Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Measurement of Electrophysiological Parameters of Plant Leaves under Different Clamping Forces
2.3. Calculation of Intrinsically Electrophysiological Parameters of Plant Leaves
2.4. Definition of the Nutrient Plunder Parameters
2.5. Determination of Water Content, Crude Ash and Crude Protein
2.6. The Nutrient Plunder Parameters of Four Plants
2.7. Data Analyses
3. Results
3.1. Fitting Equation Parameters of B. napus and O. violaceus
3.2. Electrophysiological Information and Nutrient Plunder Capacity of B. napus and O. violaceus
3.3. Correlation of Electrophysiological Information and Nutrient Plunder Parameters
3.4. The Nutrient Plunder Capacity of Four Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hopkins, W.G.; Huner, N.P.A. Introduction to Plant Physiology, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2004; p. 89. [Google Scholar]
- Aziz, T.; Ahmed, I.; Farooq, M.; Maqsood, M.A.; Sabir, M. Variation in phosphorus efficiency among Brassica cultivars I: Internal utilization and phosphorus remobilization. J. Plant Nutr. 2011, 34, 2006–2017. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Visser, J.; Lonhienne, T.G.A.; Schmidt, S. Marschner review. Past, present and future of organic nutrients. Plant Soil 2012, 359, 1–18. [Google Scholar] [CrossRef]
- Lu, X.; Toda, H.; Ding, F.; Fang, S.; Xu, H. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur. J. Soil Biol. 2014, 61, 49–57. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Chen, H.; Zheng, L.; Wang, K. Soil microbial community responses to forage grass cultivation in degraded karst soils, Southwest China. Land Degrad. Dev. 2018, 29, 4262–4270. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xing, D.K.; Hang, H.T.; Zhao, K. Principles and Technology of Determination on Plant’ Adaptation to Karst Environment; Science Press: Beijing, China, 2019; pp. 27–28. [Google Scholar]
- Xing, D.K.; Wu, Y.Y. Effects of low nutrition on photosynthetic capacity and accumulation of total N and P in three climber plant species. Chin. J. Geochem. 2015, 34, 115–122. [Google Scholar] [CrossRef]
- Fromm, J.; Lautner, S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2010, 30, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G. Plant Electrophysiology: Theory and Methods; Springer: Berlin, Germany, 2006. [Google Scholar]
- Szechyńska-Hebda, M.; Lewandowska, M.; Karpiński, S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 2017, 8, 684. [Google Scholar] [CrossRef] [PubMed]
- Sukhov, V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 2016, 130, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.J.; Lefebvre, M.; Meijer, E.G.M.; Brown, D.C.W. A signal generator for electrofusion of plant protoplasts. Comput. Electron. Agric. 1990, 5, 179–185. [Google Scholar] [CrossRef]
- Sukhov, V.; Surova, L.; Sherstneva, O.; Bushueva, A.; Vodeneev, V. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct. Plant Biol. 2015, 42, 727–736. [Google Scholar] [CrossRef]
- Sukhov, V.; Gaspirovich, V.; Mysyagin, S.; Vodeneev, V. High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of Pea. Front. Physiol. 2017, 8, 763. [Google Scholar] [CrossRef]
- Favre, P.; Greppin, H.; Agosti, R.D. Accession-dependent action potentials in Arabidopsis. J. Plant Physiol. 2011, 168, 653–660. [Google Scholar] [CrossRef]
- Gil, P.M.; Gurovich, L.; Schaffer, B.; Alcayaga, J.; Rey, S.; Iturriaga, R. Root to leaf electrical signaling in avocado in response to light and soil water content. J. Plant Physiol. 2008, 165, 1070–1078. [Google Scholar] [CrossRef]
- Gallé, A.; Lautner, S.; Flexas, J.; Fromm, J. Environmental stimuli and physiological responses: The current view on electrical signaling. Environ. Exp. Bot. 2015, 114, 15–21. [Google Scholar] [CrossRef]
- Macedo, F.C.O.; Dziubinska, H.; Trebacz, K.; Oliveira, R.F.; Moral, R.A. Action potentials in abscisic acid-deficient tomato mutant generated spontaneously and evoked by electrical stimulation. Acta Physiol. Plant. 2015, 37, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Qin, X.H.; Li, J.H.; Fan, L.F.; Zhou, Q.; Wang, Y.Q.; Zhao, X.; Xie, C.J.; Wang, Z.Y.; Huang, L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ. Exp. Bot. 2019, 160, 120–130. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wu, Y.Y.; Xing, D.K.; Zhao, K.; Yu, R. Rapid measurement of drought resistance in plants based on electrophysiological properties. Trans. ASABE 2015, 58, 1441–1446. [Google Scholar]
- Xing, D.K.; Chen, X.; Wu, Y.Y.; Zwiazek, J.J. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci. Hortic. 2021, 276, 109763. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.Y.; Su, Y.; Xing, D.K.; Dai, Y.; Wu, Y.S.; Fang, L. A plant’s electrical parameters indicate its physiological state: A study of intracellular water metabolism. Plants 2020, 9, 1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, Y.Y.; Su, Y.; Li, H.T.; Fang, L.; Xing, D.K. Plant’s electrophysiological information manifests the composition and nutrient transport characteristics of membrane proteins. Plant Signal. Behav. 2021, e1918867. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, D.J.; Wang, Z.Y.; Wang, Z.Y.; Tang, G.; Huang, L. Plant electrical signal classification based on waveform similarity. Algorithms 2016, 9, 70. [Google Scholar] [CrossRef]
- Zhao, D.J.; Wang, Z.Y.; Li, J.; Wen, X.; Liu, A.; Wang, X.D.; Hou, R.F.; Wang, C.; Huang, L. Recording extracellular signals in plants: A modeling and experimental study. Math. Comput. Model. 2013, 58, 556–563. [Google Scholar] [CrossRef]
- Harker, F.R.; Dunlop, J. Electrical impedance studies of nectarines during coolstorage and fruit ripening. Postharvest Biol. Technol. 1994, 4, 125–134. [Google Scholar] [CrossRef]
- Ibba, P.; Falco, A.; Abera, B.D.; Cantarella, G.; Petti, L.; Lugli, P. Bio-impedance and circuit parameters: An analysis for tracking fruit ripening. Postharvest Biol. Technol. 2020, 159, 110978. [Google Scholar] [CrossRef]
- Javed, Q.; Wu, Y.Y.; Xing, D.K.; Azeem, A.; Ullah, I.; Zaman, M. Re-watering: An effective measure to recover growth and photosynthetic characteristics in salt-stressed Brassica napus L. Chil. J. Agric. Res. 2017, 77, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.K.; Xu, X.J.; Wu, Y.Y.; Liu, Y.J.; Wu, Y.S.; Ni, J.H.; Azeem, A. Leaf tensity: A method for rapid determination of water requirement in formation in Brassica napus L. J. Plant Interact. 2018, 13, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Kertész, Á.; Hlaváčová, Z.; Vozáry, E.; Staroňová, L. Relationship between moisture content and electrical impedance of carrot slices during drying. Int. Agrophys. 2015, 29, 61–66. [Google Scholar] [CrossRef]
- Borges, B.M.M.N.; Strauss, M.; Camelo, P.A.; Sohi, S.P.; Franco, H.C.J. Re-use of sugarcane residue as a novel biochar fertilizer—Increased phosphorus use efficiency and plant yield. J. Clean. Prod. 2020, 262, 121406. [Google Scholar] [CrossRef]
- Geng, Y.J.; Chen, L.; Yang, C.; Jiao, D.Y.; Zhang, Y.H.; Cai, Z.Q. Dry-season deficit irrigation increases agricultural water use efficiency at the expense of yield and agronomic nutrient use efficiency of Sacha Inchi plants in a tropical humid monsoon area. Ind. Crop. Prod. 2017, 109, 570–578. [Google Scholar] [CrossRef]
- Sondergaard, T.E.; Palmgren, S. Energization of transport processes in plants. roles of the plasma membrane H+-ATPase. Plant Physiol. 2004, 136, 2475–2482. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.T.; Kurenda, A.; Stolz, S.; Chetelat, A.; Farmer, E.E. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc. Natl. Acad. Sci. USA 2018, 115, 10178–10183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plants | Branch-Leaves | R-F | Xc-F | XL-F | ||||||
---|---|---|---|---|---|---|---|---|---|---|
y0/k1/b1 | R | p< | p0/k2/b2 | R | p< | q0/k2/b2 | R | p< | ||
Bn | 1-3 | 0.1275/0.1372/0.5297 | 0.9970 | 0.0001 | 0.1165/0.2498/0.4215 | 0.9995 | 0.0001 | 0.1775/0.6429/0.8423 | 0.9995 | 0.0001 |
1-4 | 0.1066/0.2712/0.8598 | 0.9984 | 0.0001 | 0.1012/0.4728/0.8270 | 0.9997 | 0.0001 | 0.1637/0.1833/0.2880 | 0.9987 | 0.0001 | |
1-5 | 0.0946/0.1954/0.8879 | 0.9998 | 0.0001 | 0.0981/0.2483/0.6364 | 0.9996 | 0.0001 | 0.2118/0.2358/0.7457 | 0.9997 | 0.0001 | |
2-3 | 0.1289/0.2148/1.0182 | 0.9850 | 0.0001 | 0.12360.3048/0.8187 | 0.9995 | 0.0001 | 0.2718/0.4526/1.3261 | 0.9950 | 0.0001 | |
2-4 | 0.1289/0.2149/1.0183 | 0.9850 | 0.0001 | 0.1154/0.1574/0.4170 | 0.9995 | 0.0001 | 0.2916/0.2151/0.5994 | 0.9967 | 0.0001 | |
2-5 | 0.1401/0.1851/0.9759 | 0.9945 | 0.0001 | 0.1072/0.2887/0.6193 | 0.9991 | 0.0001 | 0.2133/0.3943/0.7264 | 0.9984 | 0.0001 | |
3-3 | 0.1398/0.1674/1.3117 | 0.9769 | 0.0001 | 0.1251/0.2629/0.6037 | 0.9997 | 0.0001 | 0.2652/0.3072/0.7873 | 0.9981 | 0.0001 | |
3-4 | 0.1636/0.1952/0.9500 | 0.9967 | 0.0001 | 0.1123/0.2999/0.6879 | 0.9995 | 0.0001 | 0.2469/0.4716/0.8073 | 0.9991 | 0.0001 | |
3-5 | 0.1607/0.1982/0.9000 | 0.9960 | 0.0001 | 0.1085/0.2127/0.5295 | 0.9988 | 0.0001 | 0.2041/0.2672/0.5842 | 0.9984 | 0.0001 | |
Ov | 1-3 | 0.0304/0.0758/0.5905 | 0.9851 | 0.0001 | 0.0575/0.0788/0.4176 | 0.9987 | 0.0001 | 0.1146/0.0926/0.4672 | 0.9980 | 0.0001 |
1-4 | 0.0334/0.0870/0.2712 | 0.9976 | 0.0001 | 0.0342/0.1014/0.4579 | 0.9993 | 0.0001 | 0.0615/0.1558/0.3704 | 0.9990 | 0.0001 | |
1-5 | 0.0607/0.0941/0.6812 | 0.9871 | 0.0001 | 0.0459/0.1070/0.5978 | 0.9985 | 0.0001 | 0.0913/0.1707/0.6345 | 0.9950 | 0.0001 | |
2-3 | 0.0472/0.0531/0.1987 | 0.9973 | 0.0001 | 0.0413/0.0816/0.3194 | 0.9981 | 0.0001 | 0.0788/0.1117/0.2786 | 0.9991 | 0.0001 | |
2-4 | 0.0120/0.0320/0.1354 | 0.9953 | 0.0001 | 0.0303/0.0504/0.3437 | 0.9994 | 0.0001 | 0.0591/0.0619/0.2906 | 0.9996 | 0.0001 | |
2-5 | 0.0444/0.0545/0.6730 | 0.9989 | 0.0001 | 0.0368/0.0777/0.7161 | 0.9993 | 0.0001 | 0.0695/0.1127/0.6999 | 0.9994 | 0.0001 | |
3-3 | 0.0370/0.0648/0.3248 | 0.9946 | 0.0001 | 0.0496/0.0796/0.3647 | 0.9994 | 0.0001 | 0.0984/0.0994/0.3576 | 0.9997 | 0.0001 | |
3-4 | 0.0348/0.0558/0.2441 | 0.9973 | 0.0001 | 0.0325/0.0753/0.4173 | 0.9996 | 0.0001 | 0.0606/0.1083/0.3472 | 0.9993 | 0.0001 | |
3-5 | 0.0526/0.0743/0.6778 | 0.9934 | 0.0001 | 0.0414/0.0920/0.6442 | 0.9988 | 0.0001 | 0.0805/0.1416/0.6606 | 0.9973 | 0.0001 |
Plants | IR (MΩ) | IXc (MΩ) | IXL (MΩ) | IZ (MΩ) | IC (pF) |
---|---|---|---|---|---|
Bn | 0.33 ± 0.04 aA | 0.29 ± 0.04 aA | 0.39 ± 0.08 aA | 0.58 ± 0.15 aA | 141.48 ± 28.45 bB |
Ov | 0.10 ± 0.03 bB | 0.08 ± 0.01 bB | 0.12 ± 0.02 bB | 0.20 ± 0.04 bB | 442.25 ± 91.38 aA |
Plants | UNF | NTR | NTC | UAF | NPC |
---|---|---|---|---|---|
Bn | 1.49 ± 0.30 aA | 46.83 ± 14.48 bB | 69.19 ± 27.13 bB | 0.73 ± 0.36 aA | 30.20 ± 5.10 bB |
Ov | 1.36 ± 0.20 bA | 295.36 ± 15.63 aA | 375.88 ± 10.59 aA | 0.63 ± 0.03 bA | 189.24 ± 68.52 aA |
Parameters | Bn | Ov | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NTR | NAF | NPC | Crude Protein | Crude Ash | Water Content | NTR | NAF | NPC | Crude Protein | Crude Ash | Water Content | |
IR | −0.661 * | −0.410 | −0.436 | −0.835 ** | −0.329 | −0.087 | −0.502 | −0.835 ** | −0.426 | −0.410 | −0.178 | −0.929 ** |
IXc | −0.905 ** | −0.071 | −0.726 * | −0.024 | −0.039 | −0.907 ** | −0.609 * | −0.606 * | −0.631 * | −0.624 * | −0.538 | −0.938 ** |
IXL | −0.483 | −0.084 | −0.662 * | −0.378 | −0.851 ** | −0.079 | −0.549 | −0.780 * | −0.470 | −0.558 * | −0.326 | −0.954 ** |
IZ | −0.907 ** | −0.030 | −0.478 | −0.296 | −0.350 | −0.564 * | −0.479 | −0.805 ** | −0.456 | −0.553 * | −0.263 | −0.918 ** |
IC | 0.488 | 0.284 | 0.760 * | 0.194 | 0.184 | 0.759 * | 0.969 ** | 0.072 | 0.471 | 0.326 | 0.520 | 0.611 * |
NTR | 0.753 * | 0.316 | 0.470 | 0.718 * | 0.343 | 0.645 * | ||||||
NAF | 0.236 | 0.202 | 0.127 | 0.160 | 0.259 | 0.652 * | ||||||
NPC | 0.569 * | 0.687 * | 0.646 * | 0.370 | 0.716* | 0.622 * |
Plants | NTR | UAF | NPC | Crude Protein (%) | Crude Ash (%) | Water Content (%) |
---|---|---|---|---|---|---|
AS-Bp | 48.80 ± 17.12 aA | 0.91 ± 0.15 aA | 43.02 ± 11.56 aA | 21.26 ± 1.54 aA | 12.55 ± 1.03 aA | 69.37 ± 3.16 aA |
MRDS-Bp | 0.37 ± 0.03 bB | 0.19 ± 0.03 bB | 0.07 ± 0.01 bB | 19.10 ± 0.72 bB | 10.15 ± 1.06 bB | 66.37 ± 2.01 bB |
St | 66.64 ± 17.31 aA | 0.61 ± 0.12 aA | 39.18 ± 3.58 aA | 3.59 ± 0.37 aA | 4.06 ± 0.15 aA | 92.37 ± 1.31 aA |
Ca | 4.16 ± 1.34 bB | 0.34 ± 0.07 bA | 1.44 ± 0.52 bB | 1.87 ± 0.24 bB | 3.65 ± 0.21 bB | 82.93 ± 0.59 bB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Su, Y.; Wu, Y.; Li, H.; Zhou, Y.; Xing, D. Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information. Horticulturae 2021, 7, 206. https://doi.org/10.3390/horticulturae7080206
Zhang C, Su Y, Wu Y, Li H, Zhou Y, Xing D. Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information. Horticulturae. 2021; 7(8):206. https://doi.org/10.3390/horticulturae7080206
Chicago/Turabian StyleZhang, Cheng, Yue Su, Yanyou Wu, Haitao Li, Ying Zhou, and Deke Xing. 2021. "Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information" Horticulturae 7, no. 8: 206. https://doi.org/10.3390/horticulturae7080206
APA StyleZhang, C., Su, Y., Wu, Y., Li, H., Zhou, Y., & Xing, D. (2021). Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information. Horticulturae, 7(8), 206. https://doi.org/10.3390/horticulturae7080206