Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Fresh L. barbarum Fruit
2.2. Abnormal Sample Elimination Using the (MD)
2.3. Extraction of Nine Components
3. Results and Discussion
3.1. Image Processing
3.2. Establishing the Maturity Detection Model
3.3. Field Experiment Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, Q.; Chen, Z. Progress of studies on the pharmacology effect of Lycium Barbarum polysaccharides. Strait Pharm. J. 2005, 17, 4–7. [Google Scholar] [CrossRef]
- Dong, J.; Yang, J.; Wang, Y. Resources of Lycium species and related research progress. China J. Chin. Mater. Med. 2008, 33, 2020–2027. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Wu, G.; Yuan, Q.; Ma, S.; Yu, C.; Duan, Z.; Xing, J.; Liu, X. Design and operating parameter optimization of comb brush vibratory harvesting device for wolfberry. Trans. CSAE 2018, 34, 75–82. [Google Scholar] [CrossRef]
- Forino, M.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chem. 2016, 194, 1254–1259. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Vannini, S.; Cataldi, S.; Moretti, M.; Villarini, M.; Fioretti, B.; Albi, E.; Beccari, T.; Codini, M. Effect of Lycium barbarum berries cultivated in Umbria (Italy) on human hepatocellular carcinoma cells. J. Biotechnol. 2016, 231S, S26–S27. [Google Scholar] [CrossRef]
- Po, K.K.; Leung, J.W.; Chan, J.N.; Fung, T.K.; Sánchez-Vidaña, D.I.; Sin, E.L.; So, K.; Lau, B.W.; Siu, A.M. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression. Brain Res. Bull. 2017, 134, 10–17. [Google Scholar] [CrossRef]
- Ma, J. Research status and prospect of the machanized technology of picking wolfberry in China. Mech. Res. Appl. 2017, 30, 151–153, 155. [Google Scholar] [CrossRef]
- So, J.D. Vibration characteristics of boxthorn (Lycium chinense Mill) branches. Appl. Eng. Agric. 2001, 17, 755–760. [Google Scholar] [CrossRef]
- So, J.D. Vibratory harvesting machine for boxthorn (Lycium chinense Mill) berries. Trans. ASAE 2003, 46, 211–221. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, H.; Ding, W.; Mei, S. Machanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode. Trans. CSAE 2015, 31, 20–28. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Han, B.; Chen, J. Research on laws of wolfberry dropping based on high-speed camera. J. Agric. Mech. Res. 2018, 40, 166–170. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Zhang, J.; Li, W. Design and experiment of vibrating wolfberry harvester. Trans. CSAM 2018, 49, 97–102. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Tan, Y.; Li, W. Optimal design and experiment on variable pacing combing brush picking device for Lycium barbarum. Trans. CSAM 2018, 49, 83–90. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Chen, Y.; Bu, L.; Hu, G.; Zhang, E. Design and experiment on vibrating and comb brushing harvester for Lycium barbarum. Trans. CSAM 2019, 50, 152–161. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Chen, Y.; Wang, Z.; Chen, J. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. [Google Scholar] [CrossRef]
- Tijskens, L.M.M.; Zerbini, P.E.; Schouten, R.E.; Vanoli, M.; Jacob, S.; Grassi, M.; Cubeddu, R.; Spinelli, L.; Torricelli, A. Assessing harvest maturity in nectarines. Postharvest Biol. Technol. 2007, 45, 204–213. [Google Scholar] [CrossRef]
- Wan, P.; Toudeshki, A.; Tan, H.; Ehsani, R. A methodology for fresh tomato maturity detection using computer vision. Comput. Electron. Agric. 2018, 146, 43–50. [Google Scholar] [CrossRef]
- Lien, C.; Ay, C.; Ting, C. Non-destructive impact test for assessment of tomato maturity. J. Food Eng. 2009, 91, 402–407. [Google Scholar] [CrossRef]
- Mizushima, A.; Lu, R. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput. Electron. Agric. 2013, 94, 29–37. [Google Scholar] [CrossRef]
- Bhatt, A.K.; Pant, D. Automatic apple grading model development based on back propagation neural network and machine vision, and its performance evaluation. AI Soc. 2015, 30, 45–56. [Google Scholar] [CrossRef]
- Sun, S.; Wu, Q.; Jiao, L.; Long, Y.; He, D.; Song, H. Recognition of green apples based on fuzzy set theory and manifold ranking algorithm. Optik 2018, 165, 395–407. [Google Scholar] [CrossRef]
- Nagle, M.; Intani, K.; Romano, G.; Mahayothee, B.; Sardsud, V.; Müller, J. Determination of surface color of ‘all yellow’ mango cultivars using computer vision. Int. J. Agric. Biol. Eng. 2016, 9, 42–50. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Gao, Y.; Li, X.; Yang, F.; Zhou, Y. Mahalanobis distance based hyperspectral charateristic discrimination of leaves of different desert tree specie. Spectrosc. Spectr. Anal. 2014, 34, 3358–3362. [Google Scholar] [CrossRef]
- Ke, T.; Lv, H.; Sun, M.; Zhang, L. A biased least squares support vector machine based on Mahalanobis distance for PU learning. Physica A 2018, 509, 422–438. [Google Scholar] [CrossRef]
- Cusano, C.; Ciocca, G.; Schettini, R. Image annotation using SVM. Proc. SPIE 2003, 5304. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Yao, K.; Cheng, M.; Wu, Y. Infrared ship-target recognition based on SVM classification. Infrared Laser Eng. 2016, 45, 0104004-1–0104004-6. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Schouten, R.E.; Huijben, T.P.M.; Tijskens, L.M.M.; Van Kooten, O. Modelling quality attributes of truss tomatoes: Linking colour and firmness maturity. Postharvest Biol. Technol. 2007, 45, 298–306. [Google Scholar] [CrossRef]
- Aranda-Sanchez, J.I.; Baltazar, A.; González-Aguilar, G. Implementation of a Bayesian classifier using repeated measurements for discrimination of tomato fruit ripening stages. Biosyst. Eng. 2009, 102, 274–284. [Google Scholar] [CrossRef]
- Poel, B.V.D.; Bulens, I.; Hertog, M.L.A.T.M.; Van Gastel, L.; De Proft, M.P.; Nicolai, B.M.; Geeraer, A.H. Model-based classification of tomato fruit development and ripening related to physiological maturity. Postharvest Biol. Technol. 2012, 67, 59–67. [Google Scholar] [CrossRef]
- Ishii, M.; Kusada, I.; Yamane, H. Quantitative decision method of appropriate apple harvest time using color information. Electr. Commun. Jpn. 2018, 101, 61–73. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, S.; Liu, X.; Zhang, E.; Song, Z. Identification of wine grape varieties based on near-infrared hyperspectral imaging. Appl. Eng. Agric. 2019, 35, 959–967. [Google Scholar] [CrossRef]
Item | Mean Value (N) | Standard Deviation (N) |
---|---|---|
Ripe fruit | 0.72 | 0.31 |
Half-ripe fruit | 1.66 | 0.49 |
Unripe fruit | 2.54 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, J. Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information. Horticulturae 2021, 7, 108. https://doi.org/10.3390/horticulturae7050108
Zhao J, Chen J. Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information. Horticulturae. 2021; 7(5):108. https://doi.org/10.3390/horticulturae7050108
Chicago/Turabian StyleZhao, Jian, and Jun Chen. 2021. "Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information" Horticulturae 7, no. 5: 108. https://doi.org/10.3390/horticulturae7050108
APA StyleZhao, J., & Chen, J. (2021). Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information. Horticulturae, 7(5), 108. https://doi.org/10.3390/horticulturae7050108