Reply to Comment on “The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems”
1. Responses to the AA’s Statement
- 1.
- The AA questioned fish feces as the source of contamination.
- Reverse osmosis water for water supply (not the contamination source):
- Seeds (not the contamination source):
- Fish:
- Fish feces:
- Handling:
- 2.
- The AA claimed that further research must be performed to prove that cold-blooded, non-mammal aquatic species such as tilapia can harbor STEC and that a wide group of studies, university professors and industry professionals currently refute the possibility that tilapia can harbor this strain.
- 3.
- The AA claimed that the lack of traceability is a concern
- 4.
- The AA suspected that a two-month-old system in a controlled environment lab could have been so quickly contaminated.
- 5.
- The AA claimed that if hydroponics used synthetic nutrients, there would be very little chance for the E. coli to survive without a biological host or continuous contamination source being present.
- 6.
- The AA claimed that the lack of third party or peer university test verification is a concern.
- 7.
- The AA expressed concerns about our handling and management practices and the safety of our students and staff.
- 8.
- The AA pointed out that our recommendation on sterilization is inaccurate and could be detrimental to proper food safety practices.
2. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Popma, T.; Masser, M. Tilapia: Life History and Biology; SRAC Publication No. 283; Southern Regional Aquaculture Center: Stoneville, MS, USA, 1999.
- Bettelheim, K.A.; Beutin, L. Rapid laboratory identification and characterization of verocytotoxigenic (Shiga toxin producing) Escherichia coli (VTEC/STEC). J. Appl. Microbiol. 2003, 95, 205–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, L.B.; Piazza, R.M.F. Production of Shiga toxin by Shiga toxin-expressing Escherichia coli (STEC) in broth media: From divergence to definition. Lett. Appl. Microbiol. 2007, 45, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. The use of the so-called ‘tubs’ for transporting and storing fresh fishery products. EFSA J. 2020, 18, e06091. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). E. coli (Escherichia coli): Questions and Answers. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED); 2014. Available online: https://www.cdc.gov/ecoli/general/index.html (accessed on 1 June 2020).
- Kumar, H.S.; Otta, S.K.; Karunasagar, I.; Karunasagar, I. Detection of Shiga-toxigenic Escherichia coli (STEC) in fresh seafood and meat marketed in Mangalore, India by PCR. Lett. Appl. Microbiol. 2001, 33, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Teophilo, G.N.D.; dos Fernandes Vieira, R.H.S.; dos Prazeres Rodrigues, D.; Menezes, F.G.R. Escherichia coli isolated from seafood: Toxicity and plasmid profiles. Int. Microbiol. 2002, 5, 11–14. [Google Scholar] [CrossRef]
- Cardozo, M.V.; Borges, C.A.; Beraldo, L.G.; de Oliveira, F.E.; de Avila, F.A. Prevalence and characterization of shigatoxigenic (STEC) and enteropathogenic (EPEC) Escherichia coli strains from fishes for human consumption isolated by Polymerase Chain Reaction (PCR). FEBS J. 2012, 279, 530. [Google Scholar]
- Koo, H.-J.; Kwak, H.-S.; Yoon, S.-H.; Woo, G.-J. Phylogenetic group distribution and prevalence of virulence genes in Escherichia coli isolates from food samples in South Korea. World J. Microbiol. Biotechnol. 2012, 28, 1813–1816. [Google Scholar] [CrossRef]
- Murugadas, V. Distribution of Pathotypes of E. coli in seafood from retail markets of Kerala (India). Indian J. Fish. 2016, 63, 152–155. [Google Scholar]
- Cardozo, M.V.; Borges, C.A.; Beraldo, L.G.; Maluta, R.P.; Pollo, A.S.; Borzi, M.M.; dos Santos, L.F.; Kariyawasam, S.; de Avila, F.A. Shigatoxigenic and atypical enteropathogenic Escherichia coli in fish for human consumption. Braz. J. Microbiol. 2018, 49, 936–941. [Google Scholar] [CrossRef]
- Leila Dib, A.; Agabou, A.; Chahed, A.; Kurekci, C.; Moreno, E.; Espigares, M.; Espigares, E. Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control 2018, 88, 54–60. [Google Scholar] [CrossRef]
- Hussein, M.A.; Merwad, A.M.A.; Elabbasy, M.T.; Suelam, I.I.A.; Abdelwahab, A.M.; Taha, M.A. Prevalence of enterotoxigenic Staphylococcus aureus and Shiga toxin producing Escherichia coli in fish in Egypt: Quality parameters and public health hazard. Vector-Borne Zoonotic Dis. 2019, 19, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.F.; Barbosa, M.M.C.; de Rezende Pinto, F.; Guariz, C.S.L.; Maluta, R.P.; Rossi, J.R.; Rossi, G.A.M.; Lemos, M.V.F.; do Amaral, L.A. Shiga toxigenic and enteropathogenic Escherichia coli in water and fish from pay-to-fish ponds. Lett. Appl. Microbiol. 2016, 62, 216–220. [Google Scholar] [CrossRef]
- Alagarsamy, S.; Thampuran, N.; Joseph, T.C. Virulence genes, serobiotypes and antibiotic resistance profile of Escherichia coli strains isolated from aquaculture and other sources. Aquac. Res. 2010, 41, 1003–1014. [Google Scholar] [CrossRef]
- Siddhnath, K.; Majumdar, R.K.; Parhi, J.; Sharma, S.; Mehta, N.K.; Laishram, M. Detection and characterization of Shiga toxin-producing Escherichia coli from carps from integrated aquaculture system. Aquaculture 2018, 487, 97–101. [Google Scholar] [CrossRef]
- Buras, N.; Duek, L.; Niv, S.; Hepher, B.; Sandbank, E. Microbiological aspects of fish grown in treated waste-water. Water Res. 1987, 21, 1–10. [Google Scholar] [CrossRef]
- Apun, K.; Yusof, A.M.; Jugang, K. Distribution of bacteria in tropical freshwater fish and ponds. Int. J. Environ. Health Res. 1999, 9, 285–292. [Google Scholar] [CrossRef]
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture: Report of a World Health Organization (WHO) Scientific Group; WHO Technical Report Series No. 778; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Pillay, T.V.R. Aquaculture and the Environment, 2nd ed.; Blackwell Pub.: Oxford, UK; Malden, MA, USA, 2004. [Google Scholar]
- Geldreich, E.E.; Clarke, N.A. Bacterial pollution indicators in intestinal tract of freshwater fish. Appl. Microbiol. 1966, 14, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Deering, A.J.; Kim, H.J. The Occurrence of Shiga toxin-producing E. coli in aquaponic and hydroponic systems. Horticulturae 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.D.; Doyle, M.P. Survival of enterohemorrhagic Escherichia coli O157: H7 in water. J. Food Prot. 1998, 61, 662–667. [Google Scholar] [CrossRef]
- Youssef, H.; Eltimawy, A.K.; Ahmed, S. Role of aerobic intestinal pathogens of fresh-water fish in transmission of human-diseases. J. Food Prot. 1992, 55, 739–740. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbial Specifications for Food. Microorganisms in Foods. 5: Microbiological Specifications of Food Pathogens; Springer: New York, NY, USA, 1996; p. 513. [Google Scholar]
- Dewey-Mattia, D.; Kisselburgh, H.; Manikonda, K.; Silver, R.; Subramhanya, S.; Sundararaman, P.; Whitham, H.; Crowe, S.J. Surveillance for Foodborne Disease Outbreaks; Annual Report 2017; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017. Available online: https://www.cdc.gov/fdoss/pdf/2017_FoodBorneOutbreaks_508.pdf (accessed on 10 August 2019).
- Richardson, L.C.; Bazaco, M.C.; Parker, C.C.; Dewey-Mattia, D.; Golden, N.; Jones, K.; Klontz, K.; Travis, C.; Kufel, J.Z.; Cole, D. An updated scheme for categorizing foods implicated in foodborne disease outbreaks: A tri-agency collaboration. Foodborne Pathog. Dis. 2017, 14, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef]
- Sivapalasingam, S.; Friedman, C.R.; Cohen, L.; Tauxe, R.V. Fresh Produce: A Growing Cause of Outbreaks of Foodborne Illness in the United States, 1973 through 1997. J. Food Prot. 2004, 67, 2342–2353. [Google Scholar] [CrossRef]
- Hanning, I.B.; Nutt, J.D.; Ricke, S.C. Salmonellosis Outbreaks in the United States Due to Fresh Produce: Sources and Potential Intervention Measures. Foodborne Pathog. Dis. 2009, 6, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.J.; Mahon, B.E.; Vieira, A.R.; Gould, L.H. Vital Signs: Multistate Foodborne Outbreaks—United States, 2010–2014. MMWR-Morb. Mortal. Wkly. Rep. 2015, 64, 1221–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, K.M.; Hall, A.J.; Gould, L.H. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiol. Infect. 2015, 143, 3011–3021. [Google Scholar] [CrossRef] [Green Version]
- Pattillo, A.; Shaw, A.M.; Currey, C.J.; Xie, K.; Rosentrater, K.A. Efficacy of UV-Sterilization in Reducing Food-Borne Pathogens in an Aquaponics System. 2015. Available online: https://southcenters.osu.edu/sites/southc/files/site-library/site-documents/abc/aquaponics_workshop/AquaponicsFoodSafetyandHumanHealthAllenPatillo.pdf (accessed on 20 January 2020).
- Yang, T.; Kim, H.J. Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Sci. Hortic. 2019, 256, 108619. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Kim, H.J. Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. J. Clean. Prod. 2020, 274, 122619. [Google Scholar] [CrossRef]
- Chen, P.; Zhu, G.; Kim, H.J.; Brown, P.; Huang, J.Y. Comparative life cycle assessment of aquaponics and hydroponics in the midwestern United States. J. Clean. Prod. 2020, 275, 122888. [Google Scholar] [CrossRef]
- Shaw, A.; Helterbran, K.; Evans, M.R.; Currey, C. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin–Producing Escherichia coli, and Salmonella in Water and Hydroponic Fertilizer Solutions. J. Food Prot. 2016, 79, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-J.; Deering, A.J.; Kim, H.-J. Reply to Comment on “The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems”. Horticulturae 2021, 7, 37. https://doi.org/10.3390/horticulturae7030037
Wang Y-J, Deering AJ, Kim H-J. Reply to Comment on “The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems”. Horticulturae. 2021; 7(3):37. https://doi.org/10.3390/horticulturae7030037
Chicago/Turabian StyleWang, Yi-Ju, Amanda J. Deering, and Hye-Ji Kim. 2021. "Reply to Comment on “The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems”" Horticulturae 7, no. 3: 37. https://doi.org/10.3390/horticulturae7030037
APA StyleWang, Y. -J., Deering, A. J., & Kim, H. -J. (2021). Reply to Comment on “The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems”. Horticulturae, 7(3), 37. https://doi.org/10.3390/horticulturae7030037