Reassessing the Role of Potassium in Tomato Grown with Water Shortages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Stress Treatments
2.2. Leaf Water Status
2.3. Gas Exchange and Photochemical Reflectance Index
2.4. Hydroponic Culture and Root Hydraulic Conductivity
2.5. Analysis of K Concentration
2.6. Harvest
2.7. Free Amino Acid Contents in Leaves and Flowers
2.8. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Møller, I.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Pier, P.A.; Berkowitz, G.A. Modulation of water stress effects on photosynthesis by altered leaf K+. Plant Physiol. 1987, 85, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Sen Gupta, A.; Berkowitz, G.A.; Pier, P.A. Maintenance of photosynthesis at low leaf water potential in wheat. Role of potassium status and irrigation history. Plant Physiol. 1989, 89, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebersbach, H.; Steingrobe, B.; Claassen, N. Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil. Plant Soil 2004, 260, 79–88. [Google Scholar] [CrossRef]
- Tanner, W.; Beevers, H. Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc. Natl. Acad. Sci. USA 2001, 98, 9443–9447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J.; Karley, A.J. Potassium. In Cell Biology of Metals and Nutrients; Hell, R., Mengel, R.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 199–224. [Google Scholar] [CrossRef]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ Nutrition in Plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. Food Agric. Environ. 2003, 1, 176–183. [Google Scholar]
- Besford, R.T.; Maw, G.A. Effect of potassium nutrition on tomato plant growth and fruit development. Plant Soil 1975, 42, 395–412. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Marcelis, L.F. Regulation of K uptake, water uptake, and growth of tomato during K starvation and recovery. Sci. Hortic. 2004, 100, 83–101. [Google Scholar] [CrossRef]
- Kanai, S.; Moghaieb, R.E.; El-Shemy, H.A.; Panigrahi, R.; Mohapatra, P.K.; Ito, J.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 2011, 180, 368–374. [Google Scholar] [CrossRef]
- Leidi, E.O.; Barragán, V.; Rubio, L.; El-Hamdaoui, A.; Ruiz, M.T.; Cubero, B.; Fernández, J.A.; Bressan, R.A.; Hasegawa, P.M.; Quintero, F.J.; et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 2010, 61, 495–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meissner, R.; Jacobson, Y.; Melamed, S.; Levyatuv, S.; Shalev, G.; Ashri, A.; Elkind, Y.; Levy, A. A new model system for tomato genetics. Plant J. 1997, 12, 1465–1472. [Google Scholar] [CrossRef]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- E Menezes-Silva, P.; Sanglard, L.M.V.P.; Ávila, R.T.; E Morais, L.; Martins, S.C.V.; Nobres, P.; Patreze, C.M.; A Ferreira, M.; Araújo, W.L.; Fernie, A.R.; et al. Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. J. Exp. Bot. 2017, 68, 4309–4322. [Google Scholar] [CrossRef] [PubMed]
- Reigosa Roger, M.J. Handbook of Plant Ecophysiology Techniques; Kluwer Academic Publishers: Dordrecht, The Netherland, 2001; ISBN 978-0-306-48057-7. [Google Scholar]
- Cabañero, F.J.; Carvajal, M. Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum, L. plants. J. Plant Physiol. 2007, 164, 1300–1310. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, G. New colorimetric methods of sugar analysis. In Methods in Enzymology; Neufeld, E.F., Ginsburg, V., Eds.; Academic Press: New York, NY, USA, 1969; Volume 8, pp. 85–95. [Google Scholar]
- Armengaud, P.; Sulpice, R.; Miller, A.J.; Stitt, M.; Amtmann, A.; Gibon, Y. Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots. Plant Physiol. 2009, 150, 772–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, A.; Pardo, J.M.; Leidi, E.O. Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. Physiol. Plant. 2017, 163, 88–102. [Google Scholar] [CrossRef]
- Verslues, P.E.; Sharma, S. Proline Metabolism and Its Implications for Plant-Environment Interaction. Arab. Book 2010, 8, e0140. [Google Scholar] [CrossRef] [Green Version]
- Heinrikson, R.L.; Meredith, S.C. Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 1984, 136, 65–74. [Google Scholar] [CrossRef]
- Rodriguez-Rosales, M.P.; Jiang, X.; Gálvez, F.J.; Aranda, M.N.; Cubero, B.; Venema, K. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol. 2008, 179, 366–377. [Google Scholar] [CrossRef]
- Huertas, R.; Rubio, L.; Cagnac, O.; García-Sánchez, M.J.; Alché, J.D.D.; Venema, K.; Fernández, J.A.; Rodríguez-Rosales, M.P. The K+/H+antiporter LeNHX2 increases salt tolerance by improving K+homeostasis in transgenic tomato. Plant Cell Environ. 2013, 36, 2135–2149. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.D.; Hitz, W.D. Metabolic Responses of Mesophytes to Plant Water Deficits. Annu. Rev. Plant Physiol. 1982, 33, 163–203. [Google Scholar] [CrossRef]
- Mengel, K.; Viro, M. Effect of Potassium Supply on the Transport of Photosynthates to the Fruits of Tomatoes (Lycopersicon esculentum). Physiol. Plant. 1974, 30, 295–300. [Google Scholar] [CrossRef]
- Sung, J.; Sonn, Y.; Lee, Y.; Kang, S.; Ha, S.; Krishnan, H.B.; Oh, T.-K. Compositional changes of selected amino acids, organic acids, and soluble sugars in the xylem sap of N, P, or K-deficient tomato plants. J. Plant Nutr. Soil Sci. 2015, 178, 792–797. [Google Scholar] [CrossRef]
- Zhang, C.; Filella, I.; Liu, D.; Ogaya, R.; Llusia, J.; Asensio, D.; Peñuelas, J. Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland. Remote. Sens. 2017, 9, 1189. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.N.; Jensen, C.R.; Losch, R. The Interaction Effects of Potassium and Drought in Field-Grown Barley. I. Yield, Water-Use Efficiency and Growth. Acta Agric. Scand. Sect. B Plant Soil Sci. 1992, 42, 34–44. [Google Scholar] [CrossRef]
- Egilla, J.N.; Davies, F.T.; Boutton, T.W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 2005, 43, 135–140. [Google Scholar] [CrossRef]
- Jákli, B.; Tränkner, M.; Senbayram, M.; Dittert, K. Adequate supply of potassium improves plant water-use efficiency but not leaf water-use efficiency of spring wheat. J. Plant Nutr. Soil Sci. 2016, 179, 733–745. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [Green Version]
- Quintero, J.M.; Fournier, J.M.; Ramos, J.; Benlloch, M. K+ status and ABA affect both exudation rate and hydraulic conductivity in sunflower roots. Physiol. Plant. 1998, 102, 279–284. [Google Scholar] [CrossRef]
- Hose, E.; Steudle, E.; Hartung, W. Abscisic acid and hydraulic conductivity of maize roots: A study using cell- and root-pressure probes. Planta 2000, 211, 874–882. [Google Scholar] [CrossRef]
- Schraut, D.; Heilmeier, H.; Hartung, W. Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J. Exp. Bot. 2005, 56, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Hartung, W. Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal. J. Exp. Bot. 2007, 59, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Sano, T.; Tamaoki, M.; Nakajima, N.; Kondo, N.; Hasezawa, S. Ethylene Inhibits Abscisic Acid-Induced Stomatal Closure in Arabidopsis. Plant Physiol. 2005, 138, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benlloch-González, M.; Romera, J.; Cristescu, S.; Harren, F.J.M.; Fournier, J.M.; Benlloch, M. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. J. Exp. Bot. 2010, 61, 1139–1145. [Google Scholar] [CrossRef]
- Sharp, R.E.; Lenoble, M.E.; Else, M.A.; Thorne, E.T.; Gherardi, F. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: Evidence for an interaction with ethylene. J. Exp. Bot. 2000, 51, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Sperdouli, I.; Moustakas, M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J. Plant Physiol. 2012, 169, 577–585. [Google Scholar] [CrossRef]
- Borghi, M.; Fernie, A.R. Floral metabolism of sugars and aminoacids: Implications for pollinators’preferences and seed and fruit set. Plant Physiol. 2017, 175, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
- Schilling, G.; Eißner, H.; Schmidt, L.; Peiter, E. Yield formation of five crop species under water shortage and differential potassium supply. J. Plant Nutr. Soil Sci. 2016, 179, 234–243. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
K Supply (mM) | Water Treatment | Shoot (g) | Root (g) | Shoot/ Root Ratio | Number of Fruits | Fruit Size (g/fruit) | Yield (g/plant) |
---|---|---|---|---|---|---|---|
0.1 | drought | 4.4 ± 0.9 a | 1.6 ± 0.4 a | 2.7 ± 0.5 a | 0 | 0 | 0 |
irrigated | 23.6 ± 3.4 b | 3.4 ± 0.8 b | 7.2 ± 1.4 b | 7 ± 4.5 b | 1.9 ± 1.2 ab | 9.0 ± 3.5 b | |
1 | drought | 7.9 ± 1.1 c | 1.9 ± 0.7 a | 4.5 ± 1.4 c | 2 ± 1.2 a | 1.3 ± 0.8 b | 2.0 ± 1.5 ac |
irrigated | 34.2 ± 5.1 d | 4.5 ± 1.3 c | 7.9 ± 1.5 b | 11 ± 1.6 c | 1.9 ± 0.5 ab | 20.4 ± 3.2 d | |
10 | drought | 9.6 ± 1.8 c | 2.2 ± 0.9 a | 4.8 ± 1.7 c | 2 ± 1.7 a | 1.7 ± 0.4 ab | 3.3 ± 2.6 c |
irrigated | 29.0 ± 3.2 e | 4.1 ± 0.6 c | 7.1 ± 0.9 b | 9 ± 2.8 d | 2.1 ± 0.5 a | 17.2 ± 2.7 e | |
ANOVA | |||||||
K | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 | |
W | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
K*W | p < 0.001 | ns | p < 0.05 | ns | p < 0.01 | p < 0.01 |
K Supply (mM) | Line | Fruit Number | Fruit Size (g/fruit) | Fruit Yield (g/plant) | Brix (°) | K (%) |
---|---|---|---|---|---|---|
0.1 | WT | 3 ± 1.1 ab | 0.8 ± 0.7 a | 1.8 ± 1.3 a | 5.1 ± 0.4 a | 21.6 ± 3.5 a |
N367 | 1 ± 0.6 a | 0.2 ± 0.1 a | 0.2 ± 0.1 a | 5.9 ± 0.1 ab | 27.9 ± 2.2 a | |
1 | WT | 5 ± 2.6 ab | 2.5 ± 0.9 c | 10.5 ± 2.2 b | 5.9 ± 0.8 ab | 32.3 ± 5.3 ab |
N367 | 6 ± 2.1 bc | 1.0 ± 0.5 ab | 6.0 ± 1.3 c | 6.7 ± 0.8 b | 43.0 ± 14.7 b | |
10 | WT | 7 ± 4.8 bc | 1.9 ± 0.6 bc | 11.0 ± 2.8 b | 6.6 ± 0.9 b | 60.5 ± 4.3 c |
N367 | 10 ± 2.8 c | 0.9 ± 0.4 a | 9.0 ± 3.1 bc | 6.2 ± 0.9 b | 60.6 ± 9.2 c | |
ANOVA | ||||||
K | p < 0.01 | p < 0.01 | p < 0.001 | p < 0.05 | p < 0.001 | |
L | ns | p < 0.01 | p < 0.01 | ns | ns | |
K*L | ns | ns | ns | ns | ns |
K Supply (mM) | Line | Growth (g FW/plant) | K Concentration (%) | ||||
---|---|---|---|---|---|---|---|
Leaves | Stems | Roots | Leaves | Stems | Roots | ||
0.1 | WT | 2.68 ± 0.32 a | 2.20 ± 0.45 a | 2.10 ± 0.35 ab | 0.28 ± 0.10 a | 0.38 ± 0.11 a | 0.13 ± 0.07 a |
N367 | 2.30 ± 0.21 a | 3.50 ± 0.28 b | 1.48 ± 0.19 a | 0.68 ± 0.15 ab | 1.10 ± 0.10 a | 0.28 ± 0.08 a | |
1 | WT | 3.48 ± 0.95 ab | 2.85 ± 0.77 ab | 2.86 ± 1.34 b | 1.97 ± 0.51 b | 2.70 ± 0.43 b | 0.25 ± 0.02 a |
N367 | 2.85 ± 1.20 a | 3.40 ± 0.64 b | 1.80 ± 0.60 a | 3.56 ± 0.46 c | 4.29 ± 0.85 c | 0.93 ± 0.27 a | |
10 | WT | 4.68 ± 1.64 b | 3.68 ± 1.28 b | 2.23 ± 0.67 ab | 5.20 ± 1.57 d | 5.95 ± 0.49 d | 3.43 ± 0.49 b |
N367 | 3.70 ± 0.57 ab | 3.47 ± 0.09 b | 1.48 ± 0.14 a | 4.44 ± 1.65 cd | 8.00 ± 1.52 e | 5.41 ± 1.80 c | |
ANOVA | |||||||
K | p < 0.001 | ns | ns | p < 0.001 | p < 0.001 | p < 0.001 | |
L | ns | ns | p < 0.01 | ns | p < 0.01 | p < 0.01 | |
K*L | ns | ns | ns | ns | ns | Ns |
K Supply (mM) | Line | Harvest Index | K Use Efficiency |
---|---|---|---|
0.1 | WT | 1.4 a | 13.1 a |
N367 | 1.0 a | 3.4 b | |
1 | WT | 1.3 a | 2.2 bc |
N367 | 0.8 a | 0.7 c | |
10 | WT | 1.2 a | 0.8 bc |
N367 | 1.1 a | 0.5 c | |
ANOVA | |||
K | ns | p < 0.001 | |
L | p < 0.1 | p < 0.001 | |
K*L | ns | p < 0.001 |
K Supply (mM) | Water Treatment | Shoot Water Content | Root Water Content |
---|---|---|---|
0.1 | drought | 5.1 ± 0.7 a | 3.0 ± 1.0 a |
irrigated | 7.3 ± 0.6 b | 6.3 ± 0.9 bc | |
1 | drought | 6.1 ± 0.5 c | 4.8 ± 1.0 d |
irrigated | 7.7 ± 0.4 b | 6.9 ± 1.0 be | |
10 | drought | 6.6 ± 0.6 c | 5.8 ± 0.8 b |
irrigated | 7.5 ± 0.6 b | 7.2 ± 0.8 e | |
ANOVA | |||
K | p < 0.001 | p < 0.01 | |
W | p < 0.001 | p < 0.001 | |
K*W | p < 0.001 | p < 0.01 |
K Supply (mM) | Water Content (g g dry wt−1) | Sugars (%) | |||||
---|---|---|---|---|---|---|---|
Line | Leaves | Stems | Roots | Leaves | Stems | Roots | |
0.1 | WT | 4.5 ± 2.0 a | 7.4 ± 1.3 a | 5.9 ± 1.5 a | 16.4 ± 4.7 ab | 6.8 ± 1.1 a | 3.6 ± 1.3 a |
N367 | 4.4 ± 1.3 a | 6.4 ± 1.5 a | 5.6 ± 1.4 a | 20.4 ± 4.9 a | 11.8 ± 2.3 bc | 4.9 ± 1.5 a | |
1 | WT | 6.3 ± 0.3 b | 5.9 ± 0.3 a | 4.7 ± 1.5 a | 12.5 ± 1.4 bc | 13.1 ± 3.5 bd | 4.7 ± 3.0 a |
N367 | 6.1 ± 1.5 b | 6.1 ± 0.3 a | 5.9 ± 0.7 a | 13.1 ± 1.2 bc | 10.6 ± 3.9 abc | 4.6 ± 1.2 a | |
10 | WT | 7.2 ± 0.5 b | 6.1 ± 0.6 a | 9.2 ± 1.5 b | 13.9 ± 3.5 bc | 16.0 ± 3.2 d | 11.9 ± 3.3 b |
N367 | 6.9 ± 0.5 b | 7.1 ± 0.4 a | 10.9 ± 2.0 b | 8.9 ± 2.5 c | 8.3 ± 1.2 ac | 6.9 ± 3.7 a | |
ANOVA | |||||||
K | p < 0.05 | ns | p < 0.001 | p < 0.001 | ns | p < 0.001 | |
Lines | ns | ns | p < 0.05 | ns | ns | Ns | |
K*L | p < 0.05 | ns | ns | p < 0.05 | p < 0.001 | Ns |
K (mM) | Line | Jv | L0 | Sap K |
---|---|---|---|---|
0.1 | WT | 216.3 ± 24.6 a | 1221.9 ± 138.8 a | 3.5 ± 0.97 a |
N367 | 170.3 ± 19.2 b | 962.2 ± 108.2 b | 5.0 ± 1.1 a | |
1 | WT | 60.3 ± 13.4 c | 370.2 ± 82.0 c | 26.7 ± 2.3 b |
N367 | 56.6 ± 18.0 c | 347.2 ± 110.6 c | 29.4 ± 6.4 bc | |
10 | WT | 78.2 ± 19.6 c | 355.2 ± 88.9 c | 30.9 ± 2.1 c |
N367 | 82.2 ± 11.6 c | 373.6 ± 52.8 c | 35.7 ± 0.9 d | |
ANOVA | ||||
K | p < 0.001 | p < 0.001 | p < 0.001 | |
Lines | p < 0.05 | p < 0.05 | p < 0.05 | |
K*Lines | p < 0.05 | p < 0.05 | Ns |
K Supply (mM) | Water Treatment | A | E | gs | WUEi |
---|---|---|---|---|---|
Nonacclimated plants | |||||
0.1 | drought | 10.3 ± 0.8 a | 5.4 ± 0.1 a | 0.18 ± 0.01 a | 56.4 ± 7.5 a |
irrigated | 16.7 ± 0.8 b | 11.2 ± 0.7 b | 0.89 ± 0.09 b | 20.8 ± 6.0 b | |
1 | drought | 7.5 ± 2.6 c | 2.4 ± 0.7 c | 0.09 ± 0.03 a | 87.4 ± 7.5 c |
irrigated | 15.2 ± 0.6 b | 8.0 ± 0.5 d | 0.40 ± 0.06 c | 40.5 ± 4.3 d | |
10 | drought | 9.9 ± 2.5 a | 4.5 ± 1.1 a | 0.15 ± 0.05 a | 67.1 ± 8.5 a |
irrigated | 15.9 ± 1.9 b | 7.5 ± 1.4 d | 0.35 ± 0.10 c | 47.9 ± 10.7 ad | |
ANOVA | |||||
K | Ns | p < 0.001 | p < 0.001 | p < 0.01 | |
W | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.01 | |
K*W | Ns | p < 0.01 | p < 0.001 | p < 0.01 | |
Acclimated plants | |||||
0.1 | drought | 5.1 ± 2.6 ac | 1.3 ± 0.6 a | 0.07 ± 0.04 a | 81.8 ± 40.6 a |
irrigated | 8.3 ± 1.3 b | 2.2 ± 0.5 b | 0.12 ± 0.05 b | 75.8 ± 21.3 a | |
1 | drought | 3.4 ± 1.2 c | 0.6 ± 0.3 c | 0.02 ± 0.02 c | 214.9 ± 126.4 b |
irrigated | 5.5 ± 2.1 ac | 1.1 ± 0.5 a | 0.05 ± 0.02 ac | 128.9 ± 60.6 ad | |
10 | drought | 5.8 ± 3.5 abc | 0.8 ± 0.3 ac | 0.03 ± 0.01 ac | 164.4 ± 52.3 b |
irrigated | 6.4 ± 1.9 ab | 1.0 ± 0.2 ac | 0.04 ± 0.01 ac | 148.3 ± 31.7 abd | |
ANOVA | |||||
K | p < 0.05 | p < 0.001 | p < 0.001 | p < 0.01 | |
W | p < 0.001 | p < 0.001 | p < 0.001 | ns | |
K*W | Ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, A.; Corell, M.; Chivet, M.; Parrado, M.A.; Pardo, J.M.; Leidi, E.O. Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae 2021, 7, 20. https://doi.org/10.3390/horticulturae7020020
De Luca A, Corell M, Chivet M, Parrado MA, Pardo JM, Leidi EO. Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae. 2021; 7(2):20. https://doi.org/10.3390/horticulturae7020020
Chicago/Turabian StyleDe Luca, Anna, Mireia Corell, Mathilde Chivet, M. Angeles Parrado, José M. Pardo, and Eduardo O. Leidi. 2021. "Reassessing the Role of Potassium in Tomato Grown with Water Shortages" Horticulturae 7, no. 2: 20. https://doi.org/10.3390/horticulturae7020020
APA StyleDe Luca, A., Corell, M., Chivet, M., Parrado, M. A., Pardo, J. M., & Leidi, E. O. (2021). Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae, 7(2), 20. https://doi.org/10.3390/horticulturae7020020