Optimization of Different Factors for Initiation of Somatic Embryogenesis in Suspension Cultures in Sandalwood (Santalum album L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Culture Media
2.3. Establishment of Callus Cultures
2.4. Establishment of Cell Suspension Culture and Somatic Embryogenesis
2.5. Plantlet Regeneration
2.6. In Vitro Rooting of Regenerants
2.7. Acclimatization of Regenerants
2.8. Experimental Design and Data Analysis
3. Results
3.1. Establishment of Callus Cultures
3.2. Cell Suspension Culture Establishment and Somatic Embryo Induction
3.3. Influence of Plant Growth Regulators on Establishment of Suspension Culture and Somatic Embryo Induction
3.4. Plantlet Regeneration
3.5. In Vitro Rooting
3.6. Acclimatization of Plantlets
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BA-6 | benzylaminopurine; |
2,4-D | 2,4-dichlorophenoxyacetic acid; |
GA3 | gibberellic acid; |
IBA | indole-3-butyric acid; |
Kn | kinetin; |
MS | Murashige and Skoog medium; |
NAA | α-naphthalene acetic acid; |
PGR | plant growth regulator; |
TDZ | thidizuron. |
References
- Rai, S.N. Status and Cultivation of Sandalwood in India. In USDA Forest Service General Technical Report; USDA Forest Service, Pacific Southwest Research Station: Albany, NY, USA, 1990; pp. 66–71. [Google Scholar]
- Mujib, A. In vitro regeneration of Sandal (Santalum album L.) from leaves. Turk. J. Bot. 2005, 29, 63–67. [Google Scholar]
- Jain, S.H.; Angadi, V.G.; Shankaranarayana, K.H. Edaphic, environmental and genetic factors associated with growth and adaptability of sandal (Santalum album L.) in provenances. Sandalwood Res. Newslett. 2003, 17, 6–7. [Google Scholar]
- Bommareddy, A.; Rule, B.; VanWert, A.L.; Santha, S.; Dwivedi, C. α-Santalol, a derivative of sandalwood oil, induces apoptosis in human prostate cancer cells by causing caspase-3 activation. Phytomedicine 2012, 19, 804–881. [Google Scholar] [CrossRef]
- Ochi, T.; Shibata, H.; Higuti, T.; Kodama, K.; Kusumi, T.; Takaishi, Y. Anti-Helicobacter pylori compounds from Santalum album. J. Nat. Prod. 2005, 68, 819–824. [Google Scholar] [CrossRef]
- Benencia, F.; Courreges, M.C. Antiviral activity of sandalwood oil against Herpes Simplex Viruses-1 and-2. Phytomedicine 1999, 6, 119–123. [Google Scholar] [CrossRef]
- Viswanath, S.; Dhanya, B.; Rathore, T.S. Domestication of sandal (Santalum album L.) in India: Constraints and prospects. Asia Pac. Agroforest. Newslett. 2009, 34, 9. [Google Scholar]
- Peeris, M.; Senarath, W. In vitro propagation of Santalum album L. J. Natl. Sci. Found Sri Lanka 2015, 43, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Rugkhla, A. Intra-Specific and Interspecific Hybridization between Santalum Spicatum and SANTALUM Album. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 1997. [Google Scholar]
- Rangaswamy, N.S.; Rao, P.S. Experimental studies on (Santalum album L.). Establishment of tissue culture of endosperm. Phytomorphology 1963, 14, 450–454. [Google Scholar]
- Bapat, V.A.; Fulzele, D.P.; Heble, M.R.; Rao, P.S. Production of sandalwood somatic embryos in bioreactors. Curr. Sci. 1990, 59, 746–749. [Google Scholar]
- Das, S.; Das, S.; Mujib, A.; Pal, S.; Dey, S. El sandalo (Santalum album). Prensa Aromat. ANO 1981, 4, 12–13. [Google Scholar]
- Das, S.; Das, S.; Pal, S.; Mujib, A.; Sahoo, S.S.; Ponde, N.R.; Gupta, S.; Dey, S. A novel process for rapid mass propagation of the aromatic plant Santalum album in liquid media and bioreactor. Acta Horti. 1999, 502, 281–288. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Bele, D.; Tiwari, G.; Patel, R.P.; Ahuja, A. High frequency in vitro shoots regeneration of sandalwood (Santalum album Linn.) Medicinal Plants. Int. J. Phytomed. Related Indust. 2017, 9, 154–166. [Google Scholar]
- Bapat, V.A.; Rao, P.S. Somatic embryogenesis and plantlet formation in tissue cultures of sandalwood (Santalum album L.). Ann. Bot. 1979, 44, 629–630. [Google Scholar] [CrossRef]
- Bapat, V.A.; Rao, P.S. Regulatory factors for in vitro multiplication of sandalwood tree (Santalum album L.) II. Shoot bud regeneration and somatic embryogenesis in hypocotyl cultures. Proc. Indian. Acad. Sci. 1984, 93, 19–27. [Google Scholar]
- Lakshmi Sita, G.; Raghava Ram, N.V.; Vaidyanathan, C.S. Differentiation of embryoids and plantlets from shoot callus of sandalwood. Plant Sci. Lett. 1980, 15, 265–270. [Google Scholar] [CrossRef]
- Lakshmi Sita, G.; Raghava Ram, N.V. Tissue Culture—A technique for rapid multiplication of sandal trees. In Recent Advances in Research and Management of Sandal (Santalum Album L.) in India; Srimathi, R.A., Kulkarni, H.D., Venkatesan, K.R., Eds.; Associated Publishing Company: New Delhi, India, 1995; pp. 365–372. [Google Scholar]
- Sarangi, B.K.; Golait, A.; Thakre, R. High frequency in vitro shoots regeneration of sandalwood. J. Med. Arom. Plant Sci. 2000, 22, 322–329. [Google Scholar]
- Sanghamitra, S.; Chandni, U. Methodological studies and research on micropropagation of Chandan (Santalum album L.): An endangered plant. Int. J. Sci. Technol. 2010, 1, 10–18. [Google Scholar]
- Singh, C.K.; Raj, S.R.; Jaiswal, P.S.; Patil, V.R.; Punwar, B.S.; Charda, J.C.; Subhash, N. Effect of plant growth regulators on in vitro plant regeneration of sandalwood (Santalum album L.) via organogenesis. Agroforest. Syst. 2016, 90, 281–288. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Teixeira da Silva, J.A.; Ma, G. In vitro plant regeneration from nodal segments of the spontaneous F1 hybrid Santalum yasi × S. album and its parents S. album and S. yasi. Trees 2016, 30, 1983–1994. [Google Scholar] [CrossRef]
- Bele, D.; Tripathi, M.K.; Tiwari, G.; Tiwari, S.; Baghel, B.S. Microcloning of sandalwood (Santalum album Linn.) from cultured leaf discs. Int. J. Agric. Technol. 2012, 8, 571–583. [Google Scholar]
- Singh, C.K.; Raj, S.R.; Patil, V.R.; Jaiswal, P.S.; Subhash, N. Plant regeneration from leaf explants of mature sandalwood (Santalum album L.) trees under in vitro conditions. In Vitro Cell. Dev. Biol. Plant 2013, 49, 216–222. [Google Scholar] [CrossRef]
- Chaturani, G.D.G.; Subasinglhe, S.; Jayatilleke, M.P. In vitroestablishment, germination and growth performance of red sandalwood (Pterocarpus santalinus L.). Trop. Agric. Res. Ext. 2006, 9, 116–130. [Google Scholar]
- Smith, M.A.L.; McCown, B.H. A comparison of source tissue for protoplast isolation from three woody plant species. Plant Sci. Lett. 1983, 28, 149–156. [Google Scholar] [CrossRef]
- Dey, S. Mass cloning of Santalum album L. through somatic embryogenesis. Wanatca Yearb. 2001, 25, 23–26. [Google Scholar]
- Tripathi, M.K.; Tiwari, S.; Khare, U.K. In vitro selection for resistance against purple blotch disease of onion (Allium cepa L.) caused by Alternaria porri. Biotechnology 2008, 7, 80–86. [Google Scholar]
- Jhankare, A.; Tripathi, M.K.; Tiwari, G.; Pandey, G.N.; Patel, R.; Tiwari, S.; Baghel, B.S. Development of resistant lines against leaf blight disease of [(Withania somnifera (L.) Dunal.)] caused by Alternaria alternata through in vitro selection. Plant Cell Biotechnol. Mol. Biol. 2011, 12, 21–30. [Google Scholar]
- Upadhyay, S.; Singh, A.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Patel, R.P. In vitro selection for resistance against charcoal rot disease of soybean [Glycine max (L.) Merrill] caused by Macrophomina phaseolina (Tassi) Goid. Leg. Res. 2020. [Google Scholar] [CrossRef]
- Mishra, N.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Ahuja, A.; Sapre, S.; Tiwari, S. Cell suspension culture and in vitroscreening for drought tolerance in soybean using poly-ethylene glycol. Plants 2021, 10, 517. [Google Scholar] [CrossRef] [PubMed]
- Uikey, D.S.; Tiwari, G.; Tripathi, M.K.; Patel, R.P. Secondary metabolite production of Reserpine and Ajmalicine in Rauvolfia Serpentina (L.) Benth. through callus and cell suspension culture. Int. J. Indigen. Med. Plants 2014, 47, 1633–1646. [Google Scholar]
- Patidar, S.L.; Tiwari, G.; Tripathi, M.K.; Patel, R.P.; Mishra, S.N. In vitro biosynthesis and quantification of plumbazin in cell suspension culture of Plumbago zeylanica. Med. Plants Int. J. Phytomed. Rel. Indust. 2015, 7, 60–67. [Google Scholar]
- Tripathi, M.K.; Mishra, N.; Tiwari, S.; Singh, S.; Shyam, C.; Ahuja, A. Plant tissue culture technology: Sustainable option for mining high value pharmaceutical compounds. Int. J. Curr. Mcrobiol. Appl. Sci. 2019, 8, 102–110. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc. Int. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Oxford IBH Pub: New Delhi, India, 1967. [Google Scholar]
- Tiwari, S.; Tripathi, M.K.; Khare, U.K.; Rana, R. Initiation of embryogenic suspension cultures and plant regeneration in onion (Allium cepa L.). Indian J. Biotechnol. 2007, 6, 100–106. [Google Scholar]
- Jhankare, A.; Tripathi, M.K.; Tiwari, G.; Pandey, G.N.; Tiwari, S.; Baghel, B.S. Establishment of embryogenic cell suspension cultures and plantlet regeneration in ashwagandha (Withania somnifera L.). Indian J. Plant Physiol. 2011, 16, 174–184. [Google Scholar]
- Bairwa, S.K.; Tripathi, M.K.; Kushwah, S.S.; Tiwari, S.; Baghel, B.S. Somatic embryogenesis and plantlet regeneration from embryogenic suspension culture in muskmelon (Cucumis melo L). Indian J. Hort. 2012, 69, 338–347. [Google Scholar]
- Uikey, D.S.; Tripathi, M.K.; Tiwari, G.; Patel, R.P.; Ahuja, A. Embryogenic cell suspension culture induction and plantlet regeneration of Rauvolfia serpentina (L.) Benth.: Influence of different plant growth regulator concentrations and combinations. Medicinal Plants-Int. J. Phytomed. Rel. Indust. 2016, 8, 153–162. [Google Scholar]
- Patidar, S.L.; Tripathi, M.K.; Tiwari, G.; Patel, R.P.; Ahuja, A. Standardization of an efficient and reproducible embryogenic cell suspension culture protocol for production of secondary metabolites in Plumbago zeylanica Linn. Ecol. Environ. Conser. 2017, 23, 373–380. [Google Scholar]
- Sharma, D.K.; Tripathi, M.K.; Tiwari, R.; Baghel, B.S.; Ahuja, A. Somatic embryogenesis and plantlet regeneration via embryogenic suspensions of grape (Vitis vinifera L.). Asian J. Microbiol. Biotechnol. Environ. Sci. 2018, S112–S125. [Google Scholar]
- Shyam, C.; Tripathi, M.K.; Tiwari, S.; Ahuja, A.; Tripathi, N.; Gupta, N. In vitroregeneration from callus and cell suspension cultures in Indian mustard [Brassica juncea (Linn.) Czern& Coss]. Int. J. Agric. Technol. 2021, 17, 1095–1112. [Google Scholar]
- Tewes, A. High yield isolation and recovery of protoplasts from suspension cultures of tomato (L. esculentum). Z. Pflanzenphysiol. 1984, 113, 141–150. [Google Scholar] [CrossRef]
- Oridate, T.; Oosawa, K. Somatic embryogenesis and plant regeneration from suspension callus culture in melon (Cucumis melo L.). Jpn. J. Breed. 1986, 36, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Jhankare, A.; Tiwari, G.; Tripathi, M.K.; Baghel, B.S.; Tiwari, S. Plant regeneration from mature cotyledon, embryo and hypocotyls explants of Withania somnifera (L.) Dunal. Int. J. Agric. Technol. 2011, 7, 1023–1035. [Google Scholar]
- Rugkhla, A.; Jones, M.G.K. Somatic embryogenesis and plantlet formation in Santalum album and S. Spicatum. J. Exp. Bot. 1998, 49, 563–571. [Google Scholar] [CrossRef]
- Bele, D.; Mishra, N.; Tiwari, S.; Tripathi, M.K.; Tiwari, G. Massive in vitrocloning of sandalwood (Santalum album linn.) via cultured nodal segments. Curr. J. Appl. Sci. Technol. 2019, 33, 1–14. [Google Scholar] [CrossRef]
- Nagarajun, P.; McKenzie, J.S.; Walton, P.D. Embryogenesis and plant regeneration of Medicago spp. in tissue culture. Plant Cell Rep. 1986, 5, 77–80. [Google Scholar] [CrossRef]
- Vibhute, M.; Tripathi, M.K.; Tiwari, R.; Patel, R.P.; Baghel, B.S.; Ahuja, A. Comparison ofin vitro plantlet regeneration aptitude of three Citrus species from cultured nodal segments viaorganogenic mode. Ecol. Environ. Conserv. 2017, 23, 1043–1055. [Google Scholar]
- Tiwari, S.; Tripathi, M.K. Comparison of morphogenic ability of callus types induced from different explants of soybean (Glycine max L. Merrill). Leg. Res. 2005, 28, 115–118. [Google Scholar]
- Sharma, P.; Tripathi, M.K.; Tiwari, G.; Tiwari, S.; Baghel, B.S. Regeneration of liquorice (Glycyrrhiza glabra L.) from cultured nodal segments. Indian J. Plant Physiol. 2010, 15, 1–10. [Google Scholar]
- Patidar, D.K.; Tripathi, M.K.; Tiwari, R.; Baghel, B.S.; Tiwari, S. In vitro propagation of Emblica officinalis from nodal segment culture. Int.J. Agric. Technol. 2010, 6, 245–256. [Google Scholar]
- Vibhute, M.; Tripathi, M.K.; Tiwari, R.; Baghel, B.S.; Tiwari, S. Interspecific morphogenic ability differences in citrus. Int.J. Agric. Technol. 2012, 8, 625–638. [Google Scholar]
- Tripathi, M.K.; Malviya, R.K.; Vidhya Shankar, M.; Patel, R.P. Effect of plant growth regulators on in vitro morphogenesis in gladiolus (Gladiolus hybridus HORT). Int. J. Agric. Technol. 2017, 13, 583–599. [Google Scholar]
- Rao, P.S.; Bapat, V.A. Somatic embryogenesis in sandalwood (Santalum album L.). In Somatic Embryogenesis in Woody Plants; Springer Netherlands: Dordrecht, The Netherlands, 1995; pp. 153–170. [Google Scholar]
Auxin ▼ | Conc. Mg L−1 | Embryogenic Suspension Cultures | |||||
---|---|---|---|---|---|---|---|
Mature Embryonic Axis-Derived Calli | Mature Cotyledon-Derived Calli | ||||||
Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | ||
Control | 0.0 | * 1.00 ± 0.08 | 100 | 1.00 ± 0.09 | 100 | ||
MS.1D | 0.1 | 1.14± 0.10 | 114 | 137.24 l (2.14) | 1.12 ± 0.08 | 112 | 123.44 m (2.10) |
MS.5D | 0.5 | 1.44 ± 0.20 | 144 | 152.48 j (2.19) | 1.35 ± 0.16 | 135 | 148.63 j (2.17) |
MSD | 1.0 | 1.56 ± 0.24 | 156 | 168.20 h (2.23) | 1.49 ± 0.20 | 149 | 163.44 h (2.22) |
MS2D | 2.0 | 2.40 ± 0.30 | 240 | 248.64 d (2.40) | 2.24 ± 0.26 | 224 | 242.63 d (2.39) |
MS3D | 3.0 | 2.72 ± 0.36 | 272 | 282.42 a (2.45) | 2.66 ± 0.30 | 266 | 278.44 a (2.45) |
MS4D | 4.0 | 2.98 ± 0.38 | 298 | 275.82 b (2.44) | 2.87 ± 0.32 | 287 | 262.49 b (2.42) |
MS5D | 5.0 | 1.48 ± 0.14 | 148 | 124.62 n (2.10) | 1.37 ± 0.12 | 137 | 120.75 n (2.09) |
MS.1N | 0.1 | 1.16 ± 0.12 | 116 | 132.14 m (2.12) | 1.12 ± 0.12 | 112 | 127.14 l (2.11) |
MS.5N | 0.5 | 1.44 ± 0.18 | 144 | 142.44 k (2.16) | 1.28 ± 0.16 | 128 | 138.62 k (2.14) |
MSN | 1.0 | 1.68 ± 0.24 | 168 | 160.49 i (2.21) | 1.49 ± 0.22 | 149 | 154.15 i (2.19) |
MS2N | 2.0 | 2.16 ± 0.28 | 216 | 228.66 f (2.36) | 2.10 ± 0.26 | 210 | 224.18 f (2.35) |
MS3N | 3.0 | 2.80 ± 0.32 | 280 | 252.48 c (2.40) | 2.40 ± 0.30 | 240 | 248.44 c (2.40) |
MS4N | 4.0 | 2.92 ± 0.36 | 292 | 245.26 e (2.39) | 2.88 ± 0.34 | 288 | 240.61 e (2.38) |
MS5N | 5.0 | 1.66 ± 0.20 | 166 | 188.36 g (2.28) | 1.47 ± 0.18 | 147 | 182.73 g (2.26) |
Mean | 195.66 (2.27) | 189.69 (2.26) | |||||
CD0.05 | 0.0140 | 0.0107 |
Cytokinin ▼ | Conc. Mg L−1 | Embryogenic Suspension Cultures | |||||
---|---|---|---|---|---|---|---|
Mature Embryonic Axis-Derived Calli | Mature Cotyledon-Derived Calli | ||||||
Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | ||
Control | 0.0 | 1.00 ± 0.06 | 100 | 1.00 ± 0.04 | 100 | ||
MS.1B | 0.1 | 1.14 ± 0.12 | 114 | 129.22 p (2.11) | 1.16 ± 0.11 | 116 | 128.64 n (2.11) |
MS.5B | 0.5 | 1.28 ± 0.16 | 128 | 157.62 i (2.20) | 1.23 ± 0.13 | 123 | 150.48 i (2.18) |
MSB | 1.0 | 1.34 ± 0.18 | 134 | 172.43 f (2.24) | 1.30 ± 0.16 | 130 | 166.18 f (2.23) |
MS2B | 2.0 | 1.42 ± 0.20 | 142 | 185.15 e (2.27) | 1.36 ± 0.18 | 136 | 180.17 e (2.26) |
MS3B | 3.0 | 1.22 ± 0.14 | 122 | 163.81 h (2.22) | 1.16 ± 0.12 | 116 | 158.24 h (2.20) |
MS4B | 4.0 | CC | - | 135.55 m (2.14) | CC | - | 130.24 n (2.12) |
MS5B | 5.0 | CC | - | 123.61 s (2.10) | CC | - | 119.16 s (2.08) |
MS.1Kn | 0.1 | 1.34 ± 0.14 | 134 | 187.44 d (2.28) | 1.27 ± 0.12 | 127 | 180.22 d (2.26) |
MS.5Kn | 0.5 | 1.41 ± 0.18 | 141 | 192.26 c (2.29) | 1.45 ± 0.16 | 145 | 187.69 c (2.28) |
MSKn | 1.0 | 1.50 ± 0.20 | 150 | 197.82 b (2.30) | 1.43 ± 0.18 | 143 | 191.24 b (2.29) |
MS2Kn | 2.0 | 1.78 ± 0.24 | 178 | 215.38 a (2.34) | 1.69 ± 0.22 | 169 | 211.43 a (2.33) |
MS3Kn | 3.0 | 1.62 ± 0.19 | 162 | 153.16 j (2.19) | 1.54 ± 0.18 | 154 | 148.28 j (2.17) |
MS4Kn | 4.0 | 1.44 ± 0.17 | 144 | 133.46 n (2.13) | 1.31 ± 0.15 | 131 | 128.44 o (2.11) |
MS5Kn | 5.0 | HR | - | 124.66 q (2.10) | HR | - | 119.43 r (2.08) |
MS.1Td | 0.1 | 1.34 ± 0.14 | 134 | 167.28 g (2.23) | 1.27 ± 0.12 | 127 | 159.33 g (2.21) |
MS.2Td | 0.2 | 1.43 ± 0.16 | 143 | 142.48 k (2.16) | 1.37 ± 0.14 | 137 | 136.20 k (2.14) |
MS.3Td | 0.3 | 1.25 ± 0.12 | 125 | 138.49 l (2.14) | 1.21 ± 0.11 | 121 | 132.22 l (2.12) |
MS.4Td | 0.4 | 1.22 ± 0.10 | 122 | 130.14 o (2.12) | 1.16 ± 0.10 | 116 | 126.34 p (2.10) |
MS.5Td | 0.5 | 1.21 ± 0.09 | 121 | 124.22 r (2.10) | 1.23 ± 0.11 | 123 | 120.41 q (2.08) |
MSTd | 1.0 | 1.15 ± 0.08 | 115 | 120.23 t (2.08) | 1.18 ± 0.09 | 118 | 114.38 t (2.06) |
MS2Td | 2.0 | 1.11 ± 0.08 | 111 | 117.44 u (2.07) | 1.12 ± 0.09 | 112 | 113.78 u (2.06) |
MS3Td | 3.0 | CC | - | 112.92 v (2.06) | CC | - | 108.26 v (2.04) |
MS4Td | 4.0 | CC | - | 108.44 w (2.04) | CC | - | 106.26 w (2.03) |
MS5Td | 5.0 | CC | - | 106.66 x (2.03) | CC | - | 104.26 x (2.02) |
Mean | 147.49 (2.16) | 142.55 (2.14) | |||||
CD0.05 | 0.0129 | 0.0190 |
Culture Medium ▼ | Embryogenic Suspension Cultures | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Growth Regulators mg L−1 | Mature Embryonic Axis-Derived Calli | Mature Cotyledon-Derived Calli | ||||||||
2,4-D | NAA | BA | Kn | Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | Increase in FW (g) * | RG (%) | Number(s) of Embryoids/Flask ** | |
Control | - | - | - | - | 1.00 ± 0.10 | 100 | 1.00 ± 0.12 | 100 | ||
MS.1D.5B | 0.1 | - | 0.5 | - | 1.36 ± 0.16 | 136 | 162.21 n (2.21) | 1.28 ± 0.14 | 128 | 161.23 m (2.21) |
MS.5D.5B | 0.5 | - | 0.5 | - | 1.45 ± 0.18 | 145 | 182.41 i (2.26) | 1.36 ± 0.15 | 136 | 170.66 k (2.24) |
MSD.5B | 1.0 | - | 0.5 | - | 1.52 ± 0.20 | 152 | 182.63 h (2.27) | 1.46 ± 0.18 | 146 | 179.40 h (2.26) |
MS2D.5B | 2.0 | - | 0.5 | - | 3.86 ± 0.34 | 386 | 321.44 a (2.51) | 3.72 ± 0.30 | 372 | 318.62 a (2.51) |
MS3D.5B | 3.0 | - | 0.5 | - | 3.34 ± 0.24 | 334 | 294.42 b (2.47) | 3.26 ± 0.22 | 326 | 290.47 b (2.47) |
MS4D.5B | 4.0 | - | 0.5 | - | 202 ± 0.22 | 202 | 234.12 e (2.37) | 1.98 ± 0.20 | 198 | 230.34 e (2.37) |
MS.1D.5Kn | 0.1 | - | - | 0.5 | 1.40 ± 0.16 | 140 | 144.13 s (2.16) | 1.32 ± 0.14 | 132 | 141.23 s (2.15) |
MS.5D.5Kn | 0.5 | - | - | 0.5 | 1.58 ± 0.20 | 158 | 155.13 o (2.20) | 1.50 ± 0.18 | 150 | 150.63 p (2.18) |
MSD.5Kn | 1.0 | - | - | 0.5 | 2.32 ± 0.28 | 232 | 168.40 l (2.23) | 2.24 ± 0.26 | 224 | 165.38 l (2.22) |
MS2D.5Kn | 2.0 | - | - | 0.5 | 2.04 ± 0.22 | 204 | 279.48 c (2.45) | 2.88 ± 0.21 | 288 | 275.42 c (2.44) |
MS3D.5Kn | 3.0 | - | - | 0.5 | 1.74 ± 0.18 | 174 | 248.52 d (2.40) | 1.62 ± 0.17 | 162 | 242.50 d (2.39) |
MS4D.5Kn | 4.0 | - | - | 0.5 | HR | - | 198.36 f (2.30) | HR | - | 194.40 f (2.29) |
MS.1N.5B | - | 0.1 | 0.5 | - | 1.24 ± 0.16 | 124 | 125.25 w (2.10) | 1.20 ± 0.14 | 120 | 120.17 w (2.08) |
MS.5N.5B | - | 0.5 | 0.5 | 1.34 ± 0.18 | 134 | 134.16 v (2.13) | 1.32 ± 0.16 | 132 | 130.17 v (2.12) | |
MSN.5B | - | 1.0 | 0.5 | 1.48 ± 0.18 | 148 | 154.66 p (2.19) | 1.36 ± 0.16 | 136 | 152.28 o (2.19) | |
MS2N.5B | - | 2.0 | 0.5 | 2.58 ± 0.22 | 258 | 178.37 k (2.26) | 2.52 ± 0.20 | 252 | 175.29 i (2.25) | |
MS3N.5B | - | 3.0 | 0.5 | 2.28 ± 0.16 | 228 | 185.40 g (2.27) | 2.22 ± 0.14 | 222 | 182.39 g (2.27) | |
MS4N.5B | - | 4.0 | 0.5 | 1.22 ± 0.11 | 122 | 152.74 q (2.19) | 1.21 ± 0.10 | 121 | 150.37 q (2.18) | |
MS.1N.5Kn | - | 0.1 | - | 0.5 | 1.18 ± 0.10 | 118 | 120.39 x (2.08) | 1.14 ± 0.09 | 114 | 115.24 x (2.06) |
MS.5N.5Kn | - | 0.5 | - | 0.5 | 136 ± 0.18 | 136 | 138.42 t (2.14) | 1.28 ± 0.16 | 128 | 132.46 t (2.13) |
MSN.5Kn | - | 1.0 | - | 0.5 | 1.50 ± 0.20 | 150 | 162.47 m (2.22) | 1.42 ± 0.18 | 142 | 158.38 n (2.20) |
MS2N.5Kn | - | 2.0 | - | 0.5 | 1.20 ± 0.14 | 120 | 180.18 j (2.26) | 1.16 ± 0.12 | 116 | 174.22 j (2.25) |
MS3N.5Kn | - | 3.0 | - | 0.5 | HR | - | 145.10 r (2.17) | HR | - | 142.26 r (2.16) |
MS4N.5Kn | - | 4.0 | - | 0.5 | CM | - | 135.34 u (2.13) | CM | - | 132.33 u (2.12) |
Mean | 182.66 (2.25) | 178.58 (2.24) | ||||||||
CD0.05 | 0.176 | 0.0178 |
Culture Media ▼ | Plantlet Regeneration (%) | ||||||
---|---|---|---|---|---|---|---|
Plant Growth Regulator mg L−1 | Mature Embryonic Axis -Derived Cell Clumps/Embryoids | Mature Cotyledon-Derived Cell Clumps/Embryoids | |||||
BAP | TDZ | Kn | GA3 | NAA | |||
MS.5B.5G | 0.5 | - | - | 0.5 | - | 52.54 lm (46.44) | 46.94 m (43.23) |
MSB.5G | 1.0 | - | - | 0.5 | - | 57.62 i (49.36) | 51.82 k (46.02) |
MS2B.5G | 2.0 | - | - | 0.5 | - | 64.28 gh (53.28) | 58.48 i (49.86) |
MS.5BG | 0.5 | - | - | 1.0 | - | 58.34 i (49.78) | 54.49 j (47.56) |
MSBG | 1.0 | - | - | 1.0 | - | 63.66 h (52.91) | 56.14 j (48.51) |
MS2BG | 2.0 | - | - | 1.0 | - | 72.15 d (58.13) | 66.52 e (54.63) |
MS.5Td 5G | - | 0.5 | - | 0.5 | - | 55.57 jk (48.18) | 49.88 l (44.91) |
MSTd.5G | - | 1.0 | - | 0.5 | - | 63.12 h (52.59) | 59.42 hi (50.41) |
MS2Td.5G | - | 2.0 | - | 0.5 | - | 70.66 de (57.18) | 66.68 de (54.72) |
MS.5TdG | - | 0.5 | - | 1.0 | - | 64.54 g (53.43) | 60.48 h (51.03) |
MSTdG | - | 1.0 | - | 1.0 | - | 67.42 f (55.18) | 61.32 g (51.52) |
MS2TdG | - | 2.0 | - | 1.0 | - | 78.15 b (62.11) | 73.14 b (58.76) |
MS.5Kn.5G | - | - | 0.5 | 0.5 | - | 44.17 n (41.63) | 39.66 n (39.02) |
MSKn.5G | - | - | 1.0 | 0.5 | - | 52.22 m (46.25) | 46.42 m (42.93) |
MS2Kn.5G | - | - | 2.0 | 0.5 | - | 57.98 i (49.57) | 51.88 k (46.06) |
MS.5KnG | - | - | 0.5 | 1.0 | - | 54.19 kl (47.38) | 52.14 k (46.21) |
MSKnG | - | - | 1.0 | 1.0 | - | 56.92 ij (48.96) | 50.78 kl (45.43) |
MS2KnG | - | - | 2.0 | 1.0 | - | 62.55 h (52.25) | 60.54 gh (51.07) |
MS.5BG.5N | 0.5 | - | - | 1.0 | 0.5 | 71.44 d (57.68) | 68.40 d (55.78) |
MS.5TdG.5N | - | 0.5 | - | 1.0 | 0.5 | 75.59 c (60.37) | 70.44 c (57.04) |
MS.5KnG.5N | - | - | 0.5 | 1.0 | 0.5 | 62.77 h (52.38) | 58.41 i (49.82) |
MSBG.5N | 1.0 | - | - | 1.0 | 0.5 | 76.82 bc (61.20) | 72.80 b (58.54) |
MSTdG.5N | - | 1.0 | - | 1.0 | 0.5 | 84.43 a (66.74) | 80.19 a (63.55) |
MSKnG.5N | - | - | 1.0 | 1.0 | 0.5 | 69.23 e (56.29) | 63.82 f (53.00) |
Mean | 64.02 (53.30) | 59.20 (50.40) | |||||
CD0.05 | 1.809 | 1.738 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, M.K.; Tripathi, N.; Tiwari, S.; Tiwari, G.; Mishra, N.; Bele, D.; Patel, R.P.; Sapre, S.; Tiwari, S. Optimization of Different Factors for Initiation of Somatic Embryogenesis in Suspension Cultures in Sandalwood (Santalum album L.). Horticulturae 2021, 7, 118. https://doi.org/10.3390/horticulturae7050118
Tripathi MK, Tripathi N, Tiwari S, Tiwari G, Mishra N, Bele D, Patel RP, Sapre S, Tiwari S. Optimization of Different Factors for Initiation of Somatic Embryogenesis in Suspension Cultures in Sandalwood (Santalum album L.). Horticulturae. 2021; 7(5):118. https://doi.org/10.3390/horticulturae7050118
Chicago/Turabian StyleTripathi, Manoj Kumar, Niraj Tripathi, Sushma Tiwari, Gyanendra Tiwari, Nishi Mishra, Dilip Bele, Rajesh Prasad Patel, Swapnil Sapre, and Sharad Tiwari. 2021. "Optimization of Different Factors for Initiation of Somatic Embryogenesis in Suspension Cultures in Sandalwood (Santalum album L.)" Horticulturae 7, no. 5: 118. https://doi.org/10.3390/horticulturae7050118
APA StyleTripathi, M. K., Tripathi, N., Tiwari, S., Tiwari, G., Mishra, N., Bele, D., Patel, R. P., Sapre, S., & Tiwari, S. (2021). Optimization of Different Factors for Initiation of Somatic Embryogenesis in Suspension Cultures in Sandalwood (Santalum album L.). Horticulturae, 7(5), 118. https://doi.org/10.3390/horticulturae7050118