vidic, D.; Maksimović, M.; Parić, A. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) moench and Alnus viridis (chaix) dc. extracts. Nat. Prod. Res. 2014, 28, 2317–2320. [Google Scholar] [CrossRef]
- Njoya, E.M. Chapter 31—Medicinal Plants, Antioxidant Potential, and Cancer; Academic Press: San Diego, CA, USA, 2021; pp. 349–357. [Google Scholar]
- Batool, F.; Sabir, S.M.; Rocha, J.; Shah, A.H.; Saify, Z.S.; Ahmed, S.D. Evaluation of antioxidant and free radical scavenging activities of fruit extract from Zanthoxylum alatum: A commonly used spice from Pakistan. Pak. J. Bot. 2010, 42, 4299–4311. [Google Scholar]
- Ren, X.; He, T.; Chang, Y.; Zhao, Y.; Chen, X.; Bai, S.; Wang, L.; Shen, M.; She, G. The Genus alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules 2017, 22, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stević, T.; Šavikin, K.; Zdunić, G.; Stanojković, T.; Juranić, Z.; Janković, T.; Menković, N. Antioxidant, cytotoxic, and antimicrobial activity of Alnus incana (L.) ssp. incana moench and A. viridis (chaix) dc ssp. viridis extracts. J. Med. Food. 2010, 13, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Karim, N.; Abdel-Halim, H.; Khan, I.; Wadood, S.F.; Nisar, M. Phytochemical analysis, molecular docking and antiamnesic effects of methanolic extract of Silybum marianum (L.) gaertn seeds in scopolamine induced memory impairment in mice. J. Ethnopharmacol. 2018, 210, 198–208. [Google Scholar] [CrossRef]
- Nazir, N.; Khalil, A.A.K.; Nisar, M.; Zahoor, M.; Ahmad, S. HPLC-UV characterization, anticholinesterase, and free radical-scavenging activities of rosa moschata herrm. leaves and fruits methanolic extracts. Braz. J. Bot. 2020, 43, 523–530. [Google Scholar] [CrossRef]
- Nazir, N.; Nisar, M.; Ahmad, S.; Wadood, S.; Jan, T.; Zahoor, M.; Ahmad, M.; Ullah, A. Characterization of phenolic compounds in two novel lines of Pisum sativum L. along with their in vitro antioxidant potential. Environ. Sci. Pollut. Res. 2019, 27, 7639–7646. [Google Scholar] [CrossRef]
- Gökbulut, A.; Yazgan, A.N.; Duman, H.; Yilmaz, B.S. Evaluation of the antioxidant potential and chlorogenic acid contents of three endemic sideritis taxa from Turkey. J. Pharm. Sci. 2017, 42, 81. [Google Scholar]
- Moreno-Vásquez, M.J.; Plascencia-Jatomea, M.; Sánchez-Valdes, S.; Tanori-Córdova, J.C.; Castillo-Yañez, F.J.; Quintero-Reyes, I.E.; Graciano-Verdugo, A.Z. Characterization of epigallocatechin-gallate-grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential. Polymers 2021, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Halevas, E.; Mavroidi, B.; Pelecanou, M.; Hatzidimitriou, A.G. Structurally characterized zinc complexes of flavonoids chrysin and quercetin with antioxidant potential. Inorg. Chim. Acta. 2021, 523, 120407. [Google Scholar] [CrossRef]
- Karakurt, S.; Semiz, A.; Celik, G.; Gencler-Ozkan, A.M.; Sen, A.; Adali, O. Contribution of ellagic acid on the antioxidant potential of medicinal plant Epilobium hirsutum. Nutr. Cancer. 2016, 68, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, H.; Susanto, B.H.; Nasikin, M. Solubility and antioxidant potential of a pyrogallol derivative for biodiesel additive. Molecules 2019, 24, 2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S.NO. | Alnus nitida Part Used | TPC (mg GAE/g of Dry wt of the Extract) | TFC (mg QE/g of Dry wt of the Extract) |
---|---|---|---|
1 | Met. Ext Leaves | 43.77 ± 1.07 | 53.25 ± 1.01 |
2 | Met. Ext Stem bark | 42.63 ± 1.02 | 45.55 ± 1.03 |
3 | Met. Ext Seeds | 40.57 ± 1.09 | 43.54 ± 1.04 |
4 | Met. Ext Root | 43.81 ± 1.03 | 51.33 ± 1.06 |
Plant Extract | Concentration (µg/mL) | %DPPH Scavenging Mean ± S.E.M | IC50 (µg/mL) | %ABTS Scavenging Mean ± S.E.M | IC50 (µg/mL) |
---|---|---|---|---|---|
Met. Ext Leaves | 1000 | 59.11 ± 1.32 ** | 340 | 55.16 ± 0.09 ** | 645 |
500 | 53.27 ± 1.61 ** | 47.20 ± 0.04 *** | |||
250 | 47.18 ± 0.42 *** | 41.18 ± 0.01 *** | |||
125 | 38.27 ± 0.93 *** | 38.28 ± 1.16 *** | |||
62.5 | 31.30 ± 0.50 *** | 32.16 ± 1.10 *** | |||
Met. Ext Stem Bark | 1000 | 56.14 ± 0.45 ** | 740 | 51.20 ± 1.10 ** | 845 |
500 | 43.15 ± 0.55 *** | 45.16 ± 1.09 *** | |||
250 | 38.30 ± 0.64 *** | 39.28 ± 1.18 *** | |||
125 | 35.42 ± 0.66 *** | 35.21 ± 1.15 *** | |||
62.5 | 27.20 ± 0.57 *** | 28.42 ± 0.21 *** | |||
Met. Ext Seeds | 1000 | 51.24 ± 1.38 ** | 800 | 48.16 ± 0.10 *** | 960 |
500 | 48.11 ± 1.48 *** | 44.35 ± 0.18 *** | |||
250 | 41.17 ± 1.48 *** | 37.32 ± 1.19 *** | |||
125 | 39.50 ± 0.76 *** | 29.34 ± 1.18 *** | |||
62.5 | 31.20 ± 0.41 *** | 26.35 ± 1.18 *** | |||
Met. Ext Roots | 1000 | 49.20 ± 1.41 *** | 900 | 46.32 ± 1.16 *** | 1000 |
500 | 44.12 ± 1.47 *** | 38.23 ± 1.16 *** | |||
250 | 38.24 ± 1.38*** | 35.51 ± 1.41 *** | |||
125 | 29.23 ± 1.39 *** | 28.23 ± 1.13 *** | |||
62.5 | 22.07 ± 1.29 *** | 23.16 ± 1.09 *** | |||
Ascorbic acid | 1000 | 79.32 ± 0.61 | 60 | 85.55 ± 0.33 | 60 |
500 | 77.30 ± 0.53 | 70.56 ± 0.51 | |||
250 | 65.70 ± 0.65 | 64.51 ± 0.41 | |||
125 | 58.25 ± 0.68 | 59.52 ± 0.33 | |||
62.5 | 51.98 ± 0.26 | 53.46 ± 0.21 |
Part Used | No. of Peak | Retention Time (min) | Phenolic Compounds | Concentration (µg/g) |
---|---|---|---|---|
Leaves | 1 | 2 | Malic acid | 4.019 |
2 | 6 | Chlorogenic acid | 12.535 | |
3 | 8 | Epigallocatechin gallate | 0.039 | |
4 | 10 | Quercetin | 0.016 | |
5 | 16 | Ellagic acid | 0.142 | |
6 | 28 | Pyrogallol | 36.509 | |
Stem bark | 1 | 8 | Epigallocatechin gallate | 0.006 |
2 | 16 | Ellagic acid | 0.143 | |
3 | 28 | Pyrogallol | 104.405 | |
Seeds | 1 | 2 | Malic acid | 4.494 |
2 | 5 | Vitamin C | 0.684 | |
3 | 8 | Epigallocatechin gallate | 0.009 | |
4 | 10 | Quercetin | 0.008 | |
5 | 16 | Ellagic acid | 14.283 | |
6 | 28 | Pyrogallol | 3887.286 | |
Roots | 1 | 2 | Malic acid | 0.284 |
2 | 8 | Epigallocatechin gallate | 0.006 | |
3 | 10 | Quercetin | 0.069 | |
4 | 16 | Ellagic acid | 0.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, J.; Majid, A.; Nazir, N.; Nisar, M.; Khan Khalil, A.A.; Zahoor, M.; Ihsan, M.; Ullah, R.; Bari, A.; Shah, A.B. HPLC Characterization of Phytochemicals and Antioxidant Potential of Alnus nitida (Spach) Endl. Horticulturae 2021, 7, 232. https://doi.org/10.3390/horticulturae7080232
Khan J, Majid A, Nazir N, Nisar M, Khan Khalil AA, Zahoor M, Ihsan M, Ullah R, Bari A, Shah AB. HPLC Characterization of Phytochemicals and Antioxidant Potential of Alnus nitida (Spach) Endl. Horticulturae. 2021; 7(8):232. https://doi.org/10.3390/horticulturae7080232
Chicago/Turabian StyleKhan, Javed, Abdul Majid, Nausheen Nazir, Mohammad Nisar, Atif Ali Khan Khalil, Muhammad Zahoor, Mohammad Ihsan, Riaz Ullah, Ahmed Bari, and Abdul Bari Shah. 2021. "HPLC Characterization of Phytochemicals and Antioxidant Potential of Alnus nitida (Spach) Endl." Horticulturae 7, no. 8: 232. https://doi.org/10.3390/horticulturae7080232
APA StyleKhan, J., Majid, A., Nazir, N., Nisar, M., Khan Khalil, A. A., Zahoor, M., Ihsan, M., Ullah, R., Bari, A., & Shah, A. B. (2021). HPLC Characterization of Phytochemicals and Antioxidant Potential of Alnus nitida (Spach) Endl. Horticulturae, 7(8), 232. https://doi.org/10.3390/horticulturae7080232