Study on the Growth Performance of Lettuce (Lactuca sativa) and Pak Choi (Brassica chinensis) in Different Aquaponic Growing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location, Setup, and Design
2.2. Aquaculture Management Practices
2.3. Crop Management Practices
2.4. Harvesting and Measurements
2.5. Statistical Analysis
3. Results
3.1. Growing Environment Condition
3.2. Aquaculture Management Practices
3.3. Leaf Chlorophyll Content and Total Leaf Number
3.4. Root and Shoot Biomass
3.5. Growth Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations; Department of Economic and Social Affairs; Population Division. World Population Prospects 2019: Highlights; UN: New York, NY, USA, 2019; ISBN 978-92-1-148316-1. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nastis, S.A.; Michailidis, A.; Chatzitheodoridis, F. Climate change and agricultural productivity. Afr. J. Agric. Res. 2012, 7, 4885–4893. [Google Scholar] [CrossRef]
- Lemi, T. Effects of Climate Change Variability on Agricultural Productivity. Int. J. Environ. Sci. Nat. Resour. 2019, 17. [Google Scholar] [CrossRef]
- Pant, K.P. Effects of Agriculture on Climate Change: A Cross Country Study of Factors Affecting Carbon Emissions. J. Agric. Environ. 2009, 10, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Nurse, L.A.; McLean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V.; Pelesikot, N.; Tompkins, E.; Webb, A. Small Islands. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1613–1654. [Google Scholar]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges–A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Bernstein, S. Aquaponic Gardening: A Step-by-Step Guide to Raising Vegetables and Fish Together; New Society Publishers: Gabriola, BC, Canada, 2011; ISBN 978-1-55092-489-3. [Google Scholar]
- Rizal, A.; Dhahiyat, Y.; Andriani, Y.; Handaka, A.A.; Sahidin, A. The economic and social benefits of an aquaponic system for the integrated production of fish and water plants. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; IOP Publishing: Bristol, UK, 2018; Volume 137, p. 012098. [Google Scholar]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper 589; FAO: Rome, Italy, 2014; pp. 1–262. [Google Scholar]
- Schneider, J.; Thiesen, L.; Engroff, T.; Holz, E.; Altíssimo, B. Growth analysis of lettuce under different substrate compositions. Adv. Hortic. Sci. 2018, 32, 221–227. [Google Scholar]
- Brown, R.H. Growth of the Green Plant. In Physiological Basis of Crop Growth and Development; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 153–174. ISBN 978-0-89118-572-7. [Google Scholar]
- Anten, N.P.R.; Ackerly, D.D. A new method of growth analysis for plants that experience periodic losses of leaf mass. Funct. Ecol. 2001, 15, 804–811. [Google Scholar] [CrossRef]
- Fraile-Robayo, R.D.; Álvarez-Herrera, J.G.; Reyes, A.J.M.; Álvarez-Herrera, O.F.; Fraile-Robayo, A.L. Evaluation of the growth and quality of lettuce (Lactuca sativa L.) in a closed recirculating hydroponic system. Agron. Colomb. 2017, 35, 216–222. [Google Scholar] [CrossRef]
- Chen, G.S. Closed Capillary Water Distribution System For Planters. People’s Republic of China Patent ZL 200910224303.0, 17 November 2009. [Google Scholar]
- Can, K.J.; Chen, G.S. Automated Capillary Water Distribution System for Greenhouse Vegetable Production, Department of Tropical Agriculture and International Cooperation; National Pingtung University of Science and Technology: Pingtung, Taiwan, 2019. [Google Scholar]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on tilapia and vegetable production in the UVI aquaponic system. In Proceedings of the New dimensions on farmed Tilapia: Sixth international symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; pp. 12–16. [Google Scholar]
- Scientific Engineering Response and Analytic Services. Standard Operating Procedure: Plant Biomass Determination. Available online: https://clu-in.org/download/ert/2034-R00.pdf (accessed on 6 August 2020).
- Agathokleous, E.; Belz, R.G.; Kitao, M.; Koike, T.; Calabrese, E.J. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J. For. Res. 2019, 30, 1569–1580. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Responses and adaptations to abiotic stress. In Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010; pp. 755–778. [Google Scholar]
- Kalb, T.; Chang, L.-C. Suggested cultural practices for heading Chinese cabbage. AVRDG Pub. 2005, 5, 642. [Google Scholar]
- Pandey, R.; Paul, V.; Das, M.; Meena, M.; Meena, R.C. Plant Growth Analysis. In Physiological Techniques Analyze the Impact Climate Change on Crop Plants; Indian Agricultural Research Institute (IARI): New Delhi, India, 2017; 103p. [Google Scholar]
- Pearce, R.B.; Mitchell, R.L.; Gardner, F.P. Physiology of Crop Plants. In Physiology of Crop Plants; Iowa State University Press: Iowa, IA, USA, 1985; pp. 187–208. [Google Scholar]
- BLACKMAN, V.H. The Compound Interest Law and Plant Growth. Ann. Bot. 1919, 33, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I.; Tudela, J.A.; Martínez-Sánchez, A.; Luna, M.C. Harvest maturity indicators of leafy vegetables. Stewart Postharvest Rev. 2012, 8, 1–9. [Google Scholar]
- Pelil, P.; Biradar, P.; Bhagawathi, A.U.; Hejjigar, I.S. Area Index of horticulture crops and its importance. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 505–513. [Google Scholar]
- Sadik, S.K.; Al-Taweel, A.A.; Dhyeab, N.S.; Khalaf, M.Z. New computer program for estimating leaf area of siveral vegetable crops. Am. Eurasian J. Sustain. Agric. 2011, 5, 304–310. [Google Scholar]
- Limantara, L.; Dettling, M.; Indrawati, R.; Indriatmoko; Brotosudarmo, T.H.P. Analysis on the Chlorophyll Content of Commercial Green Leafy Vegetables. Procedia Chem. 2015, 14, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-H.; Chen, G.S. Interior Living Wall Water Consumption and Its Effect on Surface Temperature. J. Int. Coop. 2020, 15, 81–94. [Google Scholar]
System | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
---|---|---|---|---|
FR | 185 ± 10.2 a B | 158 ± 9.30 c D | 381 ± 34.2 c C | 341 ± 39.4 b A |
CCWD | 182 ± 11.2 ab A | 179 ± 11.6 a C | 450 ± 49.0 b D | 365 ± 42.3 a B |
NFT | 170 ± 14.5 b D | 177 ± 16.2 b B | 520 ± 56.0 a A | 370 ± 42.2 a C |
E&F | 191 ± 9.50 a C | 149 ± 10.6 d A | 456 ± 56.9 b B | 310 ± 34.2 c D |
Trial | FR | CCWD | NFT | E&F | ||||
---|---|---|---|---|---|---|---|---|
Body Weight | Feed Rate | Body Weight | Feed Rate | Body Weight | Feed Rate | Body Weight | Feed Rate | |
1 | 227 | 6.80 | 217 | 6.51 | 141 | 4.23 | 141 | 4.22 |
2 | 147 | 4.40 | 190 | 5.70 | 131 | 3.93 | 141 | 4.23 |
3 | 239 | 7.17 | 199 | 5.96 | 144 | 4.32 | 148 | 4.44 |
4 | 343 | 10.3 | 246 | 7.37 | 163 | 4.90 | 171 | 5.14 |
Aquaponic Growing Systems | Chlorophyll Content (SPAD Value) | Total Leaf Number | ||
---|---|---|---|---|
Lettuce | Pak Choi | Lettuce | Pak Choi | |
FR | 15.7 ± 2.09 a | 22.3 ± 2.28 c | 9.00 ± 0.60 b | 7.08 ± 0.43 bc |
CCWD | 13.9 ± 1.20 ab | 32.1 ± 1.60 a | 11.9 ± 0.76 a | 10.9 ± 0.89 a |
NFT | 13.3 ± 0.65 b | 26.5 ± 0.99 b | 10.0 ± 0.62 b | 7.75 ± 0.35 b |
E&F | 15.6 ± 1.75 a | 23.0 ± 1.81 c | 6.42 ± 0.48 c | 6.00 ± 0.49 c |
System Location (SL) | *** | *** | ns | ** |
Growing Systems (GS) | ns | *** | *** | *** |
SL × GS | *** | ** | ns | ** |
Growing Systems | Shoot FW (g) | Shoot DW (g) | Root FW (g) | Root DW (g) |
---|---|---|---|---|
Lettuce | ||||
FR | 26.2 ± 3.61 a | 1.40 ± 0.19 ab | 5.54 ± 0.76 a | 0.41 ± 0.12 bc |
CCWD | 37.1 ± 6.00 a | 2.09 ± 0.45 a | 4.46 ± 0.78 ab | 0.80 ± 0.24 a |
NFT | 27.8 ± 4.48 a | 1.49 ± 0.24 a | 5.61 ± 0.94 a | 0.62 ± 0.18 ab |
E&F | 11.0 ± 1.53 b | 0.60 ± 0.08 b | 2.40 ± 0.84 b | 0.27 ± 0.08 c |
SL | ns | ns | ns | * |
GS | ** | * | * | ** |
SL × GS | ns | ns | ns | *** |
Pak choi | ||||
FR | 55.3 ± 16.9 a | 3.51 ± 1.31 b | 4.87 ± 1.32 b | 0.47 ± 0.12 bc |
CCWD | 71.4 ± 8.51 a | 5.99 ± 0.90 a | 7.62 ± 1.18 ab | 1.06 ± 0.20 a |
NFT | 56.6 ± 9.59 a | 3.40 ± 0.65 b | 8.24 ± 1.46 a | 0.68 ± 0.10 b |
E&F | 20.4 ± 4.11 b | 1.23 ± 0.25 d | 1.12 ± 0.33 c | 0.23 ± 0.12 c |
SL | * | * | * | ** |
GS | ** | ** | *** | *** |
SL × GS | * | ns | ns | ns |
GS | LAI | NAR (mg m−2 d−1) | CGR (g cm−2 d−1) | RGR (g g−1 d−1) | R:S Ratio |
---|---|---|---|---|---|
Lettuce | |||||
FR | 1.85 ± 0.24 b | 2.14 ± 0.19 a | 3.80 ± 0.54 ab | 0.91 ± 0.01 a | 0.21 ± 0.02 a |
CCWD | 2.85 ± 0.40 a | 1.96 ± 0.35 a | 5.79 ± 1.24 a | 0.90 ± 0.02 a | 0.20 ± 0.02 a |
NFT | 1.90 ± 0.32 b | 2.29 ± 0.19 a | 4.12 ± 0.69 ab | 0.88 ± 0.02 a | 0.23 ± 0.02 a |
E&F | 0.83 ± 0.11 c | 2.05 ± 0.12 a | 1.70 ± 0.26 b | 0.91 ± 0.02 a | 0.19 ± 0.03 a |
SL | ns | ns | ns | ns | ns |
GS | *** | ns | * | ns | ns |
SL × GS | ns | ns | ns | ns | *** |
Pak choi | |||||
FR | 1.86 ± 0.64 b | 3.00 ± 0.28 b | 6.43 ± 2.94 b | 0.87 ± 0.03 a | 0.17 ± 0.01 a |
CCWD | 4.02 ± 0.40 a | 4.25 ± 0.52 a | 17.3 ± 2.57 a | 0.89 ± 0.03 a | 0.18 ± 0.02 a |
NFT | 2.20 ± 0.28 b | 3.16 ± 0.45 b | 7.72 ± 1.81 b | 0.80 ± 0.11 a | 0.23 ± 0.03 a |
E&F | 1.61 ± 0.32 b | 2.72 ± 0.27 b | 4.88 ± 1.40 b | 0.86 ± 0.05 a | 0.15 ± 0.04 a |
SL | ** | * | * | ns | ns |
GS | *** | * | ** | ns | ns |
SL × GS | ** | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundar, L.S.; Chen, G.S. Study on the Growth Performance of Lettuce (Lactuca sativa) and Pak Choi (Brassica chinensis) in Different Aquaponic Growing Systems. Horticulturae 2020, 6, 69. https://doi.org/10.3390/horticulturae6040069
Sundar LS, Chen GS. Study on the Growth Performance of Lettuce (Lactuca sativa) and Pak Choi (Brassica chinensis) in Different Aquaponic Growing Systems. Horticulturae. 2020; 6(4):69. https://doi.org/10.3390/horticulturae6040069
Chicago/Turabian StyleSundar, Laurence Shiva, and Guangyau Stanley Chen. 2020. "Study on the Growth Performance of Lettuce (Lactuca sativa) and Pak Choi (Brassica chinensis) in Different Aquaponic Growing Systems" Horticulturae 6, no. 4: 69. https://doi.org/10.3390/horticulturae6040069
APA StyleSundar, L. S., & Chen, G. S. (2020). Study on the Growth Performance of Lettuce (Lactuca sativa) and Pak Choi (Brassica chinensis) in Different Aquaponic Growing Systems. Horticulturae, 6(4), 69. https://doi.org/10.3390/horticulturae6040069