Contemporary Advances and Future Perspectives in Rosaceae Plant Regeneration
Abstract
1. Introduction
2. Plant Regeneration Pathways
3. Effects of Multiple Factors on the Regeneration of Rosaceae Plants
3.1. Effects of Rosaceae Genotypes and Explants on Plant Regeneration
3.2. Effects of Environmental Factors on the Regeneration of Rosaceae
3.3. Effects of Plant Growth Regulators on Rosaceae Plant Regeneration
4. Obstacles to Plant Regeneration in Rosaceae
5. Application of Molecular Biotechnology in Plant Regeneration in Rosaceae
5.1. Regeneration-Related Genes and Their Regulatory Networks
5.2. Epigenetic Modification Promotes Plant Regeneration
6. Prospects for Plant Regeneration Technology of Rosaceae
6.1. Regeneration and Transformation Methods Independent of Tissue Culture
6.2. CRISPR/Cas9 System
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gago, D.; Sánchez, C.; Aldrey, A.; Christie, C.B.; Bernal, M.Á.; Vidal, N. Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic Conditions. Horticulturae 2022, 8, 286. [Google Scholar] [CrossRef]
- Keldibekova, M.; Knyazev, S. Effective in vitro regeneration systems from leaf explants for commercially important pear cultivars (Pyrus communis L.). Pak. J. Bot. 2025, 57, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.J.; Jiang, S.; Ma, R.Y.; Xue, L.; Zhao, J.; Dai, H.P. Current status of strawberry industry in China. Acta Hortic. 2021, 1309, 349–352. [Google Scholar] [CrossRef]
- Chavez, D.E.; Palma, M.A.; Byrne, D.H.; Hall, C.R.; Ribera, L.A. Willingness to pay for rose attributes: Helping provide consumer orientation to breeding programs. J. Agric. Appl. Econ. 2020, 52, 1–15. [Google Scholar] [CrossRef]
- Wang, H. Beneficial medicinal effects and material applications of rose. Heliyon 2024, 10, e23530. [Google Scholar] [CrossRef] [PubMed]
- Nasery, M.; Hassanzadeh, M.; Najaran, Z.T.; Emami, S.A. Rose (Rosa × damascena Mill.) Essential Oils. In Essential Oils in Food Preservation, Flavor, and Safety; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 659–665. [Google Scholar]
- Zhu, L.; Zhou, L.; Li, J.; Chen, Z.; Wang, M.Y.; Li, B.B.; Xu, S.W.; Luo, J.; Zeng, T.; Wang, C.Y. Regeneration of ornamental plants: Current status and prospects. Ornam. Plant Res. 2024, 4, e022. [Google Scholar] [CrossRef]
- Palei, S.; Rout, G.R.; Das, A.K.; Dash, D.K. Callus induction and indirect regeneration of strawberry (Fragaria × ananassa) Duch. CV. Chandler. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1311–1318. [Google Scholar] [CrossRef]
- Amiri, E.M.; Elahinia, A. Influence of medium compositions on growth of apple rootstocks (‘M9’, ‘M27’, ‘MM106’) in vitro condition. Acta Hortic. 2011, 923, 139–146. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Adventitious shoot regeneration from leaf thin cell layers in apple. Sci. Hortic. 2011, 127, 460–463. [Google Scholar] [CrossRef]
- Hu, D.G.; Sun, M.H.; Sun, C.H.; Liu, X.; Zhang, Q.Y.; Zhao, J.; Hao, Y.J. Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants. Sci. Hortic. 2015, 197, 107–116. [Google Scholar] [CrossRef]
- An, J.P.; Li, H.H.; Song, L.Q.; Su, L.; Liu, X.; You, C.X.; Wang, X.F.; Hao, Y.J. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol. Biochem. 2016, 108, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, M.; Ninković, S.; Savić, J.; Ćosić, T.; Mitić, N. The effects of β-lactam antibiotics and hygromycin B on de novo shoot organogenesis in apple cv. Golden Delicious. Arch. Biol. Sci. 2018, 70, 179–190. [Google Scholar] [CrossRef]
- Feng, C.H.; Cui, Z.H.; Li, B.Q.; Chen, L.; Ma, Y.L.; Zhao, Y.H.; Wang, Q.C. Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation dehydration. Plant Cell Tissue Organ Cult. 2013, 112, 369–378. [Google Scholar] [CrossRef]
- Mir, J.I.; Ahmed, N.; Singh, D.B.; Rashid, R.; Shafi, W.; Zaffer, S.; Sheikh, M.A.; Noor, U.; Khan, M.H.; Rather, I. Fast and efficient in vitro multiplication of apple clonal root stock MM-106. Vegetos 2013, 26, 198–202. [Google Scholar] [CrossRef]
- Righetti, L.; Djennane, S.; Berthelot, P.; Cournol, R.; Wilmot, N.; Loridon, K.; Vergne, E.; Chevreau, E. Elimination of the nptII marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tissue Organ Cult. 2014, 117, 335–348. [Google Scholar] [CrossRef]
- Poisson, A.S.; Berthelot, P.; Le Bras, C.; Grapin, A.; Vergne, E.; Chevreau, E. A droplet-vitrification protocol enabled cryopreservation of doubled haploid explants of Malus × domestica Borkh. ‘Golden Delicious’. Sci. Hortic. 2016, 209, 187–191. [Google Scholar] [CrossRef]
- Mehta, M.; Ram, R.; Bhattacharya, A. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks. Indian J. Exp. Biol. 2014, 52, 748–754. [Google Scholar]
- Mao, J.P.; Zhang, D.; Meng, Y.; Li, K.; Wang, H.; Han, M.Y. Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiol. Plant. 2018, 166, 663–676. [Google Scholar] [CrossRef]
- Vogiatzi, C.; Rosenqvist, E.; Grout, B.W.W. Gas exchange measurement as a non-destructive viability assay for frozen-thawed, winter-dormant apple buds. Cryobiology 2018, 107, 74–77. [Google Scholar] [CrossRef]
- Kakimzhanova, A.; Dyussembekova, D.; Nurtaza, A.; Yessimseitova, A.; Shevtsov, A.; Lutsay, V.; Ramankulov, Y.; Kabieva, S. An efficient micropropagation system for the vulnerable wild apple species, Malus sieversii, and confirmation of its genetic homogeneity. Erwerbs-Obstbau 2023, 65, 621–632. [Google Scholar] [CrossRef]
- Ameri, A.; Davarynejad, G.; Moshtaghi, N.; Tehranifar, A. Optimization of direct somatic embryogenesis induction and plantlet regeneration in European Pear. J. Plant Biol. 2019, 11, 43–45. [Google Scholar] [CrossRef]
- Abdollahi, H.; Muleo, R.; Rugini, E. Optimisation of regeneration and maintenance of morphogenic callus in pear (Pyrus communis L.) by simple and double regeneration techniques. Sci. Hortic. 2006, 108, 352–358. [Google Scholar] [CrossRef]
- Ricci, A.; Mezzetti, B.; Navacchi, O.; Sabbadini, S. In vitro shoot regeneration from leaves of Pyrus communis L. rootstock and cultivars. Plant Biotech. Rep. 2023, 17, 341–352. [Google Scholar] [CrossRef]
- Leblay, C.; Chevreau, E.; Raboin, L.M. Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L.). Plant Cell Tissue Organ Cult. 1991, 25, 99–105. [Google Scholar] [CrossRef]
- Duan, M.; Liu, J.; Zhao, Y.; Wang, X.; Li, L.; Wang, S.; Jia, R.; Zhao, X.; Kou, Y.; Su, K.; et al. Somatic embryogenesis from the leaf-derived calli of in vitro shoot-regenerated plantlets of Rosa hybrida ‘Carola’. Plants 2024, 13, 3553. [Google Scholar] [CrossRef]
- Chen, J.R.; Wu, L.; Hu, B.W.; Yi, X.; Liu, R.; Deng, Z.N.; Xiong, X.Y. The Influence of plant growth regulators and light quality on somatic embryogenesis in China rose (Rosa chinensis Jacq.). Plant Growth Regul. 2014, 33, 295–304. [Google Scholar] [CrossRef]
- Hsia, C.; Korban, S.S. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tissue Organ Cult. 1996, 44, 1–6. [Google Scholar] [CrossRef]
- Kintzios, S.; Manos, C.; Makri, O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 1999, 18, 467–472. [Google Scholar] [CrossRef]
- Pourhosseini, L.; Kermani, M.J.; Habashi, A.A.; Khalighi, A. Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue Organ Cult. 2013, 112, 101–108. [Google Scholar] [CrossRef]
- Kunitake, H.; Imamizo, H.; Mii, M. Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci. 1993, 90, 187–194. [Google Scholar] [CrossRef]
- Borissova, A.; Tsolova, V.; Angeliev, V.; Atanassov, A. Somatic embryogenesis of Rosa hybrida L. Biotechnol. Biotechnol. Equip. 2000, 14, 44–51. [Google Scholar] [CrossRef]
- Jiang, S.; Ji, Y.; Wang, M.; Xue, L.; Zhao, J.; Zheng, Y.; Dai, H.P.; Lei, J.J. Establishing a high-efficiency in vitro regeneration system for Agrobacterium-mediated transformation in Fragaria nilgerrensis. Fruit Res. 2023, 3, 9. [Google Scholar] [CrossRef]
- Husaini, A.M. Pre-and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep. 2010, 29, 97–110. [Google Scholar] [CrossRef]
- Dawa, K.K.; El-Denary, M.E.; Abo-Elglagel, I.M. Callus formation and shoot regeneration as affected by plant growth regulators and explant types in three strawberry cultivars (Fragaria × ananassa Duch.). Int. J. Plant Prod. 2017, 8, 599–604. [Google Scholar] [CrossRef]
- Cappelletti, R.; Sabbadini, S.; Mezzetti, B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci. Hortic. 2016, 207, 117–124. [Google Scholar] [CrossRef]
- Owen, H.R.; Miller, A.R. Haploid plant regeneration from anther cultures of three north American cultivars of strawberry (Fragaria × ananassa Duch). Plant Cell Rep. 1996, 15, 905–909. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.G.; Na, H. Optimal culture environment for anther derived callus, embryo, and regeneration of strawberry ‘Jukhyang’. Hortic. Environ. Biotechnol. 2020, 61, 1031–1038. [Google Scholar] [CrossRef]
- Nehra, N.S.; Stushnoff, C.; Kartha, K.K. Direct shoot regeneration from strawberry leaf disks. J. Am. Soc. Hortic. Sci. 1989, 14, 1014–1018. [Google Scholar] [CrossRef]
- Biswas, M.K.; Islam, R.; Hossain, M. Somatic embryogenesis in strawberry (Fragaria spp.) through callus culture. Plant Cell Tissue Organ Cult. 2007, 90, 49–54. [Google Scholar] [CrossRef]
- Liu, Z.R.; Sanford, J.C. Plant regeneration by organogenesis from strawberry leaf and runner tissue. HortScience 1988, 23, 1057–1059. [Google Scholar] [CrossRef]
- Passey, A.; Barrett, K.; James, D. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep. 2003, 21, 397–401. [Google Scholar] [CrossRef]
- Husaini, A.M.; Samina Aquil, S.A.; Mukhtar Bhat, M.B.; Abassum Qadri, T.Q.; Kamaluddin, K.; Abdin, M.Z. A high-efficiency direct somatic embryogenesis system for strawberry (Fragaria × ananassa Duch.) cultivar Chandler. J. Crop Sci. Biotechnol. 2008, 11, 107–109. [Google Scholar]
- Yang, Y.; Duan, Y.; Tang, J.Y.; Feng, J.; Wang, Y.; Chen, M.K.; Zhou, X.L.; Li, S.; Wei, J.; Liang, X.L.; et al. Enhancing somatic embryogenesis and genetic transformation through overexpression of MdWOX4 in apple. Hortic. Plant J. 2025, in press. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, C.L.; Liu, Y.; Wang, X.F.; You, C.X. Functional identification of apple Baby Boom in genetic transformation and somatic embryogenesis. Vitr. Cell. Dev. Biol.-Plant. 2023, 59, 1–13. [Google Scholar] [CrossRef]
- Wang, H.B.; Wang, S.; Zheng, W.Y.; He, X.W.; Chang, Y.S.; He, P.; Sun, Q.R.; Li, L.G. High-efficiency plantlet regeneration from leaf explants of apple rootstock ‘Luzhen 1’. J. Fruit Sci. 2024, 41, 1781–1788. [Google Scholar] [CrossRef]
- Lane, W.D.; Iketani, H.; Hayashi, T. Shoot regeneration from cultured leaves of Japanese pear (Pyrus pyrifolia). Plant Cell Tissue Organ Cult. 1998, 54, 9–14. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zhang, M.; Liu, Q.; Pan, Q.; Li, T.; Wang, S. An efficient leaf regeneration and genetic transformation system for Pyrus betulifolia. Hortic. Adv. 2025, 3, 6. [Google Scholar] [CrossRef]
- de Almeida, M.; de Almeida, C.V.; Graner, E.M.; Brondani, G.E.; de Abreu-Tarazi, M.F. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: A histological study. Plant Cell Rep. 2012, 31, 1495–1515. [Google Scholar] [CrossRef]
- Goffreda, J.C.; Scopel, A.L.; Fiola, J.A. Indole butyric acid induces regeneration of phenotypically normal apricot (Prunus armeniaca L.) plants from immature embryos. Plant Growth Regul. 1995, 17, 41–46. [Google Scholar] [CrossRef]
- Tian, L.; Wen, Y.; Jayasankar, S.; Sibbald, S. Regeneration of Prunus salicina Lindl (Japanese plum) from hypocotyls of mature seeds. Vitr. Cell. Dev. Biol.-Plant 2007, 43, 343–347. [Google Scholar] [CrossRef]
- Yang, Y.J.; Wang, D.F.; Wang, C.S.; Wang, X.H.; Li, J.N.; Wang, R. Construction of high efficiency regeneration and transformation systems of Pyrus ussuriensis Maxim. Plant Cell Tissue Organ Cult. 2017, 131, 139–150. [Google Scholar] [CrossRef]
- Ricci, A.; Sabbadini, S.; Prieto, H.; Padilla, I.M.G.; Li, Z.J.; Scorza, R.; Limera, C.; Mezzetti, B.; Dardick, C.; Perez-Jimenez, M.; et al. Genetic transformation in peach (Prunus persica L.): Challenges and ways forward. Plants 2020, 9, 971. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, M.J.; Liu, J.R. Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol. Rep. 2009, 3, 199–203. [Google Scholar] [CrossRef]
- Tashkenbayeva, A.K.; Sarshayeva, M.Z.H. Propagation of certified Fragaria ananassa in tissue culture. Acta Hortic. 2024, 1413, 59–66. [Google Scholar] [CrossRef]
- Gerdakaneh, M.; Mozaffari, A. Plant regeneration via direct somatic embryogenesis in three strawberry (Fragaria ananassa Duch.) cultivars. Agrotech. Ind. Crops 2021, 1, 103–109. [Google Scholar] [CrossRef]
- Wang, D.Y.; Wergin, W.P.; Zimmerman, R.H. Somatic embryogenesis and plant regeneration from immature embryos of strawberry. HortScience 1984, 19, 71–72. [Google Scholar] [CrossRef]
- Lei, J.J.; Xue, L.; Guo, R.X.; Dai, H.P. The Fragaria species native to China and their geographical distribution. Acta Hortic. 2017, 1156, 37–46. [Google Scholar] [CrossRef]
- Demirel, S.; Pehluvan, M.; Aslantaş, R. Evaluation of genetic diversity and population structure of peach (Prunus persica L.) genotypes using inter-simple sequence repeat (ISSR) markers. Genet. Resour. Crop Evol. 2024, 71, 1301–1312. [Google Scholar] [CrossRef]
- Liu, K.; Yang, A.; Yan, J.; Liang, Z.l.; Yuan, G.p.; Cong, P.h.; Zhang, L.Y.; Han, X.L.; Zhang, C.X. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes. Hortic. Res. 2023, 10, uhad198. [Google Scholar] [CrossRef] [PubMed]
- Aldwinckle, H.S.; Malnoy, M. Plant regeneration and transformation in the Rosaceae. Transgenic. Plant J. 2009, 3, 1–38. [Google Scholar]
- Nakajima, I.; Sato, Y.; Saito, T.; Moriguchi, T.; Yamamoto, T. Agrobacterium-mediated genetic transformation using cotyledons in Japanese pear (Pyrus pyrifolia). Breed. Sci. 2013, 63, 275–283. [Google Scholar] [CrossRef]
- Burrell, A.M.; Lineberger, R.D.; Rathore, K.S.; Byrne, D.H. Genetic variation in somatic embryogenesis of rose. HortScience 2006, 41, 1165–1168. [Google Scholar] [CrossRef]
- Nehra, N.S.; Kartha, K.K.; Stushnoff, C.; Giles, K.L. Effect of in vitro propagation methods on field performance of two strawberry cultivars. Euphytica 1994, 76, 107–115. [Google Scholar] [CrossRef]
- Nehra, N.S.; Chibbar, R.N.; Kartha, K.K.; Datla, R.S.S.; Crosby, W.L.; Stushnoff, C. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep. 1990, 9, 293–298. [Google Scholar] [CrossRef]
- Chung, H.H.; Ouyang, H.Y. Use of Thidiazuron for high-frequency callus induction and organogenesis of wild strawberry (Fragaria vesca). Plants 2021, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Rugini, E.; Orlando, R. High efficiency shoot regeneration from calluses of strawberry (Fragaria × ananassa Duch.) stipules of in vitro shoot cultures. J. Hortic. Sci. Biotech. 1992, 67, 577–582. [Google Scholar] [CrossRef]
- Arene, L.; Pellegrino, C.; Gudin, S.A. Comparison of the somaclonal variation level of Rosa hybrida L. cv Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 1993, 71, 83–90. [Google Scholar] [CrossRef]
- Haddadi, F.; Aziz, M.A.; Kamaladini, H.; Ravanfar, S.A. Thidiazuron- and zeatin-induced high-frequency shoot regeneration from leaf and shoot-tip explants of strawberry. HortTechnology 2013, 23, 276–281. [Google Scholar] [CrossRef]
- Jia, X.; Xu, S.; Wang, Y.; Jin, L.; Gao, T.; Zhang, Z..; Yang, C.; Qing, Y.; Li, C.; Ma, F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. Plant Physiol. 2024, 195, 2406–2427. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, F.Q.; Cao, X.; Li, C.M.; Wang, Y.; Zhao, Y.B.; Zeng, G.J.; Chen, D.M.; Han, Z.H.; Zhang, X.Z. Differences in gene expression and regulation during ontogenetic phase change in apple seedlings. Plant Mol. Biol. Rep. 2014, 32, 357–371. [Google Scholar] [CrossRef]
- Day, M.E.; Greenwood, M.S.; Diaz-Sala, C. Age- and size-related trends in woody plant shoot development: Regulatory pathways and evidence for genetic control. Tree Physiol. 2002, 22, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Trinh, M.D.L.; Falkenberg, M.K.D.; Chiurazzi, M.J.; Najafi, J.; Nørrevang, A.F.; Correia, P.M.P.; Palmgren, M. Unlocking in vitro transformation of recalcitrant plants. Trends Plant Sci. 2025, 30, 1306–1321. [Google Scholar] [CrossRef]
- Castillón, J.; Kamo, K. Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. HortScience 2002, 37, 973–977. [Google Scholar] [CrossRef]
- Matt, A.; Jehle, J.A. In vitro plant regeneration from leaves and internode sections of sweet cherry cultivars (Prunus avium L.). Plant Cell Rep. 2005, 24, 468–476. [Google Scholar] [CrossRef]
- Hennayak, C.K.; Dissanayake, K.; Matsuda, N.; Takasaki, T.; Nakanishi, T. An efficient and reproducible in vitro plant regeneration from leaf discs in pear cultivars (Pyrus spp.). Plant Biotechnol. J. 2003, 20, 283–289. [Google Scholar] [CrossRef]
- Nelson, A.; Ranney, T.; Liu, W.S.; Kelliher, T.; Duan, H.; Da, K. Overcoming recalcitrance: A review of regeneration methods and Challenges in roses. Plants 2025, 14, 3797. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.R.; Wang, Q.C.; Dobránszki, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef]
- Bhatti, S.; Jha, G. Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep. 2010, 29, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, C.A.; Ahuja, P.S. In vitro propagation of rose-a review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef]
- Estabrooks, T.; Browne, R.; Dong, Z. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). Plant Cell Rep. 2007, 26, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhou, P.; Guo, L.; Jia, X.L.; Wang, S.; Gao, J.W.; Li, H.Y.; Liu, B.; Song, M.F.; Yang, J.P. Arabidopsis SPA2 represses seedling de - etiolation under multiple light conditions. Plant Direct 2022, 6, e403. [Google Scholar] [CrossRef]
- Yang, L.Y.; Wang, L.T.; Ma, J.H.; Li, J.Y.; Gong, M. Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica 2017, 55, 467–477. [Google Scholar] [CrossRef]
- Husaini, A.M.; Abdin, M.Z. Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. Vitr. Cell. Dev. Biol.-Plant 2007, 43, 576–584. [Google Scholar] [CrossRef]
- Sarikhani, H.; Sarikhani-Khorami, H. Effect of Light Quality on Micropropagation and some morphological properties of Cadaman Avimag (Prunus persica × P. davidiana) rootstock. Int. J. Hortic. Sci. Technol. 2021, 8, 51–65. [Google Scholar] [CrossRef]
- Miler, N.; Kulus, D.; Woźny, A.; Rymarz, D.; Hajzer, M.; Wierzbowski, K.; Nelke, R.; Szeffs, L. Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction. Vitr. Cell.Dev.Biol.-Plant 2018, 55, 99–108. [Google Scholar] [CrossRef]
- Hasan, S.Z.U.; Ahmad, T.; Hafiz, I.A.; Hussain, A. Direct plant regeneration from leaves of Prunus rootstock GF677 (Prunus amygdalus × P. persica). Pak. J. Bot. 2010, 42, 3817–3830. [Google Scholar]
- Hamama, L.; Voisine, L.; Pierre, S.; Cesbron, D.; Ogé, L.; Lecerf, M.; Cailleux, S.; Bosselut, J.; Foucrier, S.; Foucher, F.; et al. Improvement of in vitro donor plant competence to increase de novo shoot organogenesis in rose genotypes. Sci. Hortic. 2019, 252, 85–95. [Google Scholar] [CrossRef]
- Ainsley, P.J.; Collins, G.G.; Sedgley, M. Adventitious shoot regeneration from leaf explants of almond (Prunus dulcis Mill.). Vitr. Cell. Dev. Biol.-Plant 2000, 36, 470–474. [Google Scholar] [CrossRef]
- Cappelletti, R.; Sabbadini, S.; Mezzetti, B. Strawberry (Fragaria × ananassa). In Agrobacterium Protocols; Wang, K., Ed.; Methods In Molecular Biology; Spring: Berlin/Heidelberg, Germany, 2015; p. 1224. [Google Scholar] [CrossRef]
- Kamo, K.; Jones, B.; Bolar, J.; Smith, F. Regeneration from long-term embryogenic callus of the Rosa hybrida cultivar Kardinal. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 32–36. [Google Scholar] [CrossRef]
- Seong, E.S.; Song, K.J.; Jegal, S.; Yu, C.Y.; Chung, M. Silver nitrate and aminoethoxyviny- lglycine affect Agrobacterium-mediated apple transformation. Plant Growth Regul. 2005, 45, 75–82. [Google Scholar] [CrossRef]
- Vale, E.M.; Miranda, D.P.; de Paula Bernardo, W.; de Souza, G.A.R.; Correia, L.Z.; de Oliveira Martins, M.H.; de Miranda, R.; Carvalho, V.; Campostrini, E. Increased gas exchange improves photosynthetic efficiency, growth, and acclimatization in micropropagated hop plants. Plant Cell Tissue Organ Cult. 2025, 162, 13. [Google Scholar] [CrossRef]
- Miranda, N.A.; Xavier, A.; de Moura, L.C.; Otoni, W.C. Gas exchange rates and sucrose concentrations affect development in microstumps of Eucalyptus urophylla grown in vitro. For. Sci. 2024, 70, 250–258. [Google Scholar] [CrossRef]
- Mohamed, M.A.H.; Alsadon, A.A. Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci. Hortic. 2010, 23, 295–300. [Google Scholar] [CrossRef]
- Nacheva, L.; Ivanova, K.; Zlatev, Z. Effect of sucrose level on the photosynthetic ability of in vitro cultivated apple rootstock MM 106. Acta Hortic. 2009, 839, 343–350. [Google Scholar] [CrossRef]
- Santos, L.S.; Lopes, É.M.G.; Nunes, C.F.; Sanglard, D.A.; Damião, E.F.; Reis, M.M.; Fernandes, L.A. Biochar as an alternative to improve the in vitro environment for Pitaya (Hylocereus undatus Haw) and strawberry (Fragaria × ananassa Duch) growing. Afr. J. Agr. Res. 2023, 19, 226–234. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Li, H.; Piao, X.C.; Gao, R.; Jin, M.Y.; Jiang, J.; Lian, M.L. Effect of several physicochemical factors on callus biomass and bioactive compound accumulation of R. sachalinensis bioreactor culture. Vitr. Cell. Dev. Biol.-Plant 2016, 52, 241–250. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Taviano, M.F.; Maugeri, A.; Cirmi, S.; Synowiec, A.; Gniewosz, M.; Elansary, H.O.; et al. Production of verbascoside, isoverbascoside and phenolic acids in callus, suspension, and bioreactor cultures of Verbena officinalis and biological properties of biomass extracts. Molecules 2020, 25, 5609. [Google Scholar] [CrossRef]
- Dobránszki, J.; Hudák, I.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Galli, Z.S.; Kiss, E. Effects of different cytokinins on the shoot regeneration from apple leaves of ‘Royal Gala’ and ‘M26’. Int. J. Hortic. Sci. 2004, 10, 69–75. [Google Scholar] [CrossRef]
- Dobránszki, J.; Hudák, I.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Galli, Z.S.; Kiss, E. How can different cytokinins influence the process of shoot regeneration from apple leaves in ‘Royal Gala’ and ‘M26’? Acta Hortic. 2006, 725, 191–196. [Google Scholar] [CrossRef]
- Mitić, N.; Stanišić, M.; Milojević, J.; Tubić, L.; Ćosić, T.; Nikolić, R.; Ninković, S.; Miletić, R. Optimization of in vitro regeneration from leaf explants of apple cultivars Golden Delicious and Melrose. HortScience 2012, 47, 1117–1122. [Google Scholar] [CrossRef]
- Harmon, D.D.; Touchell, D.H.; Ranney, T.G.; Da, K.; Liu, W. Tissue culture and regeneration of three rose cultivars. HortScience 2022, 57, 1430–1435. [Google Scholar] [CrossRef]
- Landi, L.; Mezzetti, B. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep. 2006, 25, 281–288. [Google Scholar] [CrossRef]
- Fasolo, F.; Zimmerman, R.H.; Fordham, I. Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult. 1989, 16, 75–87. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Dobránszki, J.; Bulley, S.M.; Teixeira da Silva, J.A.; Hudák, I. The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult. 2010, 101, 251–267. [Google Scholar] [CrossRef]
- Gamage, N.; Nakanishi, T. In vitro shoot regeneration from leaf tissue of apple (cultivar “Orine”): High shoot proliferation using carry over effect of TDZ. Acta Hortic. 2000, 520, 291–300. [Google Scholar] [CrossRef]
- Li, B.Q.; Feng, C.H.; Hu, L.Y.; Wang, M.R.; Chen, L.; Wang, Q.C. Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. Vitr. Cell. Dev. Biol.-Plant 2014, 50, 357–368. [Google Scholar] [CrossRef]
- Alayón-Luaces, P.; Ponce, N.M.A.; Mroginski, L.A.; Stortz, C.A.; Sozzi, G.O. Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators. Plant Sci. 2012, 185, 169–175. [Google Scholar] [CrossRef]
- Li, X.; Krasnyanski, S.F.; Korban, S.S. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J. Plant Physiol. 2002, 159, 313–319. [Google Scholar] [CrossRef]
- Kou, Y.; Yuan, C.; Zhao, Q.; Liu, G.; Nie, J.; Ma, Z.; Cheng, C.; Teixeira Da Silva, J.A.; Zhao, L. Thidiazuron triggers morphogenesis in Rosa canina L. protocorm-like bodies by changing incipient cell fate. Front. Plant Sci. 2016, 7, 557. [Google Scholar] [CrossRef]
- Dastjerd, Z.H.; Jabbarzadeh, Z.; Marandi, R.J. Interaction effects of chitosan, benzyladenine, and gibberellic acid on in vitro proliferation of M26 apple rootstock. Hortic. Environ. Biotechnol. 2013, 54, 538–547. [Google Scholar] [CrossRef]
- de Klerk, G.J.; van der Krieken, W.; de Jong, J.C. Review the formation of adventitious roots: New concepts, new possibilities. Vitr. Cell. Dev. Biol. -Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Han, S.; Zhang, J.; Wang, W.; Zhang, S.; Qin, Z.; Pei, H. Reactive oxygen and related regulatory factors involved in ethylene induced petal abscission in roses. Plants 2024, 13, 1718. [Google Scholar] [CrossRef]
- Zakizadeh, H.; Lütken, H.; Sriskandarajah, S.; Serek, M.; Müller, R. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with PSAG12 -ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep. 2013, 32, 195–205. [Google Scholar] [CrossRef]
- Schum, A.; Hofmann, K. Use of isolated protoplasts in rose breeding. Acta Hortic. 2001, 547, 35–44. [Google Scholar] [CrossRef]
- Murata, M.; Miyoshi Haruta, M.; Nanae Murai, N.; Natsu Tanikawa, N.; Makiyo Nishimura, M.; Seiichi Homma, S.; Yuji Itoh, Y. Transgenic apple (Malus × domestica) shoot showing low browning potential. Agric. Food Chem. 2000, 48, 5243–5248. [Google Scholar] [CrossRef]
- Amente, G.; Chimdessa, E. Control of browning in plant tissue culture: A review. Sci. Agric. 2021, 5, 67–71. [Google Scholar] [CrossRef]
- Dalal, M.A.; Das, B.; Rather, M.A.; Bijau, S. Effect of media additives, incubation culture conditions and subculturing on control of oxidative browning in in-vitro culture of apple (Malus domestica). Indian J. Agric. Sci. 2004, 74, 600–603. [Google Scholar]
- Bhatt, I.D.; Dhar, U. Micropropagation of Indian wild strawberry. Plant Cell Tissue Organ Cult. 2000, 60, 83–88. [Google Scholar] [CrossRef]
- Debnath, S. Bioreactors and molecular analysis in berry crop micropropagation—A Review. Can. J. Plant Sci. 2011, 91, 147–157. [Google Scholar] [CrossRef]
- Gupta, R.; Modgil, M.; Chakrabarti, S.K. Assessment of genetic fidelity of micropropagated apple rootstock plants, EMLA 111, using RAPD markers. Indian J. Exp. Biol. 2009, 47, 925–928. [Google Scholar] [PubMed]
- Amin, A.; Sharma, N.; Sultan, P.; Gandhi, S.G.; Srinivas, K.; Hassan, Q.P.; Ahmed, Z. In vitro propagation of Bergenia stracheyi: An alternative approach for higher production of valuable bioactive compounds. Vegetos 2024, 38, 1541–1550. [Google Scholar] [CrossRef]
- Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; Khalid, F.; Ellahi, M.; Iqbal, S.; Hassan, M.Z.; Abbas, A.; Adamski, R.; Markowska, D.; et al. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front. Plant Sci. 2022, 13, 1009395. [Google Scholar] [CrossRef]
- Manchanda, P.; Sharma, D.; Kaur, G.; Kaur, H.; Vanshika. Exploring the significance of somaclonal variations in horticultural crops. Mol. Biotechnol. 2025, 67, 2185–2203. [Google Scholar] [CrossRef]
- Rai, M.K.; Rathour, R.; Yadav, S.; Singh, A.; Kaushik, S. Somaclonal variation in fruit crop improvement. In Somaclonal Variation: Basic and Practical Aspects; Sánchez-Romero, C., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Biswas, M.K.; Dutt, U.M.; Roy, K.; Islam, R.; Hossain, M. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci. Hortic. 2009, 122, 409–416. [Google Scholar] [CrossRef]
- Rodriguez-Enriquez, J.; Dickinson, H.G.; Grant-Downton, R.T. MicroRNA misregulation: An overlooked factor generating somaclonal variation? Trends Plant Sci. 2011, 16, 242–248. [Google Scholar] [CrossRef]
- Sarmast, M.K. Genetic transformation and somaclonal variation in conifers. Plant Biotechnol. Rep. 2016, 10, 309–325. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Micropropagation of apple—A review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef]
- Mukherjee, E.; Gantait, S. Strawberry biotechnology: A review on progress over past 10 years. Sci. Hortic. 2024, 338, 113618. [Google Scholar] [CrossRef]
- Eshed Williams, L. Genetics of shoot meristem and shoot regeneration. Annu. Rev. Genet. 2021, 55, 661–681. [Google Scholar] [CrossRef]
- Jha, P.; Ochatt, S.J.; Kumar, V. WUSCHEL: A master regulator in plant growth signaling. Plant Cell Rep. 2020, 39, 431–444. [Google Scholar] [CrossRef]
- Hendelman, A.; Zebell, S.; Rodriguez-Leal, D.; Dukler, N.; Robitaille, G.; Wu, X.; Kostyun, J.; Tal, L.; Wang, P.P.; Bartlett, M.E.; et al. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 2021, 184, 1724–1739.e16. [Google Scholar] [CrossRef]
- Li, M.; Wrobel-Marek, J.; Heidmann, I.; Horstman, A.; Chen, B.; Reis, R.; Angenent, G.C.; Boutilier, K. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 2022, 188, 1095–1110. [Google Scholar] [CrossRef]
- Motte, H.; Vanneste, S.; Beeckman, T. Molecular and environmental regulation of root development. Annu. Rev. Plant Biol. 2019, 70, 465–488. [Google Scholar] [CrossRef]
- Lenhard, M.; Jürgens, G.; Laux, T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 2002, 129, 3195–3206. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Harashima, H.; Ikeuchi, M.; Rymen, B.; Ohnuma, M.; Komaki, S.; Morohashi, K.; Kurata, T.; Nakata, M.; Ohme-Takagi, M.; et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 2017, 29, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zheng, Q.; Zhou, Y.; Zhou, Y.; Bao, Z.; Lan, Q.Q.; Li, X. MdWOX4-2 modulated MdLBD41 functioning in adventitious shoot of apple (Malus domestica). Plant Physiol. Biochem. 2022, 186, 11–18. [Google Scholar] [CrossRef]
- Chen, J.J.; Tomes, S.; Andrew, P.G.; Hall, W.; Luo, Z.; Xu, J.; Yao, J.L. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a baby boom transcription factor. Hortic. Res. 2022, 9, uhab014. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Miao, Y.; Wang, D.; Zhang, Z.; Liu, Y. Genome-wide identification and expression profile analysis of the WUSCHEL-related homeobox (WOX) genes in woodland strawberry (Fragaria vesca). Horticulturae 2022, 8, 1043. [Google Scholar] [CrossRef]
- Mao, J.P.; Niu, C.D.; Li, K.; Fan, L.; Liu, Z.M.; Li, S.H.; Ma, D.; Tahir, M.M.; Xing, L.; Zhao, C.P.; et al. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. Plant Cell 2023, 35, 1202–1221. [Google Scholar] [CrossRef]
- Yang, H.F.; Kou, Y.P.; Gao, B.; Soliman, T.M.A.; Xu, K.D.; Ma, N.; Cao, X.; Zhao, L.J. Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol. Plant. 2014, 58, 427–435. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, J.; Wu, J.; Wang, W.; Wang, J.; Liu, P.; Kuang, L.; Liu, Q.; Zhan, M.; Li, C.; et al. Overexpression of RcFUSCA3, a B3 transcription factor from the PLB in Rosa canina, activates starch accumulation and induces male sterility in Arabidopsis. Plant Cell Tissue Organ Cult. 2018, 133, 87–101. [Google Scholar] [CrossRef]
- Xu, K.; Liu, K.; Wu, J.; Wang, W.; Zhu, Y.; Li, C.; Zhao, M.; Wang, Y.; Li, C.; Zhao, L. A MADS-Box gene associated with protocorm-like body formation in Rosa canina alters floral organ development in Arabidopsis. Can. J. Plant Sci. 2017, 98, 309–317. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.n.; Wu, D.C.; Tian, Q.; Su, S.H.; Cheng, C.X.; Nie, J.Y.; Yuan, Y.B.; Wang, Y.Z.; Xu, X.Z. DNA methylation variation is crucial to restore adventitious rooting ability during in vitro shoot culture-induced rejuvenation in apple rootstock. Plant J. 2023, 114, 554–569. [Google Scholar] [CrossRef]
- Abdelsattar, M.; Ismail, R.M.; El-Heba, G.A.A.; Nagaty, M.A.; Mangury, K.E.; Youssef, A.B.; Hosny, G.M. Epigenetic regulation in development of prunus persica during regeneration using cotyledon explant. Plant Arch. 2020, 20, 8291–8302. [Google Scholar]
- Garrido-Bigotes, A.; Silva, H.; Hasbún, R. Genome-wide analysis of somatic embryogenesis- related transcription factors in cultivated strawberry (Fragaria × ananassa) and evolutionary relationships among Rosaceae species. Agronomy 2021, 11, 356. [Google Scholar] [CrossRef]
- Lawson, T.O.; Selva, J.P.; Carballo, J.; Caccamo, M.; Sargent, D.J.; Šurbanovski, N. Developmental processes in the Rosaceae through the lens of DNA and RNA methylation. Planta 2025, 261, 54. [Google Scholar] [CrossRef]
- Henderson, I.R.; Jacobsen, S.E. Epigenetic inheritance in plants. Nature 2007, 447, 418–424. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, Z. The molecular basis of age-modulated plant de novo root regeneration decline in Arabidopsis thaliana. Plant Cell Physiol. 2021, 62, 3–7. [Google Scholar] [CrossRef]
- Huang, H.; Han, S.S.; Wang, Y.; Zhang, X.Z.; Han, Z.H. Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis. Plant Cell Tissue Organ Cult. 2012, 111, 153–161. [Google Scholar] [CrossRef]
- Bitonti, M.B.; Cozza, R.; Chiappetta, A.; Giannino, D.; Ruffini Castiglione, M.; Dewitte, W.; Mariotti, D.; Van Onckelen, H.; Maria Innocenti, A. Distinct nuclear organization, DNA methylation pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). J. Exp. Bot. 2002, 53, 1047–1054. [Google Scholar] [CrossRef]
- Ruiz-Garcıa, L.; Cervera, M.T.; Martınez-Zapater, J.M. DNA methylation increases throughout Arabidopsis development. Planta 2005, 222, 301–306. [Google Scholar] [CrossRef]
- Poethig, R.S. Phase change and the regulation of shoot morphogenesis in plants. Science 1990, 250, 923–930. [Google Scholar] [CrossRef]
- Cao, Q.; Feng, Y.; Dai, X.; Huang, L.; Li, J.; Tao, P.; Crabbe, M.J.C.; Zhang, T.; Qiao, Q. Dynamic changes of DNA methylation during wild strawberry (Fragaria nilgerrensis) tissue culture. Front. Plant Sci. 2021, 12, 765383. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Mu, Q.; Li, X.; Xu, S.; Li, Y.; Gu, T. The callus formation capacity of strawberry leaf explant is modulated by DNA methylation. Hortic. Res. 2022, 9, uhab073. [Google Scholar] [CrossRef]
- Zheng, B.B.; Liu, J.J.; Gao, A.Q.; Chen, X.M.; Gao, L.L.; Liao, L.; Luo, B.W.; Ogutu, C.O.; Han, Y.P. Epigenetic reprogramming of H3K27me3 and DNA methylation during leaf-to-callus transition in peach. Hortic. Res. 2022, 9, uhac132. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chen, X.; Huang, H.; Xu, L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 2012, 8, e1002911116. [Google Scholar] [CrossRef]
- Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 2007, 19, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Rymen, B.; Kawamura, A.; Lambolez, A.; Inagaki, S.; Takebayashi, A.; Iwase, A.; Sakamoto, Y.; Sako, K.; Favero, D.S.; Ikeuchi, M.; et al. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun. Biol. 2019, 2, 404. [Google Scholar] [CrossRef]
- Li, X.; Zhu, G.; Zhao, B. Chromatin remodeling in tissue stem cell fate determination. Cell Regen. 2024, 13, 18. [Google Scholar] [CrossRef]
- Han, S.K.; Wu, M.F.; Cui, S.; Wagner, D. Roles and activities of chromatin remodeling ATP ases in plants. Plant J. 2015, 83, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Horie, A.; Sato, H.; Sakamoto, T.; Inui, Y.; Diaz, M.; Suzuki, Y.; Matsunaga, S. SWI/SNF chromatin remodeling factor BRAHMA promotes de novo shoot regeneration by epigenetic priming via H3K27me3 removal. Plant J. 2025, 124, e70630. [Google Scholar] [CrossRef]
- Cao, X.; Xie, H.T.; Song, M.L.; Lang, Z.B.; Li, G.F.; Zhu, J.K. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. Innovation 2023, 4, 1100345. [Google Scholar] [CrossRef]
- Ali, I.; Sher, H.; Ali, A.; Hussain, S.; Ullah, Z. Simplified floral dip transformation method of Arabidopsis thaliana. J. Microbiol. Methods. 2022, 197, 106492. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.H.; Wang, C.Y.; Liu, M.; Zhang, C.M.; Zhang, X.Y.; Guo, C.; Wu, C.G.; Yang, G.D.; Huang, J.G.; et al. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. Plant Biotechnol. J. 2024, 22, 2093–2103. [Google Scholar] [CrossRef] [PubMed]
- Cody, J.P.; Maher, M.F.; Nasti, R.A.; Starker, C.G.; Chamness, J.C.; Voytas, D.F. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nat. Protoc. 2023, 18, 81–107. [Google Scholar] [CrossRef]
- Papikian, A.; Liu, W.; Gallego-Bartolomé, J.; Jacobsen, S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019, 10, 729. [Google Scholar] [CrossRef]
- Gallego-Bartolomé, J.; Gardiner, J.; Liu, W.; Papikian, A.; Ghoshal, B.; Kuo, H.Y.; Zhao, J.M.C.; Segal, D.J.; Jacobsen, S.E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA 2018, 115, 2125–2134. [Google Scholar] [CrossRef]
- López-Casado, G.; Sánchez-Raya, C.; Ric-Varas, P.D.; Paniagua, C.; Blanco-Portales, R.; Muñoz-Blanco, J.; Pose, S.; Matas, A.J.; Mercado, J.A. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. Hortic. Res. 2023, 10, uhad011. [Google Scholar] [CrossRef]
- Rai, A.; Skårn, M.N.; Elameen, A.; Tengs, T.; Amundsen, M.R.; Bjorå, O.S.; Haugland, L.K.; Yakovlev, I.A.; Brurberg, M.B.; Thorstensen, T. CRISPR-Cas9-mediated deletions of FvMYB46 in Fragaria vesca reveal its role in regulation of fruit set and phenylpropanoid biosynthesis. BMC Plant Biol. 2025, 25, 256. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yoo, C.M.; Nguyen, C.D.; Huo, H.; Lee, S. Optimization of shoot regeneration and application of CRISPR/Cas9 gene editing to cultivated strawberry (Fragaria × ananassa). J. Am. Soc. Hortic. Sci. 2023, 15, 08. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, N.; Yu, Q.; Li, Y.; Gao, J. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). J. Integr. Plant Biol. 2023, 65, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, R.; Shang, J.; Zhao, K.; Sui, Y.; Liu, Z.; Yan, H.; Bao, M.; Liang, M.; Zhao, Q.; et al. A de novo-originated gene drives rose scent diversification. Cell 2025, 188, 6121–6137.e24. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, R.; Chai, N.; Su, L.; Zheng, Z.; Liu, T.; Guo, Z.; Ma, Y.; Xie, Y.; Xie, X.; et al. Programmable genome engineering and gene modifications for plant biodesign. Plant Commun. 2025, 6, 101427. [Google Scholar] [CrossRef] [PubMed]
- Fizikova, A.; Tikhonova, N.; Ukhatova, Y.; Ivanov, R.; Khlestkina, E. Applications of CRISPR/Cas9 system in vegetatively propagated fruit and berry crops. Agronomy 2021, 11, 1849. [Google Scholar] [CrossRef]




| Category | Species, Cultivars or Rootstocks | Explant Source | Regeneration Type | Media Composition | Associated PGRs | Environmental Conditions | Experiment Results | References |
|---|---|---|---|---|---|---|---|---|
| Woody fruit trees | Apple rootstocks (M9, M27, MM106) | Nodal explants | Organogenesis | 2 × MS; MS Sucrose | BA; IBA; TDZ; GA3; 2,4D | 25 ± 2 °C; 16 h photoperiod; 50 µmol m−2 s−1 | Shoot multiplication ratio: in MS, 4.9 (M9), 5.7 (M27), 3.9 (MM106); in 2 × MS, 5.1 (M9), 5.9 (M27), 3.8 (MM106). | [9] |
| Apple cultivars (Royal Gala, Freedom) | Young leaves | Organogenesis | MS sucrose | NAA; TDZ; IBA; GA3 | 24.5 °C; 16 h photoperiod; 105 µmol m−2 s−1 | Shoot regeneration rate: 25–39% (Freedom), 71–78% (Royal Gala); 0–35% and 0–11% (Freedom), (depending on light/dark condition) | [10] | |
| Apple cultivar (Orin) | Young embryo | Somatic embryogenesis | MS sucrose | BA; IAA; 2,4D | Darkness; 25 °C | Transgenic callus weight was as high as untransformed callus in the absence of NaCl. | [11,12] | |
| Apple cultivar (Anna) | Flesh tissue | Organogenesis | MS sucrose | 2,4D + BA: Subculture; PIC + ABA + GA3: CIM | Darkness; 27 ± 2 °C | Increase in callus tissue | [13] | |
| Apple cultivars (Gala, Fuji, Wangshan hong), rootstocks (M9, GM256), M. micromalus, and M. robusta | Shoots | Organogenesis | MS sucrose | BA + IBA: SMM | 16 h photoperiod; 50 µmol m−2 S−1; 24 ± 2 °C | Shoot regrowth rate: 75% (Gala highest), 36% (Wangshanhong lowest), averaging 61%. | [14] | |
| Apple rootstock (MM-106) | Apical meristem | Organogenesis | MS | BA + IBA: SIM; BA + GA3: SMM IBA: RIM | Not reported | Shoot number: 13; Rooting rate 80%; Survival rate 80%. | [15] | |
| Apple cultivars (Galaxy (2014); Golden Delicious (GD), double haploid (DH) derivative of GD, X9273 (2016)) | Shoots | Organogenesis | MS sucrose | BA + IBA: SMM; TDZ + IBA: SIM | SIM: Darkness; SMM: 16 h photoperiod 40–60 µmol m−2 s−1; 23 ± 1 °C | 2014 study: Transgenic regeneration rate: 83% and 93% (Shoot number: 4.6 and 7.8); while control: 100% (Shoot number: 14.9); 2016 study: Shoot apex survival rate: 97% (GD); 90% (DH). | [16,17] | |
| Apple rootstocks (Budagovsky 9 (B.9), MM106) | Nodal segments | Organogenesis | MS sucrose | BA + NAA + AC + AA + CH: SIM; PGR-free: SMM, RIM. | Darkness 45 d; 16 h photoperiod; 70 µmol m−2 s−1; 25 ± 2 °C | For MM106 and B9, Shoots formation rate: 37% and 47%; Shoot number: 5–6 and 6–7; Rooting rate: 98% and 96%; Transplant survival rate: 98% and 93%. | [18] | |
| Apple rootstock (M26) | Stem cuttings | Organogenesis | 1/2MS sucrose | BA + IBA: RIM | Not reported | Adventitious root formation: 3 to 7 d. | [19] | |
| Apple cultivars (Holsteiner Cox, Maglemer, Prima) | Axillary buds | Organogenesis | MS sucrose | BA + NAA: SMM | 16 h photoperiod; 52 µmol m−2 S−1; 25 ± 2 °C. | Shoots formation rate: Gas exchange: 85%; grafted shoots: 91%; cryopreserved buds: 0%; Control:76%. | [20] | |
| Wild apple Malus sieversii | Axillary buds | Organogenesis | QL; WPM; MS | BAP; GA3; IBA; NAA | 25 ± 1 °C; Dark conditions; 16 h photoperiod | QL + 1.5 mg/L BAP + 0.01 mg/L IBA: 100% shoot regeneration; QL + 0.75 mg/L + 0.2 mg/L GA3: Shoots number (17.20 ± 0.64), shoot length (2.80 ± 0.10 cm greatest); 1/2 QL + 0.5 mg/L IBA: Root formation 100%, roots number (8.13 ± 0.44 greatest), root length (3.77 ± 0.23 cm longest). | [21] | |
| Pear cultivars (Atanzi, Ghosi, Dar Gazi, Williams) | Immature cotyledon; Endosperm | Somatic embryogenesis | MS | TDZ; 2,4D; Fe-EDDHA; AgNO3; GA3 | Dark culture | Endosperm of Ghosi cultivar in MS: direct somatic embryos; 0.5 µM 2,4-D: Embryos production rate 12.66% (highest); 0.5 µM 2,4-D and 0.5 µM 2,4-D + 4.5 µM TDZ: normal embryo rate 71% and 70% (highest); Germination rate (9.66% highest); Plant recovery rate (12% Fe-EDDHA). | [22] | |
| Six pear cultivars (Abate Fetel, Conference, Dar Gazi, Harrow Sweet, Kaiser and Williams) | Leaves | Organogenesis | MS; QL; sucrose | BA; TDZ; NAA | Dark culture | Double regeneration: Callus formation and subculture; QL: overcoming 90% of regeneration (Dar Gazi and Williams); Adventitious shoots number 10 | [23] | |
| Pear cultivars (Conference and Abate Fétel) | Leaves | Organogenesis | MS; QL; sucrose | BA; TDZ; NAA | 16 h photoperiod; 52 µmol m−2 S−1; 25 ± 2 °C. | QL + 5.89–13.5 µM TDZ + 1 µM NAA: percentage of regeneration 87.3% (Conference) and 68% (Abate Féte) | [24] | |
| Pear cultivar (Williams) | Leaves | Organogenesis | MS; sucrose | BA; TDZ; NAA | 16 h photoperiod; 52 µmol m−2 S−1; 25 ± 2 °C. | MS + 5 µM TDZ + 2.7 mg/L NAA: | [25] | |
| Ornamental plants | R. hybrida ‘Carola’ | Leaves | Somatic embryogenesis | MS; MS Vitamins; Glucose | BAP; IBA; NAA; Zeatin | 25 ± 1 °C; Dark conditions; 16 h photoperiod | MS + 2.0 g/L NAA + 30 g/L glucose: Calli induction rate 100%; MS + 2.0 mg/L ZT, 0.1 mg/L NAA + 30 g/L glucose: Somatic embryos induction rate 13.33% (highest); MS + 1.5 mg/L ZT + 0.2 mg/L NAA + 0.1 mg/L GA3 + 60 g/L glucose: Somatic embryos proliferation rate 4.02; MS + 1.0 mg/L 6-BA + 0.01 mg/L IBA + 30 g/L glucose: Somatic embryos germination rate (43.33% highest ). | [26] |
| R. chinensis ‘Jacq.’ | Leaves | Somatic embryogenesis | SH; SH Vitamins; Maltose; Sucrose | 2,4-D; ABA; TDZ | 25 ± 2 °C; Dark, red, and white light; 16 h photoperiod | Red light: Embryos numbers (greatest), one SE1 or two SE2; Dark treatment: Shoot-like SE0 embryos numbers (largest); 9.45 μM ABA: Proliferation and germination of SE2 embryos (most effective). | [27] | |
| R. chinensis minima ‘Baby Katie’ R. chinensis minima ‘Red Sunblaze’ | Leaf; Stem segments | Organogenesis | MS; MS Vitamins; Sucrose; Glucose | GA3; TDZ; NAA | 22 ± 1 °C; Dark conditions; 16 h photoperiod | MS + NAA: Shoot organogenesis (Callus) 25% increase (Red Sunblaze); 111 mM glucose: organogenic (33%) and embryogenic (25%) calluses (Carefree Beauty). | [28] | |
| R. hybrida ‘Soraya’ | Leaves | Somatic embryogenesis | MS; MS Vitamins; Sucrose | BAP; 2,4-D; GA3; IAA; Kinetin; pCPA | 25 °C; 16 h photoperiod | MS + 53.5 μm pCPA + 4.6 μm kinetin: Somatic embryos induce (Soraya). | [29] | |
| R. hybrida ‘Amanda’ R. hybrida ‘Black Baccara’ R. hybrida ‘Maroussia’ R. hybrida ‘Apollo | Leaves | Organogenesis | MS; MS Vitamins; Sucrose | 2,4-D; GA3; TDZ ABA; BAP; GA3; NAA; TDZ; Zeatin | 22 ± 2 °C Dark conditions | 10 µM 2,4-D: Callus production rate (highest); MS + 2.5 µM TDZ + 2 µM GA3: Regeneration rate (60.8% highest indirect); 10 µM TDZ: Regeneration rate (80.2% highest direct). | [30] | |
| R. rugosa | Seeds | Somatic embryogenesis | MS; MS Vitamins; Fructose; Glucose; Maltose; Sorbitol; Sucrose | 2,4-D; BAP; Kinetin; NAA; Picloram; Zeatin | 25 °C Continuous photoperiod | MS: Embryogenic calli formation; MS + 0.1 MM fructose/sucrose without PGRs: Somatic embryos formation; MS + 0.1 M sorbitol: Germinated and grew into plantlets 3%. | [31] | |
| R. hybrida ‘Anny’ | Petals | Somatic embryogenesis | MS; MS Vitamins; Sucrose | 2-iP; Dicamba; Kinetin | 25 °C Dark conditions 16 h photoperiod | MS + Dicamba + kinetin + 2-ip: The most efficient for the embryo induction of callus derived from petals. | [32] | |
| Herbaceous plants | Wild strawberry (Fragaria nilgerrensis) | Leaf disks | Organogenesis | MS sucrose | TDZ; IBA; CH | 25 ± 2 °C; 14–21 d. darkness; 16 h photoperiod; 50 µmol m−2 s−1. | MS + 2 mg/L TDZ + 0.1 mg/L IBA + CH + 14 d darkness: Average regeneration rate 97.3% 45 d; Average transformation percentage 8.67% 4–5 m. | [33] |
| Strawberry cultivar (Chandler) | Leaf disks | Organogenesis | MS sucrose | TDZ; NAA | 14 d darkness; 25 ± 2 °C | MS + TDZ + NAA: Average percentage shoots forming 5.4% | [34] | |
| Strawberry cultivars (Festival, Fortuna, Sweet Charlie) | Shoot tips; Leaves; Fruits; Anthers | Organogenesis | MS sucrose | 2,4D; 6-BA; NAA | Darkness 14 d; 25 ± 2 °C | MS + 0.5 mg/L BAP + 1.5 mg/L 2,4-D: Callus formation rate 95.75%, runner explant 75.38%, immature fruit was the lowest; Runner as explant + source + 2.0 mg/L BAP: Significant regeneration rate. | [35] | |
| Strawberry cultivars (Calypso, Sveva) | Leaves | Organogenesis | MS sucrose | 2,4D; TDZ; BA; IBA | Darkness; 25 ± 2 °C | MS + 0.5 mg/L TDZ + 0.02 mg/L 2,4-D: Regeneration rate (Calypso best). MS + 3 mg/L BA + 0.2 mg/L IBA: Regeneration rate (Sveva best). | [36] | |
| Strawberry cultivars (Chandler, Honeoye, and Redchief) | Anthers | Organogenesis | MS; NN; H1 Sucrose; Glucose; Maltose | IAA; NAA; BA; BPA; KIN; Fe-EDTA | Yellow light; 16 h photoperiod; 25 ± 2 °C | MS + 2 mg/L IAA + 1 mg/L BA + 0.2 M glucose: Shoot regeneration rate 8% (highest); H1 + gellan gum: Shoot regeneration 19% (highest); Fe-EDTA: More shoots, shoots average regeneration 16% (anthers darkness 30 d). | [37] | |
| Strawberry cultivar (Jukhyang) | Anthers | Organogenesis | MS; NLN; B5 | Myo-inositol; AgNO3; Fe-EDTA | 32 °C 24 h heat shock; 25 ± 2 °C culture | Heat shock 32 °C 24 h: Callus induction rate (highest); NLN + 100 mg/L myo-inositol + 25 mg/L AgNO3: Callus induction rate 71.4%; 100 mg/L Fe-EDTA: Callus induction rate 51%; 1/2 MS: Regeneration rate 92.7% (highest); 25 ± 2 °C: Growth and survival rate highest | [38] | |
| Strawberry cultivar (Redcoat) | Leaf disks | Organogenesis | MS; B5 vitamins | BA; IAA | 16 h photoperiod; 12.5 μmol·s −1 m −2 | MS + B5 + 10 μm BA + 10 μm IAA: Regeneration rate 94%, 13 shoots, 8w. | [39] | |
| Strawberry clone (pbgel-2000) | Leaves; Nodal segments | Somatic embryogenesis | MS | 2,4D; BAP; proline | Dark culture; 16 h photoperiod | MS + 1.0 mg/L 2,4-D + 0.5 mg/L BAP + 50% proline + darkness: somatic embryos rate highest. | [40] | |
| Strawberry cultivars (Allstar and Honeoye) | Leaves; Runners | Organogenesis | LS | BA; IBA; CH; IAA; KON3 | 25 ± 2 °C; Dark conditions; 14 h photoperiod | MS + BA+ IBA + CH + KON3 + darkness: callus induction rate highest. | [41] | |
| Strawberry cultivars (Calypso, Pegasus, Bolero, Tango and Emily) | Leaf disks; Petioles; roots; Stipules | Organogenesis | MS | TDZ; IBA | 25 ± 2 °C; Dark conditions; 14 h photoperiod | Efficient levels of regeneration were achieved: cultivars Calypso, Pegasus, Bolero, Tango and Emily with leaf disks, petioles, roots and stipules. | [42] | |
| Strawberry cultivar (Chandler) | Leaf disks | Somatic embryogenesis | MS; B5 vitamins; 2% glucose | TDZ | 10 ± 1 °C; Darkness 7 d; 16 h photoperiod. | MS + vitamins + 2% glucose + 4.0 mg/L TDZ +darkness 1 w + 16 h photoperiod 3 w: 31 somatic embryos per explant. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zang, Q.; He, D.; Liu, L.; Duan, M.; Li, S.; Lu, K.; Lei, J.; Jiang, S. Contemporary Advances and Future Perspectives in Rosaceae Plant Regeneration. Horticulturae 2026, 12, 183. https://doi.org/10.3390/horticulturae12020183
Zang Q, He D, Liu L, Duan M, Li S, Lu K, Lei J, Jiang S. Contemporary Advances and Future Perspectives in Rosaceae Plant Regeneration. Horticulturae. 2026; 12(2):183. https://doi.org/10.3390/horticulturae12020183
Chicago/Turabian StyleZang, Qi, Dan He, Lei Liu, Mingzheng Duan, Shujun Li, Ke Lu, Jiajun Lei, and Shu Jiang. 2026. "Contemporary Advances and Future Perspectives in Rosaceae Plant Regeneration" Horticulturae 12, no. 2: 183. https://doi.org/10.3390/horticulturae12020183
APA StyleZang, Q., He, D., Liu, L., Duan, M., Li, S., Lu, K., Lei, J., & Jiang, S. (2026). Contemporary Advances and Future Perspectives in Rosaceae Plant Regeneration. Horticulturae, 12(2), 183. https://doi.org/10.3390/horticulturae12020183

