Cherry Tomato Drying: Sun versus Convective Oven
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chemicals
2.3. Drying Process, Water Content and Water Activity (aw)
2.4. pH, Total Acidity and Total Soluble Solids
2.5. Ascorbic Acid
2.6. Determination of Carotenoid Contents
2.7. Total Polyphenols Content
2.8. Polyphenol Oxidase (PPO) Activity
2.9. Antioxidant Activity
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Kinetics of Drying and Desorption Isotherms
3.2. pH, Total Acidity and Brix Values
3.3. Ascorbic Acid
3.4. Carotenoid Contents
3.5. Total Polyphenols and PPO Activity
3.6. Total Antioxidant Activity
3.7. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Togrul, I.T.; Pehlivan, D. Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng. 2002, 55, 209–216. [Google Scholar] [CrossRef]
- Giovanelli, G.; Paradiso, A. Stability of dried and intermediate moisture tomato pulp during storage. J. Agric. Food Chem. 2002, 50, 7277–7281. [Google Scholar] [CrossRef]
- Akanbi, C.T.; Adeyemi, R.S.; Ojo, A. Drying characteristics and sorption isotherm of tomato slices. J. Food Eng. 2006, 73, 157–163. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Michaluk, E. Drying of tomato pretreated with calcium. Dry Technol. 2004, 22, 1813–1827. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Vu Le, H.; Pomarańska-Łazuka, W. Effect of pre-treatment on convective drying of tomatoes. J. Food Eng. 2002, 54, 141–146. [Google Scholar] [CrossRef]
- Sacilik, K.; Keskin, R.; Elicin, A.K. Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng. 2006, 73, 231–238. [Google Scholar] [CrossRef]
- Kross, R.K.; Cavalcanti Mata, M.E.R.M.; Duarte, M.E.M.; Silveira, V., Jr. Drying kinetic of tomatoes submits to previous osmotic treatment. In Proceedings of the 14th International Drying Symposium, São Paulo, Brazil, 22–25 August 2004; pp. 22–25. [Google Scholar]
- Doymaz, I.; Kipcak, A.S. Effect of pre-treatment and air temperature on drying time of cherry tomato. J. Therm. Eng. 2018, 4, 1648–1655. [Google Scholar]
- Doymaz, I. Drying kinetics of black grapes treated with different solutions. J. Food Eng. 2006, 76, 212–217. [Google Scholar] [CrossRef]
- Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291–1297. [Google Scholar]
- Kaur, R.; Kaur, K.; Ahluwalia, P. Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato and sweet pepper. LWT-Food Sci. Technol. 2020, 117, 108604. [Google Scholar] [CrossRef]
- Mrkìc, V.; Cocci, E.; Rosa, M.D.; Sacchetti, G. Effect of drying conditions on bioactive compounds and antioxidant activity of broccoli (Brassica oleracea L.). J. Sci. Food Agric. 2006, 86, 1559–1566. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Schwartz, S.J. Lycopene Chemical and Biological Propertie. Food Technol. 1999, 53, 38–45. [Google Scholar]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Effect of semi-drying on the antioxidant components of tomatoes. Food Chem. 2006, 94, 90–97. [Google Scholar] [CrossRef]
- Toor, R.K.; Lister, C.E.; Savage, G.P. Antioxidant activities of New Zealand grown tomatoes. Int. J. Food Sci. Nutr. 2005, 56, 597–605. [Google Scholar] [CrossRef]
- Shi, J.; Maguer, M.; Le Kakuda, Y.; Liptay, A.; Niekamp, F. Lycopene degradation and isomerization in tomato dehydration. Food Res. Int. 2006, 32, 15–21. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Rao, M.A.; Lee, C.Y.; Katz, J.; Cooley, H.J. A Kinetic Study of the Loss of Vitamin C, Color, and Firmness during Thermal Processing of Canned Peas. J. Food Sci. 1981, 46, 636–637. [Google Scholar] [CrossRef]
- Zanoni, B.; Peri, C.; Nani, R.; Lavelli, V. Oxidative heat damage of tomato halves as affected by drying. Food Res. Int. 1998, 31, 395–401. [Google Scholar] [CrossRef]
- Spagna, G.; Barbagallo, R.N.; Chisari, M.; Branca, F. Characterization of a tomato polyphenol oxidase and its role in browning and lycopene content. J. Agric. Food Chem. 2005, 53, 2032–2038. [Google Scholar] [CrossRef]
- Hidalgo, A.; Pompei, C. Hydroxymethylfurfural and furosine reaction kinetics in tomato products. J. Agric. Food Chem. 2000, 48, 78–82. [Google Scholar] [CrossRef]
- Jeyaprakash, S.; Heffernan, J.E.; Driscoll, R.H.; Frank, D.C. Impact of drying technologies on tomato flavor composition and sensory quality. LWT-Food Sci. Technol. 2020, 120, 108888. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemistry, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Rapisarda, P.; Intelisano, S. Sample preparation for vitamin C analysis of pigmented orange juices. Ital. J. Food Sci. 1996, 8, 251–256. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Mazzocco, F.; Pifferi, P.G. An improvement of the spectrophotometric method for the determination of tyrosinase catecholase activity by Besthorn’s hydrazone. Anal. Biochem. 1976, 72, 643–647. [Google Scholar] [CrossRef]
- Todaro, A.; Peluso, O.; Catalano, A.E.; Mauromicale, G.; Spagna, G. Polyphenol oxidase activity from three sicilian artichoke [Cynara cardunculus L. Var. scolymus L. (Fiori)] cultivars: Studies and technological application on minimally processed production. J. Agric. Food Chem. 2010, 58, 1714–1718. [Google Scholar] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Lo Scalzo, R.; Todaro, A.; Rapisarda, P. Methods used to evaluate the peroxyl (ROO.) Radical scavenging capacities of four common antioxidants. Eur. Food Res. Technol. 2012, 235, 1141–1146. [Google Scholar] [CrossRef]
- Todaro, A.; Cavallaro, R.; La Malfa, S.; Continella, A.; Gentile, A.; Fischer, U.A.; Carle, R.; Spagna, G. Anthocyanin profile and antioxidant activity of freshly squeezed pomegranate (Punica granatum L.) Juices of Sicilian and Spanish provenances. Ital. J. Food Sci. 2016, 28, 464–479. [Google Scholar]
- Pagliarini, E. Valutazione Sensoriale: Aspetti Teorici, Pratici e Metodologici; Hoepli: Milan, Italy, 2002. [Google Scholar]
- Smith, S.E. The sorption of water vapor by high polymers. J. Am. Chem. Soc. 1947, 69, 646–651. [Google Scholar] [CrossRef]
- Iglesias, H.A.; Chirife, J. An Empirical Equation for Fitting Water Sorption Isotherms of Fruits and Related Products. Can. Inst. Food Sci. Technol. J. 1978, 11, 12–15. [Google Scholar] [CrossRef]
- Chen, C.S. Water Activity—Concentration Models for Solutions of Sugars, Salts and Acids. J. Food Sci. 1989, 54, 1318–1321. [Google Scholar] [CrossRef]
- Henderson, S.M. A basic concept of equilibrium moisture. Agric. Eng. 1952, 33, 29–32. [Google Scholar]
- Peishi, C.; Pei, D.C.T. A mathematical model of drying processes. Int. J. Heat Mass Transf. 1989, 32, 297–310. [Google Scholar] [CrossRef]
- Lavelli, V.; Hippeli, S.; Peri, C.; Elstner, E.F. Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J. Agric. Food Chem. 1999, 47, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Gahler, S.; Otto, K.; Böhm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
Descriptors | |
---|---|
Visuals | Color Shine Dryness degree |
Olfactory | Salsa smell Fresh tomato Baked Off-odor |
Taste | Salty Bitter Sweet |
Tactile in the mouth | Juiciness Cohesiveness Adhesiveness |
Flavor | Tomato sauce Tomato Cooked Off flavor |
Overall assessment | Body |
Model Name | Equation Formula | Error % at Different T | ||
---|---|---|---|---|
50 °C | 60 °C | 70 °C | ||
Smith | 5.0 | 4.7 | 5.0 | |
Gab | 3.5 | 4.7 | 5.2 | |
Iglesias-Chirife | 6.7 | 9.2 | 11.0 | |
Chen | . | 11.0 | 14.5 | 23.0 |
Henderson | 32.0 | 7.7 | 17.6 |
% H2O | 50 °C | 60 °C | 70 °C | Sun |
---|---|---|---|---|
100 | 3008 ± 217 b z | 3008 ± 217 b | 3008 ± 217 b | 3008 ± 217 b |
70 | 1537 ± 101 e | 2220 ± 154 c | 1833 ± 46 d | 823 ± 30 g |
50 | 772 ± 41 g | 2029 ± 204 c | 2439 ± 133 c | 758 ± 53 g |
30 | 1263 ± 46 f | 1680 ± 35 d | 2171 ± 82 c | 978 ± 11 g |
15 | 1707 ± 47 d | 1908 ± 32 d | 3488 ± 146 a | 1859 ± 91 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfeo, V.; Planeta, D.; Velotto, S.; Palmeri, R.; Todaro, A. Cherry Tomato Drying: Sun versus Convective Oven. Horticulturae 2021, 7, 40. https://doi.org/10.3390/horticulturae7030040
Alfeo V, Planeta D, Velotto S, Palmeri R, Todaro A. Cherry Tomato Drying: Sun versus Convective Oven. Horticulturae. 2021; 7(3):40. https://doi.org/10.3390/horticulturae7030040
Chicago/Turabian StyleAlfeo, Vincenzo, Diego Planeta, Salvatore Velotto, Rosa Palmeri, and Aldo Todaro. 2021. "Cherry Tomato Drying: Sun versus Convective Oven" Horticulturae 7, no. 3: 40. https://doi.org/10.3390/horticulturae7030040
APA StyleAlfeo, V., Planeta, D., Velotto, S., Palmeri, R., & Todaro, A. (2021). Cherry Tomato Drying: Sun versus Convective Oven. Horticulturae, 7(3), 40. https://doi.org/10.3390/horticulturae7030040