The Sugar-Acid-Aroma Balance: Integrating the Key Components of Fruit Quality and Their Implications in Stone Fruit Breeding
Abstract
1. Introduction
2. Biochemistry and Genetics of Sugar Metabolism in Stone Fruits
2.1. Sugar Composition
2.2. Sugar Metabolic Pathway
2.3. Genetic Control
3. Biochemistry and Genetic Regulation of Organic Acid Metabolism in Stone Fruits
3.1. Organic Acid Composition
3.2. Metabolism and Degradation
3.3. Genetic Control
4. Aroma Formation and Its Genetic Regulation in Stone Fruits
4.1. The Aroma Profile
4.2. Biosynthetic Pathways
4.3. Genetic Regulation
5. Integration of Sugar, Acid, and Aroma Pathways in Stone Fruit Flavor Quality
5.1. Metabolic Crosstalk
5.2. Sensory Perception
6. Implications for Stone Fruit Breeding with Improved Quality
6.1. Phenotyping for Flavor
6.2. Genetical Genomics: Manipulating Omics Technologies
6.3. Breeding Strategies
6.3.1. Parental Selection
6.3.2. Early Selection
6.3.3. Balancing Act
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Echeverría, G.; Cantín, C.; Ortiz, A.; López, M.; Lara, I.; Graell, J. The impact of maturity, storage temperature and storage duration on sensory quality and consumer satisfaction of ‘Big Top®’ nectarines. Sci. Hortic. 2015, 190, 179–186. [Google Scholar] [CrossRef]
- Su, C.; Zheng, X.; Zhang, D.; Chen, Y.; Xiao, J.; He, Y.; He, J.; Wang, B.; Shi, X. Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. J. Food Sci. 2020, 85, 4300–4311. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Ivancic, A.; Schmitzer, V.; Veberic, R.; Stampar, F. Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. Food Chem. 2016, 200, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.P.; Battistelli, A.; Bonghi, C.; Drincovich, M.F.; Falchi, R.; Lara, M.V.; Moscatello, S.; Vizzotto, G.; Famiani, F. Non-structural carbohydrate metabolism in the flesh of stone fruits of the genus Prunus (Rosaceae)—A review. Front. Plant Sci. 2020, 11, 549921. [Google Scholar]
- Fan, X.; Zhao, H.; Wang, X.; Cao, J.; Jiang, W. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Sci. Hortic. 2017, 225, 553–560. [Google Scholar] [CrossRef]
- Cirilli, M.; Bassi, D.; Ciacciulli, A. Sugars in peach fruit: A breeding perspective. Hortic. Res. 2016, 3, 15067. [Google Scholar] [CrossRef]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. Compr. Rev. Food Sci. Food Saf. 2006, 5, 35–47. [Google Scholar]
- Baccichet, I.; Chiozzotto, R.; Bassi, D.; Gardana, C.; Cirilli, M.; Spinardi, A. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection. Sci. Hortic. 2021, 278, 109865. [Google Scholar] [CrossRef]
- Guillot, S.; Peytavi, L.; Bureau, S.; Boulanger, R.; Lepoutre, J.P.; Crouzet, J.; Schorr-Galindo, S. Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chem. 2006, 96, 147–155. [Google Scholar]
- Feng, J.R.; Xi, W.P.; Li, W.H.; Liu, H.N.; Liu, X.F.; Lu, X.Y. Volatile characterization of major apricot cultivars of southern Xinjiang region of China. J. Am. Soc. Hortic. Sci. 2015, 140, 466–471. [Google Scholar] [CrossRef]
- van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef]
- Fratianni, F.; d’Acierno, A.; Albanese, D.; Matteo, M.D.; Coppola, R.; Nazzaro, F. Biochemical characterization of traditional varieties of apricots (Prunus armeniaca L.) of the Campania region, Southern Italy. Foods 2021, 11, 100. [Google Scholar] [CrossRef]
- Khan, A.; Korban, S.S. Breeding and genetics of disease resistance in temperate fruit trees: Challenges and new opportunities. Theor. Appl. Genet. 2022, 135, 3961–3985. [Google Scholar] [CrossRef]
- Johari, N.H.F.; Dolhaji, N.H.; Shamsuri, S.; Abdol Latif, P. A review on sugar and organic profiles on the postharvest quality of fruits. Sci. Lett. (ScL) 2023, 17, 91–108. [Google Scholar]
- Ma, Y.; Tian, T.; Zhou, J.; Huang, F.; Wang, Y.; Liu, Y.; Liu, Z.; He, W.; Li, M.; Lin, Y. Fruit sugar and organic acid composition and inheritance analysis in an intraspecific cross of Chinese cherry. LWT 2024, 198, 116101. [Google Scholar] [CrossRef]
- Fukuma, K.; Seki, H. Effect of Pickling Methods on the Quality and Flavor of Umeboshi. Eur. J. Agric. Food Sci. 2024, 6, 19–25. [Google Scholar] [CrossRef]
- Baldicchi, A.; Farinelli, D.; Micheli, M.; Di Vaio, C.; Moscatello, S.; Battistelli, A.; Walker, R.; Famiani, F. Analysis of seed growth, fruit growth and composition and phospoenolpyruvate carboxykinase (PEPCK) occurrence in apricot (Prunus armeniaca L.). Sci. Hortic. 2015, 186, 38–46. [Google Scholar] [CrossRef]
- Walker, R.P.; Battistelli, A.; Moscatello, S.; Chen, Z.-H.; Leegood, R.C.; Famiani, F. Phosphoenolpyruvate carboxykinase in cherry (Prunus avium L.) fruit during development. J. Exp. Bot. 2011, 62, 5357–5365. [Google Scholar] [CrossRef]
- Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 2013, 140, 630–638. [Google Scholar] [CrossRef]
- Winkler, A.; Knoche, M. Predicting osmotic potential from measurements of refractive index in cherries, grapes and plums. PLoS ONE 2018, 13, e0207626. [Google Scholar] [CrossRef]
- Moing, A.; Poëssel, J.L.; Svanella-Dumas, L.; Loonis, M.; Kervella, J. Biochemical basis of low fruit quality of Prunus davidiana, a pest and disease resistance donor for peach breeding. J. Am. Soc. Hortic. Sci. 2003, 128, 55–62. [Google Scholar] [CrossRef]
- Farcuh, M.; Li, B.; Rivero, R.M.; Shlizerman, L.; Sadka, A.; Blumwald, E. Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree. J. Exp. Bot. 2017, 68, 5813–5828. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar signaling during fruit ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef] [PubMed]
- Falchi, R.; Bonghi, C.; Drincovich, M.F.; Famiani, F.; Lara, M.V.; Walker, R.P.; Vizzotto, G. Sugar metabolism in stone fruit: Source-sink relationships and environmental and agronomical effects. Front. Plant Sci. 2020, 11, 573982. [Google Scholar] [CrossRef] [PubMed]
- Julius, B.T.; Leach, K.A.; Tran, T.M.; Mertz, R.A.; Braun, D.M. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 2017, 58, 1442–1460. [Google Scholar] [CrossRef] [PubMed]
- Yamaki, S. Metabolism and accumulation of sugars translocated to fruit and their regulation. J. Jpn. Soc. Hortic. Sci. 2010, 79, 1–15. [Google Scholar] [CrossRef]
- Aslam, M.M.; Deng, L.; Wang, X.; Wang, Y.; Pan, L.; Liu, H.; Niu, L.; Lu, Z.; Cui, G.; Zeng, W. Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening. Sci. Hortic. 2019, 257, 108633. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Zanon, L.; Falchi, R.; Santi, S.; Vizzotto, G. Sucrose transport and phloem unloading in peach fruit: Potential role of two transporters localized in different cell types. Physiol. Plant. 2015, 154, 179–193. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, L.; Zhang, J.; Zhang, M.; Yu, W.; Sun, H. Integrated QTL mapping and transcriptomic profiling elucidate molecular determinants of sucrose accumulation in apricot (Prunus armeniaca L.). Curr. Plant Biol. 2025, 43, 100500. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, L.; Ogutu, C.; Liu, J.; Liu, L.; Mollah, M.D.A.; Han, Y. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. Int. J. Mol. Sci. 2020, 21, 1112. [Google Scholar] [CrossRef]
- Gao, Z.; Maurousset, L.; Lemoine, R.; Yoo, S.D.; Van Nocker, S.; Loescher, W. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol. 2003, 131, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Ni, X.; Bilal, M.S.; Shi, T.; Khalil-ur-Rehman, M.; Zhenpeng, P.; Jie, G.; Usman, M.; Gao, Z. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene 2020, 742, 144584. [Google Scholar] [CrossRef] [PubMed]
- Riaz, Z.; Jamil, I.; Mehdi, F.; Sahar, S.; Afzal, N.; Galani, S. Comparative biochemical analysis and profiling of sucrose-metabolizing enzyme activity in female and hermaphrodite papaya fruits at different phenological stages. Pure Appl. Biol. (PAB) 2025, 14, 734–746. [Google Scholar] [CrossRef]
- Granot, D.; David-Schwartz, R.; Kelly, G. Hexose kinases and their role in sugar-sensing and plant development. Front. Plant Sci. 2013, 4, 44. [Google Scholar] [CrossRef]
- Walker, R.P.; Chen, Z.-H.; Famiani, F. Gluconeogenesis in plants: A key interface between organic acid/amino acid/lipid and sugar metabolism. Molecules 2021, 26, 5129. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, L.; Jiang, X.; Cherono, S.; Liu, J.; Ogutu, C.; Ntini, C.; Zhang, X.; Han, Y. Assessment of organic acid accumulation and its related genes in peach. Food Chem. 2021, 334, 127567. [Google Scholar] [CrossRef]
- Budak, N.H.; Özdemir, N.; Gökırmaklı, Ç. The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. J. Food Biochem. 2022, 46, e13978. [Google Scholar] [CrossRef]
- Brozdowski, J.; Waliszewska, B.; Loffler, J.; Hudina, M.; Veberic, R.; Mikulic-Petkovsek, M. Composition of phenolic compounds, cyanogenic glycosides, organic acids and sugars in fruits of black cherry (Prunus serotina Ehrh.). Forests 2021, 12, 762. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, G.; Luo, Y.; Qiu, J.; Ba, L.; Xu, S.; Zhao, Z.; Luo, D.; Dong, G.; Ren, Y. Recent Advances in Postharvest Physiology and Preservation Technology of Peach Fruit: A Systematic Review. Horticulturae 2025, 11, 1007. [Google Scholar] [CrossRef]
- Baccichet, I.; Chiozzotto, R.; Spinardi, A.; Gardana, C.; Bassi, D.; Cirilli, M. Evaluation of a large apricot germplasm collection for fruit skin and flesh acidity and organic acids composition. Sci. Hortic. 2022, 294, 110780. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, C.; Li, W.; Qu, Z.; Zeng, M.; Xi, W. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC Genom. 2019, 20, 45. [Google Scholar] [CrossRef]
- Gou, N.; Chen, C.; Huang, M.; Zhang, Y.; Bai, H.; Li, H.; Wang, L.; Wuyun, T. Transcriptome and metabolome analyses reveal sugar and acid accumulation during apricot fruit development. Int. J. Mol. Sci. 2023, 24, 16992. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, W.; Zheng, W.; Tan, Q.; Xie, Z.; Zheng, C.; Hu, C. Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars. Food Chem. 2018, 259, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, Y.; Zhang, Z. The role of different natural organic acids in postharvest fruit quality management and its mechanism. Food Front. 2023, 4, 1127–1143. [Google Scholar] [CrossRef]
- Jia, D.; Xu, Z.; Chen, L.; Huang, Q.; Huang, C.; Tao, J.; Qu, X.; Xu, X. Analysis of organic acid metabolism reveals citric acid and malic acid play major roles in determining acid quality during the development of kiwifruit (Actinidia eriantha). J. Sci. Food Agric. 2023, 103, 6055–6069. [Google Scholar] [CrossRef]
- Sharma, T.; Dreyer, I.; Kochian, L.; Piñeros, M.A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front. Plant Sci. 2016, 7, 1488. [Google Scholar] [CrossRef]
- Taiti, C.; Pandolfi, C.; Caparrotta, S.; Dei, M.; Giordani, E.; Mancuso, S.; Nencetti, V. Fruit aroma and sensorial characteristics of traditional and innovative Japanese plum (Prunus salicina Lindl.) cultivars grown in Italy. Eur. Food Res. Technol. 2019, 245, 2655–2668. [Google Scholar] [CrossRef]
- Sun, H.; Lu, X.; Wang, Y.; Li, J.; Liu, S. Study on Evaluation of Fruit Aroma of Plum Variety Resources Based on Headspace Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry. Foods 2024, 13, 3515. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Yu, Z.; Lin, C.; Wang, Z.; Zhang, B. Comprehensive characterization of volatile components reveals the complexity of apricot fruit aroma with distinct coloration. J. Agric. Food Res. 2026, 26, 102685. [Google Scholar] [CrossRef]
- Mohammed, J.; Belisle, C.E.; Wang, S.; Itle, R.A.; Adhikari, K.; Chavez, D.J. Volatile profile characterization of commercial peach (Prunus persica) cultivars grown in Georgia, USA. Horticulturae 2021, 7, 516. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Manríquez, D.; Luengwilai, K.; González-Agüero, M. Aroma volatiles: Biosynthesis and mechanisms of modulation during fruit ripening. Adv. Bot. Res. 2009, 50, 1–37. [Google Scholar] [CrossRef]
- Sánchez, G.; Besada, C.; Badenes, M.L.; Monforte, A.J.; Granell, A. A non-targeted approach unravels the volatile network in peach fruit. PLoS ONE 2012, 7, e38992. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, J.Y.; Wei, W.W.; Xi, W.P.; Xu, C.J.; Ferguson, I.; Chen, K. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. J. Agric. Food Chem. 2010, 58, 6157–6165. [Google Scholar] [CrossRef]
- Xi, W.; Zheng, H.; Zhang, Q.; Li, W. Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int. J. Mol. Sci. 2016, 17, 998. [Google Scholar] [CrossRef]
- Yang, H.; Tian, C.; Ji, S.; Ni, F.; Fan, X.; Yang, Y.; Sun, C.; Gong, H.; Zhang, A. Integrative analyses of metabolome and transcriptome reveals metabolomic variations and candidate genes involved in sweet cherry (Prunus avium L.) fruit quality during development and ripening. PLoS ONE 2021, 16, e0260004. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, R.; Mu, Y.; Lv, M.; Xing, J.; Zheng, L.; Aihaiti, A.; Wang, L. Study on the Mechanisms of Flavor Compound Changes During the Lactic Fermentation Process of Peach and Apricot Mixed Juice. Foods 2024, 13, 3835. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Fang, J.; Chen, S.; Liu, Y.; Wu, B.; Li, S. Volatile profiles of apricot cultivars (Prunus armeniaca Lam.) evaluated by head space solid phase microextraction gas chromatography mass spectrometry. Anal. Lett. 2014, 47, 433–452. [Google Scholar] [CrossRef]
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Greger, V.; Schieberle, P. Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. J. Agric. Food Chem. 2007, 55, 5221–5228. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Pop, E.A.; Opriță, V.-A.; Giuffrida, D.; Cacciola, F.; Bartolomeo, G.; Mondello, L. Carotenoids, fatty acids, and volatile compounds in apricot cultivars from Romania—A chemometric approach. Antioxidants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wu, Z.; Liu, D.; Fang, B.; Zhao, X. Color and Aroma of Plums: Biosynthesis, Regulation, and Interrelationships. J. Agric. Food Chem. 2025, 73, 31742–31759. [Google Scholar] [CrossRef] [PubMed]
- Frisina, C. Relationship Between Fruit Maturity and Aroma Volatile Profiles of Peaches and Nectarines. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2023. [Google Scholar]
- Fu, X.; G. G, L.; R. M, R. Interactions Between Biochemical Pathways Producing Plant Colors and Scents. Front. Plant Sci. 2022, 13, 955431. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhang, C.; Xiao, X.; Chen, C.; Song, F. Aroma of peach fruit: A review on aroma volatile compounds and underlying regulatory mechanisms. Int. J. Food Sci. Technol. 2023, 58, 4965–4979. [Google Scholar] [CrossRef]
- Xiujun, W.; Zhenqi, S.; Yujing, T.; Kaifeng, M.; Qingwei, L. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC Plant Biol. 2022, 22, 395. [Google Scholar] [CrossRef]
- Nunes, A.R.; Gonçalves, A.C.; Pinto, E.; Amaro, F.; Flores-Félix, J.D.; Almeida, A.; Guedes de Pinho, P.; Falcão, A.; Alves, G.; Silva, L.R. Mineral content and volatile profiling of Prunus avium L. (sweet cherry) by-products from Fundao region (Portugal). Foods 2022, 11, 751. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Tian, A.; Liu, T.; Benjakul, S.; Xiao, G.; Ying, X.; Zhang, Y.; Ma, L. Characteristic volatile compounds, fatty acids and minor bioactive components in oils from green plum seed by HS-GC-IMS, GC–MS and HPLC. Food Chem. X 2023, 17, 100530. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, D.; Mao, J.; Du, H.; Qin, H.; Wang, J.; Zhu, C.; Yan, M.; Bai, B. Insight into flavor difference of cherry (Prunus avium L.) grown in facility environment and outdoors through metabolomics and correlation analysis. Food Chem. X 2024, 24, 101802. [Google Scholar] [CrossRef]
- Baz, N.M.; Wang, J.; Zhao, X.; Maqbool, A.; Gao, C.; Wang, P.; Chen, H.; Cao, H. Carotenoid biosynthesis in Prunus species: From pathway and accumulation structure to diverse pigmentation. Mol. Hortic. 2026, 6, 3. [Google Scholar] [CrossRef]
- Zhou, W.; Kong, W.; Yang, C.; Feng, R.; Xi, W. Alcohol acyltransferase is involved in the biosynthesis of C6 esters in apricot (Prunus armeniaca L.) fruit. Front. Plant Sci. 2021, 12, 763139. [Google Scholar] [CrossRef]
- Villavicencio, J.D.; Tobar, J.; Zoffoli, J.P.; O’Brien, J.A.; Contreras, C. Identification, characterization, and expression of lipoxygenase genes in sweet cherry (Prunus avium L.) cv. Regina and their relationship with the development of an herbaceous off-flavor during fruit ripening. Plant Physiol. Biochem. 2024, 206, 108271. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Xu, H.; Mi, X.; Tan, H.; Wu, B.; Liu, W.; Li, H.; Wang, X.; Wang, M.; Wu, Z. LOX and AAT Genes Affect the Aroma of “Xiaobai” Apricot during Postharvest Storage. J. Food Process. Preserv. 2023, 2023, 5558605. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, H.; Zhong, T.; Chen, D.; Wu, Y.; Xie, Z. Molecular regulatory mechanisms affecting fruit aroma. Foods 2024, 13, 1870. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.E.; Barker, A.; Pearson, W.; Barter, S.R.; de Barros Lopes, M.A.; Darriet, P.; Herderich, M.J.; Francis, I.L. Volatile compounds related to ‘stone fruit’aroma attributes in Viognier and Chardonnay wines. J. Agric. Food Chem. 2018, 66, 2838–2850. [Google Scholar] [CrossRef]
- Cao, X.; Su, Y.; Zhao, T.; Zhang, Y.; Cheng, B.; Xie, K.; Yu, M.; Allan, A.; Klee, H.; Chen, K. Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement. Cell Rep. 2024, 43, 114623. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, L.; Liu, S.; Zhao, G. The genes of CYP, ZEP, and CCD1/4 play an important role in controlling carotenoid and aroma volatile apocarotenoid accumulation of apricot fruit. Front. Plant Sci. 2020, 11, 607715. [Google Scholar] [CrossRef]
- Yao, Z.; Duan, W.; Li, A.; Zhan, W.; Sun, S.; Pan, L.; Niu, L.; Cui, G.; Zeng, W. Genome-wide identification of CCD gene family in Peach (Prunus persica L. Batsch) and expression analysis with aroma norisoprenoids. BMC Plant Biol. 2025, 25, 954. [Google Scholar] [CrossRef]
- Xiao, Q.; Ye, S.; Wang, H.; Xing, S.; Zhu, W.; Zhang, H.; Zhu, J.; Pu, C.; Zhao, D.; Zhou, Q. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem. X 2024, 24, 101790. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, J. Fruits and fruit flavor: Classification and biological characterization. In Handbook of Fruit and Vegetable Flavors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–23. [Google Scholar]
- Gao, X.; Wu, S.; Lv, G.; Wang, M.; Li, L.; Liu, Y.; He, F.; Xiao, J. The key metabolic genes and networks regulating the fruit acidity and flavonoid of Prunus mume revealed via transcriptomic and metabolomic analyses. Front. Plant Sci. 2025, 16, 1544500. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, K.; Peng, H.; Fang, J.; Zhang, A.; Han, Y.; Zhang, X. Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch). BMC Plant Biol. 2023, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.-L.; Chen, L.-Y. Molecular orchestration of malate and citrate metabolism: Regulatory networks governing organic acid dynamics and fruit quality attributes. Hortic. Res. 2025, uhaf292. [Google Scholar] [CrossRef]
- Veerappan, K.; Natarajan, S.; Chung, H.; Park, J. Molecular insights of fruit quality traits in peaches, Prunus persica. Plants 2021, 10, 2191. [Google Scholar] [CrossRef] [PubMed]
- Osorio, S.; Muñoz, C.; Valpuesta, V. Physiology and biochemistry of fruit flavors. Handb. Fruit Veg. Flavors 2010, 25, 43. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Molecular basis for optimizing sugar metabolism and transport during fruit development. Abiotech 2021, 2, 330–340. [Google Scholar]
- García-Gómez, B.E.; Salazar, J.A.; Nicolás-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martínez-Gómez, P. Molecular bases of fruit quality in Prunus species: An integrated genomic, transcriptomic, and metabolic review with a breeding perspective. Int. J. Mol. Sci. 2020, 22, 333. [Google Scholar] [CrossRef]
- Fortes, A.M.; Granell, A.; Pezzotti, M.; Bouzayen, M. Molecular and metabolic mechanisms associated with fleshy fruit quality. Front. Plant Sci. 2017, 8, 236. [Google Scholar] [CrossRef]
- Ortuno-Hernandez, G.; Sandoval-Belmar, P.; Ruiz, D.; Martinez-Gomez, P.; Meneses, C.; Salazar, J.A. Insights into the Molecular Basis of Fruit Development in Prunus Species. Plant Mol. Biol. Report. 2025, 43, 1397–1413. [Google Scholar] [CrossRef]
- Mathiazhagan, M.; Chidambara, B.; Hunashikatti, L.R.; Ravishankar, K.V. Genomic approaches for improvement of tropical fruits: Fruit quality, shelf life and nutrient content. Genes 2021, 12, 1881. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Zhang, B.; Zhang, Y.; Cai, Z.; Song, H.; Ma, R.; Yu, M. Analysis of volatile compounds and their potential regulators in four high-quality peach (Prunus persica L.) cultivars with unique aromas. LWT 2022, 160, 113195. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, R.; Zhang, J.; Wang, C.; He, H.; Wang, L.; Li, C.; Qiao, Y.; Liu, H. From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds. Horticulturae 2025, 11, 1185. [Google Scholar] [CrossRef]
- Martínez-Rivas, F.J.; Fernie, A.R. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. J. Exp. Bot. 2024, 75, 1726–1740. [Google Scholar] [CrossRef] [PubMed]
- Ba, L.; Luo, C.; Wang, X.; Cao, S.; Chen, J.; Luo, D. Developmental stage-specific modulation of sugar–acid metabolism in ‘Fengtang’plum as revealed by UPLC-MS/MS-based metabolomics. Agronomy 2025, 15, 2846. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Y.; Xing, W.; Bai, Y.-e.; Li, H.; Ye, D.; Kang, M. Spatial metabolic heterogeneity of sugar–acid balance and pigment accumulation in distinct color regions of Yanzhihong apricot (Prunus armeniaca L.) revealed by MALDI-IMS. Front. Plant Sci. 2025, 16, 1636734. [Google Scholar] [CrossRef]
- Xue, H.; Liu, Z.; Liu, W.; Huang, G.; Wang, X.; Du, M.; Li, C.; Xu, X.; Li, J.; Yang, X. The genomic design of fruit metabolomes. Plant Commun. 2025, 6, 101484. [Google Scholar] [CrossRef]
- Egea, M.; Martinez-Madrid, M.; Sanchez-Bel, P.; Murcia, M.; Romojaro, F. The influence of electron-beam ionization on ethylene metabolism and quality parameters in apricot (Prunus armeniaca L. cv Búlida). LWT-Food Sci. Technol. 2007, 40, 1027–1035. [Google Scholar] [CrossRef]
- Defilippi, B.; San Juan, W.; Valdés, H.; Moya-León, M.; Infante, R.; Campos-Vargas, R. The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest. Biol. Technol. 2009, 51, 212–219. [Google Scholar] [CrossRef]
- Valdés, H.H.; Pizarro, M.M.; Campos-Vargas, R.R.; Infante, R.R.; Defilippi, B. Effect of ethylene inhibitors on quality attributes of apricot cv. Modesto and Patterson during storage. Chil. J. Agric. Res. 2009, 69, 134–144. [Google Scholar] [CrossRef]
- Herrera, S.; Hormaza, J.I.; Lora, J.; Ylla, G.; Rodrigo, J. Molecular characterization of genetic diversity in apricot cultivars: Current situation and future perspectives. Agronomy 2021, 11, 1714. [Google Scholar] [CrossRef]
- Khadivi-Khub, A.; Khalili, Z. A breeding project: The selection of promising apricot (Prunus armeniaca L.) genotypes with late blooming time and high fruit quality. Sci. Hortic. 2017, 216, 93–102. [Google Scholar] [CrossRef]
- Tricon, D.; Bourguiba, H.; Ruiz, D.; Blanc, A.; Audergon, J.M.; Bureau, S.; Gouble, B.; Grotte, M.; Reich, M.; Renard, C. Evolution of apricot fruit quality attributes in the new released cultivars. Acta Hortic. 2009, 814, 571–576. [Google Scholar] [CrossRef]
- Liu, J.C.; Zhang, Q.P.; Niu, T.P.; Liu, N.; Zhang, Y.P.; Xu, M.; Ma, X.X.; Zhang, Y.J.; Liu, S.; Liu, W.S. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Chuanzhihong’ and ‘Saimaiti’ in apricots. J. Fruit Sci. 2020, 37, 625–634. [Google Scholar]
- Al-Suwaid, I.; Stănică, F.; Butcaru, A.; Mihai, C.; Ghasheem, N.A. An overview of apricot breeding programs focused on production improvement, field resistance and high-quality fruits. Sci. Pap. Ser. B Hortic. 2022, 66. [Google Scholar]
- Bassi, D.; Foschi, S. Raising the standards in breeding apricots at MAS.PES, Italy. Acta Hortic. 2019, 1290, 27–30. [Google Scholar] [CrossRef]
- Bianchi, G.; Rizzolo, A.; Buccheri, M.; Papa, V.; Grassi, M.; Lo Scalzo, R. Carotenoids production and fruit quality changes during shelf life of peach [Prunus persica (L.) Batsch] cultivars harvested at two ripening stages. Acta Hortic. 2013, 1084, 717–724. [Google Scholar] [CrossRef]
- García-Gómez, B.E.; Salazar, J.A.; Egea, J.A.; Rubio, M.; Martínez-Gómez, P.; Ruiz, D. Monitoring apricot (Prunus armeniaca L.) ripening progression through candidate gene expression analysis. Int. J. Mol. Sci. 2022, 23, 4575. [Google Scholar] [CrossRef]
- Martínez-Gómez, P. Plant Genetics and Molecular Breeding; MDPI: Basel, Switzerland, 2019; p. 626. [Google Scholar] [CrossRef]
- Calle, A.; Wünsch, A. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Hortic. Res. 2020, 7, 127. [Google Scholar] [CrossRef]
- Aranzana, M.J.; Decroocq, V.; Dirlewanger, E.; Eduardo, I.; Gao, Z.S.; Gasic, K.; Iezzoni, A.; Jung, S.; Peace, C.; Prieto, H. Prunus genetics and applications after de novo genome sequencing: Achievements and prospects. Hortic. Res. 2019, 6, 58. [Google Scholar] [CrossRef]
- Tahzima, R.; Foucart, Y.; Peusens, G.; Beliën, T.; Massart, S.; De Jonghe, K. High-throughput sequencing assists studies in genomic variability and epidemiology of little cherry virus 1 and 2 infecting Prunus spp. in Belgium. Viruses 2019, 11, 592. [Google Scholar] [CrossRef]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Saha, P.; Farcuh, M.; Li, B.; Sadka, A.; Blumwald, E. RNA-seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums. Plant Mol. Biol. Report. 2015, 33, 1634–1649. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, J.; Ma, Y.; Wang, L. Preliminary identification of candidate genes associated with the peach fruit sorbitol content based on comparative transcriptome analysis. Sci. Hortic. 2020, 263, 109151. [Google Scholar] [CrossRef]
- Groppi, A.; Liu, S.; Cornille, A.; Decroocq, S.; Bui, Q.T.; Tricon, D.; Cruaud, C.; Arribat, S.; Belser, C.; Marande, W. Population genomics of apricots unravels domestication history and adaptive events. Nat. Commun. 2021, 12, 3956. [Google Scholar] [CrossRef]
- Geuna, F.; Salazar, J.A.; Martinez-Gomez, P. Allele Mining in Apricot (Prunus armeniaca L.) Breeding: Current State and Future Prospect. In Allele Mining for Genomic Designing of Fruit Crops; CRC Press: Boca Raton, FL, USA, 2024; pp. 292–308. [Google Scholar]
- Herrera, S.; Lora, J.; Hormaza, J.I.; Rodrigo, J. Self-incompatibility in apricot: Identifying pollination requirements to optimize fruit production. Plants 2022, 11, 2019. [Google Scholar] [CrossRef]
- Gomez-Abajo, M.; Dicenta, F.; Martínez-García, P.J. Dissecting the genetic architecture of flowering and maturity time in almond (Prunus dulcis): Heritability estimates and breeding value predictions from historical data. bioRxiv 2025. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aslam, M.M.; Yu, W.; Jiang, F.; Zhang, J.; Yang, L.; Zhang, M.; Sun, H. The Sugar-Acid-Aroma Balance: Integrating the Key Components of Fruit Quality and Their Implications in Stone Fruit Breeding. Horticulturae 2026, 12, 170. https://doi.org/10.3390/horticulturae12020170
Aslam MM, Yu W, Jiang F, Zhang J, Yang L, Zhang M, Sun H. The Sugar-Acid-Aroma Balance: Integrating the Key Components of Fruit Quality and Their Implications in Stone Fruit Breeding. Horticulturae. 2026; 12(2):170. https://doi.org/10.3390/horticulturae12020170
Chicago/Turabian StyleAslam, Muhammad Muzammal, Wenjian Yu, Fengchao Jiang, Junhuan Zhang, Li Yang, Meiling Zhang, and Haoyuan Sun. 2026. "The Sugar-Acid-Aroma Balance: Integrating the Key Components of Fruit Quality and Their Implications in Stone Fruit Breeding" Horticulturae 12, no. 2: 170. https://doi.org/10.3390/horticulturae12020170
APA StyleAslam, M. M., Yu, W., Jiang, F., Zhang, J., Yang, L., Zhang, M., & Sun, H. (2026). The Sugar-Acid-Aroma Balance: Integrating the Key Components of Fruit Quality and Their Implications in Stone Fruit Breeding. Horticulturae, 12(2), 170. https://doi.org/10.3390/horticulturae12020170

