Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars
Abstract
:1. Introduction
2. Materials and Methods
- ETo: Reference evapotranspiration. Epan: Pan evaporation in mm.
- Kp: Pan coefficient (constant, 0.85). CU: Water consumption.
- WR: Water requirement (L/m2). L%: Leaching factor (1.25%).
- Kc: Crop coefficient (variable 0.5:1.0, depending on the plant growth stage.
Evaluated Parameters
- Vegetative growth parameters: A representative sample of 10 plants from each plot were randomly selected to record plant height (cm), number of leaves per plant, number of branches per plant, fresh weight (g), and dry matter percent (%) after drying samples at 70 °C for three days, as well as total chlorophyll (SPAD values) using a digital Minolta Chlorophyll Meter (SPAD-501), 45 days after sowing (flowering stage, Figure 1b).
- Pod yield: The green pods were harvested on three weekly dates, starting 60 days after sowing. Pod yield was calculated as g pods per m2 and number of pods per plant.
- Water use efficiency (WUE) was calculated as pod yield (g) vs. supplied water (L).
- Pod traits: Weight (g), length (cm), and diameter (cm) were determined using random representative samples.
- Chemical composition: Representative green pod samples from each plot were selected for chemical analysis to determine the macronutrients N, P, K, Ca, and Mg, and the micronutrients Fe, Mn, Zn, and Cu (ICP-AES method, NY/T 1653-2008) [17], as well as other chemical constituents related to pod quality, including protein (Kjeldahl method), vitamin C (2,6-dichloroindophenol titration), fiber (total dietary fiber), titratable acid (alkali titration), and soluble sugars (anthrone colorimetry), according to Nielsen [18].
Statistical Analysis
3. Results
3.1. Vegetative Growth Parameters
3.2. Pod Yield, WUE, and Pod Parameters
3.3. Chemical Composition
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations World Water Assessment Programme (WWAP). The United Nations World Water Development Report: Water and Energy; UNESCO: Paris, France, 2014. [Google Scholar]
- Quda, S. Major Crops and Water Scarcity in Egypt: Irrigation Water Management under Changing Climate; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-21771-0. [Google Scholar]
- Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants; Gruissem, W., Buchannan, B., Jones, R., Eds.; ASPP: Rockville, MD, USA, 2000; pp. 1158–1249. [Google Scholar]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Abdel-Mawgowd, A.M.; El-Nemr, M.A.; Tantawy, A.S.; Habib, H.A. Alleviation of salinity effects on green bean plants using some environmental friendly materials. J. Appl. Sci. Res. 2010, 6, 871–878. [Google Scholar]
- Darwish, K.H.; Safaa, M.; Momou, A.; Saleh, S.A. Egypt: Land degradation issues with special reference to the impact of climate change. In Combating Desertification in Asia, Africa and Middle East, Proven Practices; Heshmati, G.A., Squires, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; Chapter 6; pp. 113–136. [Google Scholar]
- Badr, M.A.; Abou Hussein, S.D.; El-Tohamy, W.A.; Gruda, N. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanzen 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Saleh, S.A.; El-Shal, Z.S.; Fawzy, Z.S.; El-Bassiony, A.M. Effect of water amounts on artichoke productivity irrigated with brackish water. Aust. J. Basic Appl. Sci. 2012, 6, 54–61. [Google Scholar]
- FAOSTAT. Green Bean World Statistics. Major food and agricultural commodities producers—Countries by commodity. Available online: www.faostat.fao.org (accessed on 23 October 2017).
- Shalaby, M.A.; Ibrahim, S.K.; Zaki, E.M.; Abou-Sedera, F.A.; Abdallah, A.S. Effect of sowing dates and plant cultivar on growth, development and pod production of snap bean (Phaseolus vulgaris L.) during summer season. Int. J. PharmTech Res. 2016, 9, 231–242. [Google Scholar]
- El-Noemani, A.A.; El-Zeiny, H.A.; El-Gindy, A.M.; El-Sahhar, E.A.; El-Shawadfy, M.A. Performance of some bean (Phaseolus vulgaris L.) varieties under different irrigation systems and regimes. Aust. J. Basic Appl. Sci. 2010, 4, 6185–6196. [Google Scholar]
- Tarantino, E.; Rubino, P. Water consumption of broccoli, spinach, snap beans and gherkin in cropping sequence. Cent. Di Studio Sull Ortic. Ind. 1989, 36, 228–234. [Google Scholar]
- Sazen, S.M.; Yazar, A.; Akyildiz, A.; Dasgan, H.Y.; Gencel, B. Yield and quality response of drip irrigated green beans under full and deficit irrigation. Sci. Hortic. 2008, 117, 95–102. [Google Scholar] [CrossRef]
- Abdel-Mawgowd, A.M. Growth, yield and quality of green bean (Phaseolus vulgaris) in response to irrigation and compost applications. Aust. J. Basic Appl. Sci. 2006, 2, 443–450. [Google Scholar]
- Abd El-Aal, H.; El-Hwat, N.; El-Hefnawy, N.; Medany, M. Effect of sowing dates, irrigation levels and climate change on yield of common bean (Phaseolus vulgaris L.). Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 79–86. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Determination for Mineral Elements in Vegetables, Fruits and Derived Products by ICP-AES Method; NY/T 1653-2008; Standard of Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008.
- Nielsen, S.S. Food Analysis. Laboratory Manual; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-1477-4. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Boutraa, T.; Sanders, F.E. Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). J. Agron. Crop Sci. 2000, 187, 251–257. [Google Scholar] [CrossRef]
- Alvino, A.; Tedeschi, P.; Zerbi, G. Growth, flowering, setting and yield of kidney bean (Phaseolus vulgaris L.) as influenced by water regime, P fertilization and bnoa treatment. ISHS Acta Hortic. 1988, 228, 219–226. [Google Scholar] [CrossRef]
- Bayuelo-Jimenez, J.S.; Debouck, D.G.; Lynch, J.P. Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crops Res. 2003, 80, 207–222. [Google Scholar] [CrossRef]
- Omae, H.; Kumar, A.; Egawa, Y.; Kashiwaba, K.; Shono, M. Leaf water status of two snap bean (Phaseolus vulgaris L.) cultivars differing to high temperature stress. Jpn. J. Trop. Agric. 2004, 48, 5–6. [Google Scholar]
- Omae, H.; Kumar, A.; Egawa, Y.; Kashiwaba, K.; Shono, M. Genotypic differences in plant water status and relationship with reproductive responses in snap bean (Phaseolus vulgaris L.) during water stress. Jpn. J. Trop. Agric. 2005, 49, 1–7. [Google Scholar]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- El-Bassiony, A.M.; Ghoname, A.A.; El-Awadi, M.E.; Fawzy, Z.F.; Gruda, N. Ameliorative effects of Brassinosteroids on growth and productivity to snap beans grown under high temperature. Gesunde Pflanzen 2012, 64, 175–182. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; Badr, M.A.; Gruda, N. Drought tolerance and water status of bean plants (Phaseolus vulgaris L.) as affected by citric acid application. J. Appl. Bot. Food Qual. 2013, 86, 212–216. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; El-Greadly, N.H.M.; Gruda, N. Hormonal changes, growth and yield of tomato plants in response to chemical and bio-fertilization application in sandy soils. J. Appl. Bot. Food Qual. 2009, 82, 179–182. [Google Scholar]
- Saleh, S.A.; Glala, A.A.; Ezzo, M.I.; Ghoname, A.A. An attempt for reducing mineral fertilization in lettuce production by using bio-organic farming system. Acta Hortic. 2010, 852, 311–318. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
Total Salt (g/kg) | EC (dS/m) | pH | Organic Matter (g/kg) | Total N (g/kg) | NO3 (mg/kg) | Available P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|---|---|
3.66 | 0.92 | 7.76 | 14.5 | 0.92 | 27.3 | 33.2 | 180 |
Treatments | Plant Height (cm) | No. of Leaves/Plant | No. of Branches/Plant | Fresh Weight (g) | Dry Matter (%) | Chlorophyll (SPAD) | |
---|---|---|---|---|---|---|---|
Irrigation rates (A): | |||||||
60% ET | 47.8 b | 18.7 c | 6.2 b | 57.0 b | 14.9 a | 38.3 b | |
80% ET | 52.0 a | 21.8 a | 7.8 a | 64.7 a | 14.2 ab | 42.5 a | |
100% ET | 50.2 a | 20.0 b | 7.5 a | 61.8 a | 13.6 b | 42.0 a | |
Cultivars (B): | |||||||
‘Paulista’ | 49.9 b | 19.9 a | 7.0 a | 59.9 a | 14.2 a | 41.6 a | |
‘Bronco’ | 50.8 a | 20.4 a | 7.3 a | 62.4 a | 14.3 a | 40.3 b | |
Interactions (A × B): | |||||||
60% ET | ‘Paulista’ | 48.3 a | 18.3 a | 6.0 a | 54.3 a | 14.6 a | 39.0 a |
‘Bronco’ | 49.3 a | 19.0 a | 6.3 a | 59.7 a | 15.1 a | 37.7 a | |
80% ET | ‘Paulista’ | 51.7 a | 21.7 a | 7.7 a | 64.0 a | 14.4 a | 43.3 a |
‘Bronco’ | 52.3 a | 22.0 a | 8.0 a | 65.3 a | 14.1 a | 41.7 a | |
100% ET | ‘Paulista’ | 49.7 a | 19.7 a | 7.3 a | 61.3 a | 13.5 a | 42.3 a |
‘Bronco’ | 50.7 a | 20.3 a | 7.7 a | 62.3 a | 13.6 a | 41.7 a |
Treatments | Pod Yield (g/m2) | WUE (g/L) | No. of Pods/Plant | Pod Weight (g) | Pod Length (cm) | Pod Diameter (cm) | |
---|---|---|---|---|---|---|---|
Irrigation rates (A): | |||||||
60% ET | 994 c | 6.33 a | 13.2 b | 3.43 b | 9.67 c | 0.66 c | |
80% ET | 1188 a | 5.68 b | 15.0 a | 3.61 a | 11.33 a | 0.70 a | |
100% ET | 1129 b | 4.33 c | 14.3 a | 3.59 a | 10.67 b | 0.68 b | |
Cultivars (B): | |||||||
‘Paulista’ | 1061 b | 5.22 b | 14.6 a | 3.31 b | 11.67 a | 0.65 b | |
‘Bronco’ | 1146 a | 5.67 a | 13.8 b | 3.78 a | 9.44 b | 0.71 a | |
Interactions (A × B): | |||||||
60% ET | ‘Paulista’ | 946 e | 6.03 b | 13.3 a | 3.23 a | 10.33 b | 0.63 a |
‘Bronco’ | 1041 d | 6.63 a | 13.0 a | 3.64 a | 9.00 c | 0.70 a | |
80% ET | ‘Paulista’ | 1129 bc | 5.40 c | 15.3 a | 3.35 a | 12.67 a | 0.67 a |
‘Bronco’ | 1247 a | 5.96 b | 14.7 a | 3.87 a | 10.0 b | 0.73 a | |
100% ET | ‘Paulista’ | 1107 c | 4.24 e | 15.0 a | 3.36 a | 12.00 a | 0.65 a |
‘Bronco’ | 1151 b | 4.41 d | 13.7 a | 3.83 a | 9.33 c | 0.71 a |
Treatments | N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|
(mg/100g FW) | ||||||
Irrigation rates (A): | ||||||
60% ET | 476 b | 77.1 ab | 523 ab | 72.8 c | 50.8 c | |
80% ET | 501 a | 81.6 a | 555 a | 78.1 b | 53.6 b | |
100% ET | 490 ab | 73.6 b | 502 b | 82.7 a | 56.5 a | |
Cultivars (B): | ||||||
‘Paulista’ | 498 a | 78.5 a | 535 a | 79.8 a | 55.4 a | |
‘Bronco’ | 480 a | 76.4 b | 519 a | 75.9 b | 51.9 b | |
Interactions (A × B): | ||||||
60% ET | ‘Paulista’ | 484 b | 80.1 a | 506 b | 73.9 a | 51.9 a |
‘Bronco’ | 468 c | 73.3 b | 541 ab | 71.6 a | 49.8 a | |
80% ET | ‘Paulista’ | 518 a | 80.4 a | 595 a | 81.0 a | 55.1 a |
‘Bronco’ | 483 b | 82.8 a | 515 b | 75.3 a | 52.2 a | |
100% ET | ‘Paulista’ | 491 b | 74.0 b | 503 b | 84.6 a | 59.4 a |
‘Bronco’ | 490 b | 73.1 b | 501 b | 80.8 a | 53.7 a |
Treatments | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|
(mg/kg FW) | |||||
Irrigation rates (A): | |||||
60% ET | 6.79 ab | 3.51 b | 2.89 b | 1.51 a | |
80% ET | 7.23 a | 3.58 b | 3.47 a | 1.58 a | |
100% ET | 6.40 b | 3.80 a | 3.38 a | 1.40 b | |
Cultivars (B): | |||||
‘Paulista’ | 7.07 a | 3.53 a | 3.30 a | 1.53 a | |
‘Bronco’ | 6.55 b | 3.74 a | 3.19 a | 1.47 b | |
Interactions (A × B): | |||||
60% ET | ‘Paulista’ | 7.63 a | 3.24 b | 2.98 a | 1.58 a |
‘Bronco’ | 5.96 c | 3.78 ab | 2.79 a | 1.45 a | |
80% ET | ‘Paulista’ | 7.00 b | 3.32 b | 2.45 a | 1.61 a |
‘Bronco’ | 7.46 ab | 3.86 ab | 2.50 a | 1.58 a | |
100% ET | ‘Paulista’ | 6.59 bc | 4.03 a | 2.48 a | 1.42 a |
‘Bronco’ | 6.21 c | 3.58 ab | 2.29 a | 1.39 a |
Treatments | Protein (g/100 g FW) | Vitamin C (mg/100 g FW) | Fiber (g/100 g FW) | Titratable Acid (g/100 g FW) | Soluble Sugar (g/100 g FW) | |
---|---|---|---|---|---|---|
Irrigation rates (A): | ||||||
60% ET | 2.98 b | 24.2 a | 1.65 a | 0.37 a | 1.87 b | |
80% ET | 3.13 a | 26.4 a | 1.61 a | 0.38 a | 2.09 a | |
100% ET | 3.06 ab | 28.1 a | 1.52 b | 0.39 a | 2.16 a | |
Cultivars (B): | ||||||
‘Paulista’ | 3.11 a | 27.4 a | 1.55 b | 0.40 a | 2.10 a | |
‘Bronco’ | 3.00 b | 25.1 b | 1.64 a | 0.36 b | 1.98 b | |
Interactions (A × B): | ||||||
60% ET | ‘Paulista’ | 3.03 b | 24.6 c | 1.60 a | 0.39 a | 1.91 a |
‘Bronco’ | 2.93 c | 23.9 c | 1.69 a | 0.35 a | 1.83 a | |
80% ET | ‘Paulista’ | 3.24 a | 27.3 b | 1.58 a | 0.40 a | 2.15 a |
‘Bronco’ | 3.02 b | 25.6 bc | 1.64 a | 0.37 a | 2.03 a | |
100% ET | ‘Paulista’ | 3.07 b | 30.3 a | 1.46 a | 0.42 a | 2.25 a |
‘Bronco’ | 3.06 b | 25.9 bc | 1.59 a | 0.36 a | 2.06 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, S.; Liu, G.; Liu, M.; Ji, Y.; He, H.; Gruda, N. Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars. Horticulturae 2018, 4, 3. https://doi.org/10.3390/horticulturae4010003
Saleh S, Liu G, Liu M, Ji Y, He H, Gruda N. Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars. Horticulturae. 2018; 4(1):3. https://doi.org/10.3390/horticulturae4010003
Chicago/Turabian StyleSaleh, Said, Guangmin Liu, Mingchi Liu, Yanhai Ji, Hongju He, and Nazim Gruda. 2018. "Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars" Horticulturae 4, no. 1: 3. https://doi.org/10.3390/horticulturae4010003
APA StyleSaleh, S., Liu, G., Liu, M., Ji, Y., He, H., & Gruda, N. (2018). Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars. Horticulturae, 4(1), 3. https://doi.org/10.3390/horticulturae4010003