Gibberellin Promotes Sugar Accumulation in Longan Fruit via Upregulation of the Plasma Membrane Sugar Transporter DlSWEET3a
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment Method
2.2. Determination of Sugar Content
2.3. Transcriptomic Sequencing
2.4. Quantitative Real-Time Polymerase Chain Reaction (Qrt-Pcr)
2.5. Subcellular Localization Analysis of DlSWEET3a
2.6. Sugar Transport Activity Detection of DlSWEET3a Protein
2.7. Transient Transformation of DlSWEET3a in Longan Fruits
2.8. Stable Transformation of DlSWEET3a Gene in Tobacco
2.9. Data Statistics
3. Results
3.1. Effects of Exogenous Ga3 Treatment on Sugar Content in Longan Fruits
3.2. Mining Candidate Genes Related to Sugar Accumulation Through Transcriptome
3.3. Expression Pattern Analysis of DlSWEET3a in Longan
3.4. Subcellular Localization of DlSWEET3a
3.5. DlSWEET3a Transports Glucose, Fructose, Mannose, and Galactose
3.6. Stable Overexpression of DlSWEET3a Enhances Sugar Content in Tobacco
3.7. Transient Overexpression of DlSWEET3a Enhances Sugar Accumulation in Longan Fruits
4. Discussion
4.1. Exogenous Gibberellin Spraying Regulates Sugar Contents of Longan Fruit
4.2. Ga3 Facilitated the Decomposition of Sugars by Increasing Crucial Genes Involved in Sugar Metabolism and Transport
4.3. DlSWEET3a Contributes to Sugar Accumulation in Longan Fruits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, C.Y. Advances in plant hormone research over 70 years since the founding of the People’s Republic of China. Sci. China Life Sci. 2019, 49, 1227–1281. [Google Scholar]
- Gao, X.H.; Fu, X.D. Research progress on gibberellin signal transduction and its regulation of plant growth and development. Biotechnol. Bull. 2018, 34, 7–19. [Google Scholar]
- Silverstone, A.L.; Sun, T. Gibberellins and the green revolution. Trends Plant Sci. 2000, 5, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Z.; Cheng, Y.X.; Zhong, R.; Tang, J.; Pervaiz, T.; Zhou, S.H.; Liu, J.B.; Wang, B.; Jia, H.F. Brassinolide and gibberellin promote grape fruit development and quality. Sci. Hortic. 2024, 338, 113619. [Google Scholar] [CrossRef]
- Wang, Y.; Xian, K.; Liu, H. Effect of exogenous hormones on sugar accumulation in fruit of grafted watermelon. North. Hortic. 2007, 10, 27–29. [Google Scholar]
- Wu, W.; Sun, N.J.; Xu, Y.; Chen, Y.T.; Liu, X.F.; Shi, L.Y.; Chen, W.; Zhu, Q.G.; Gong, B.C.; Yin, X.R.; et al. Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors. Plant Physiol. 2023, 193, 840–854. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.N.; Wu, B.H.; Yuan, Y.Y.; Zhao, Z.Y. Plasma membrane-localized transporter MdSWEET12 is involved in sucrose unloading in apple fruit. J. Agric. Food Chem. 2022, 70, 15517–15530. [Google Scholar] [CrossRef]
- Mishra, B.S.; Singh, M.; Aggrawal, P.; Laxmi, A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 2009, 4, e4502. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yoo, S.D. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet. 2011, 7, e1001263. [Google Scholar] [CrossRef]
- Li, P.; Wind, J.J.; Shi, X.; Zhang, H.; Hanson, J.; Smeekens, S.C.; Teng, S. Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane bound domain. Proc. Natl. Acad. Sci. USA 2011, 108, 3436–3441. [Google Scholar] [CrossRef]
- Evoland, A.L.; Jackson, D.P. Sugars, signalling and plant development. J. Exp. Bot. 2011, 63, 3367–3377. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, R.; Lacamera, S.; Atanassova, R. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [PubMed]
- Pangborn, R. Relative taste intensities of selected sugars and organic acids. J. Food Sci. 2006, 28, 726–733. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.; Wang, T.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef]
- Doidy, J.; Grace, E.; Kühn, C.; Simon-Plas, F.; Casieri, L.; Wipf, D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012, 17, 413–422. [Google Scholar] [CrossRef]
- Xue, X.; Wang, J.; Shukla, D.; Cheung, L.S.; Chen, L.Q. When SWEETs turn tweens: Updates and perspectives. Annu. Rev. Plant Biol. 2022, 73, 379–403. [Google Scholar] [CrossRef]
- Braun, D.M.; Wang, L.; Ruan, Y.L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2013, 65, 1713–1735. [Google Scholar] [CrossRef]
- Jeena, G.S.; Kumar, S.; Shukla, R.K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Mol. Biol. 2019, 100, 351–365. [Google Scholar] [CrossRef]
- Chen, L.Q.; Hou, B.H.; Lalonde, S. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Chardon, F.; Bedu, M.; Calenge, F.; Klemens, P.A.W.; Spinner, L.; Clement, G.; Chietera, G.; Léran, S.; Ferrand, M.; Lacombe, B.; et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr. Biol. 2013, 23, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Nagy, R.; Chen, H.Y.; Pfrunder, S.; Yu, Y.C.; Santelia, D.; Frommer, W.B.; Martinoia, E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol. 2014, 164, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.W.; Sosso, D.; Chen, L.Q.; Gase, K.; Kim, S.G.; Kessler, D.; Klinkenberg, P.M.; Gorder, M.K.; Hou, B.H.; Qu, X.Q.; et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 2014, 508, 546–549. [Google Scholar] [CrossRef]
- Le Hir, R.; Spinner, L.; Klemens, P.A.W.; Chakraborti, D.; de Marco, F.; Vilaine, F.; Wolff, N.; Lemoine, R.; Porcheron, B.; Géry, C.; et al. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol. Plant 2015, 8, 1687–1690. [Google Scholar] [CrossRef]
- Ren, Y.; Li, M.Y.; Guo, S.G.; Sun, H.H.; Zhao, J.Y.; Zhang, J.; Liu, G.M.; He, H.J.; Tian, S.W.; Yu, Y.T.; et al. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in SWEET watermelon fruits. Plant Cell 2021, 33, 1554–1573. [Google Scholar] [CrossRef]
- Luo, M.; Jia, M.; Pan, L.; Chen, W.; Zhou, K.; Xi, W. Sugar transporters PpSWEET9a and PpSWEET14 synergistically mediate peach sucrose allocation from source leaves to fruit. Commun. Biol. 2024, 7, 1068. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Wang, T.; Zhang, J.; Liu, W.; Fang, H.; Zhang, Z.; Peng, F.; Chen, X.; Wang, N. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. Plant Physiol. 2023, 192, 2081–2101. [Google Scholar] [CrossRef]
- Yi, D.; Zhang, H.; Lai, B.; Liu, L.; Pan, X.; Ma, Z.; Wang, Y.; Xie, J.; Shi, S.; Wei, Y. Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses. J. Agric. Food Chem. 2021, 69, 1806–1815. [Google Scholar] [CrossRef]
- Yue, X.; Chen, Z.J.; Zhang, J.M.; Huang, C.; Zhao, S.Y.; Li, X.B.; Qu, Y.; Zhang, C. Extraction, purification, structural features and biological activities of longan fruit pulp (Longyan) polysaccharides: A review. Front. Nutr. 2022, 9, 914679. [Google Scholar] [CrossRef]
- Lai, T.T.; Shuai, L.; Han, D.M.; Lai, Z.Y.; Du, X.X.; Guo, X.M.; Hu, W.S.; Wu, Z.X.; Luo, T. Comparative metabolomics reveals differences in primary and secondary metabolites between ‘Shixia’ and ‘Chuliang’ longan (Dimocarpus longan Lour.) pulp. Food Sci. Nutr. 2021, 9, 5785–5799. [Google Scholar] [CrossRef]
- Chen, X.P.; Deng, C.J.; Hu, W.S.; Jiang, J.M.; Jiang, F.; Xu, Q.Z.; Zheng, S.Q. Analysis of fruit sugar components and content characteristics in longan germplasm resources. J. Fruit Sci. 2015, 32, 420–426. [Google Scholar]
- Fang, T.; Li, Y.; Xie, T.; Xian, H.M.; Bao, Y.Y.; Zeng, L. The bHLH transcription factor DlbHLH68 positively regulates DlSPS1 expression to promote sucrose biosynthesis in longan. Int. J. Biol. Macromol. 2025, 296, 139594. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, R.; Pan, R.Y.; Bao, Y.Y.; Xie, T.; Zeng, L.; Fang, T. Comparative transcriptome analysis identifies candidate genes related to sucrose accumulation in longan (Dimocarpus longan Lour.) pulp. Front. Plant Sci. 2024, 15, 1379750. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lin, Y.; Lin, H.; Lin, M.; Fan, Z. Impacts of exogenous ROS scavenger ascorbic acid on the storability and quality attributes of fresh longan fruit. Food Chem. X 2021, 12, 100167. [Google Scholar] [CrossRef]
- Fang, T.; Peng, Y.; Rao, Y.; Li, S.; Zeng, L. Genome-wide identification and expression analysis of sugar transporter (ST) gene family in longan (Dimocarpus longan L.). Plants 2020, 9, 342. [Google Scholar] [CrossRef]
- Fang, T.; Rao, Y.; Wang, M.; Li, Y.; Liu, Y.; Xiong, P.; Zeng, L. Characterization of the sweet gene family in longan (Dimocarpus longan) and the role of DlSWEET1 in cold tolerance. Int. J. Mol. Sci. 2022, 23, 8914. [Google Scholar] [CrossRef]
- Lin, Y.; Min, J.; Lai, R.; Wu, Z.; Chen, Y.; Yu, L.; Cheng, C.; Jin, Y.; Tian, Q.; Liu, Q.; et al. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhang, X.L.; Peng, R.; Tian, X.B.; Guo, Y.Q.; Li, X.Y.; Liu, X.L.; Xie, Y.; Li, M.Z.; Xia, H.; Liang, D. Establishment of protoplasts isolation and transient transformation system for kiwifruit. Sci. Hortic. 2024, 329, 113034. [Google Scholar] [CrossRef]
- Wang, P.; Wei, P.; Niu, F.; Liu, X.; Zhang, H.; Lyu, M.; Yuan, Y.; Wu, B. Cloning and functional assessments of floral-expressed SWEET transporter genes from Jasminum sambac. Int. J. Mol. Sci. 2019, 20, 4001. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, I.; Runions, J.; Kearns, A.; Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006, 1, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Vanstraelen, M.; Benková, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef]
- Perez, F.J.; Gomez, M. Possible role of soluble invertase in the gibberellic acid berry-sizing effect in Sultana grape. J. Plant Growth Regul. 2000, 30, 111–116. [Google Scholar] [CrossRef]
- Song, Q.; Nie, X.; Chen, H. Effects of abscisic acid and gibberellin on sugar accumulation in ‘Fengtang’ Plum (Prunus salicina Lindl). Hortic. Sci. 2024, 51, 314–326. [Google Scholar] [CrossRef]
- Wang, Y.B.; Xian, K.M.; Zhang, Y.H.; Liu, H.Y. Research progress on the application of GA. North. Hortic. 2007, 6, 74–75. [Google Scholar]
- Tian, Q.; Xie, X.; Lai, R.; Cheng, C.; Zhang, Z.; Chen, Y.; XuHan, X.; Lin, Y.; Lai, Z. Functional and transcriptome analysis reveal specific roles of Dimocarpus longan DlRan3A and DlRan3B in root hair development, reproductive growth, and stress tolerance. Plants 2024, 13, 480. [Google Scholar] [CrossRef]
- Jue, D.; Sang, X.; Liu, L.; Shu, B.; Wang, Y.; Liu, C.; Wang, Y.; Xie, J.; Shi, S. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition. BMC Genom. 2019, 20, 126. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.; Liu, Z.; Zhang, Z.; XuHan, X.; Lin, Y.; Lai, Z. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genom. 2020, 21, 4. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Yu, X.; Wang, L.; Wang, S.; Xu, W.; Zhang, C. Influence of gibberellins on sugar metabolism and related gene expression in fruit of pear (Pyrus pyrifolia). J. SJTU-A S 2015, 3, 21–28+35. [Google Scholar]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Schmölzer, K.; Gutmann, A.; Diricks, M.; Desmet, T.; Nidetzky, B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol. Adv. 2016, 34, 88–111. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, K.; Lei, B.; Zhou, J.; Guo, T.; An, X. Altered sucrose metabolism and plant growth in transgenic Populus tomentosa with altered sucrose synthase PtSS3. Transgenic Res. 2020, 29, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Granot, D. Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 2018, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.Y.; Yi, X.R.; Liu, S.T.; Qi, K.J.; Zhang, S.L.; Wu, X. The PbFRK1 gene from pear fruit affects sugar accumulation. Sci. Hortic. 2024, 323, 112536. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, J.; Yang, R.; Bai, J.; Hu, W.; Gu, L.; Lian, Z.; Huo, H.; Guo, J.; Gong, H. PROCERA interacts with JACKDAW in gibberellin-enhanced source–sink sucrose partitioning in tomato. Plant Physiol. 2025, 197, kiaf024. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, F.; Zou, R.; Xu, M.; Shan, H.; Cheng, B.; Li, X. The maize sugar transporters ZmSWEET15a and ZmSWEET15b positively regulate salt tolerance in plants. Plant Physiol. Biochem. 2024, 213, 108845. [Google Scholar] [CrossRef]
- Klemens, P.A.; Patzke, K.; Deitmer, J.; Spinner, L.; Le Hir, R.; Bellini, C.; Bedu, M.; Chardon, F.; Krapp, A.; Neuhaus, H.E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol. 2013, 163, 1338–1352. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, T.; Li, X.; Song, C.P.; Zhu, J.K.; Chen, L.; Zhao, Y. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nat. Plants 2022, 8, 68–77. [Google Scholar] [CrossRef]
- Lu, L.; Delrot, S.; Fan, P.; Zhang, Z.; Wu, D.; Dong, F.; García-Caparros, P.; Li, S.; Dai, Z.; Liang, Z. The transcription factors ERF105 and NAC72 regulate expression of a sugar transporter gene and hexose accumulation in grape. Plant Cell 2025, 37, koae326. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, J.Q.; Zhang, R.R.; Chen, C.; Tao, J.P.; Xiong, J.S.; Xiong, A.S. SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits. Plant J. 2025, 121, e70062. [Google Scholar] [CrossRef] [PubMed]
- Aimin, Z.; Hongping, M.; Shuang, F.; Gong, S.; Wang, J. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 1564. [Google Scholar]
- Zhang, X.; Feng, C.; Wang, M.; Li, T.; Liu, X.; Jiang, J. Plasma membranelocalized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Hortic. Res. 2021, 8, 186. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.; Guo, R.; Zhu, X.; Tao, X.; He, M.; Li, Z.; Shen, L.; Li, Q.; Ren, D.; et al. Plasma membrane-localized hexose transporter OsSWEET1b, affects sugar metabolism and leaf senescence. Plant Cell Rep. 2024, 43, 29. [Google Scholar] [CrossRef]
- Wei, X.Y.; Liu, F.L.; Chen, C.; Ma, F.W.; Li, M.J. The Malus domestica sugar transporter gene family: Identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front. Plant Sci. 2014, 5, 569. [Google Scholar] [CrossRef]
- Fang, H.; Shi, Y.; Liu, S.; Jin, R.; Sun, J.; Grierson, D.; Li, S.; Chen, K. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit. Plant Physiol. 2023, 192, 1858–1876. [Google Scholar] [CrossRef]
- Geng, Y.Q.; Wu, M.J.; Zhang, C.M. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba Mill. Front. Plant Sci. 2020, 11, 1081. [Google Scholar] [CrossRef]
- Mollah, M.D.A.; Zhang, X.; Zhao, L.; Jiang, X.H.; Ogutu, C.O.; Peng, Q.; Belal, M.A.A.; Yang, Q.R.; Cai, Y.M.; Nishawy, E.; et al. Two vacuolar invertase inhibitors PpINHa and PpINH3 display opposite effects on fruit sugar accumulation in peach. Front. Plant Sci. 2022, 13, 1033805. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, T.; Bao, Y.; Xu, J.; Liang, K.; Yang, S.; Zeng, L.; Fang, T. Gibberellin Promotes Sugar Accumulation in Longan Fruit via Upregulation of the Plasma Membrane Sugar Transporter DlSWEET3a. Horticulturae 2026, 12, 96. https://doi.org/10.3390/horticulturae12010096
Xie T, Bao Y, Xu J, Liang K, Yang S, Zeng L, Fang T. Gibberellin Promotes Sugar Accumulation in Longan Fruit via Upregulation of the Plasma Membrane Sugar Transporter DlSWEET3a. Horticulturae. 2026; 12(1):96. https://doi.org/10.3390/horticulturae12010096
Chicago/Turabian StyleXie, Tao, Yuying Bao, Jinglei Xu, Kaitao Liang, Shuo Yang, Lihui Zeng, and Ting Fang. 2026. "Gibberellin Promotes Sugar Accumulation in Longan Fruit via Upregulation of the Plasma Membrane Sugar Transporter DlSWEET3a" Horticulturae 12, no. 1: 96. https://doi.org/10.3390/horticulturae12010096
APA StyleXie, T., Bao, Y., Xu, J., Liang, K., Yang, S., Zeng, L., & Fang, T. (2026). Gibberellin Promotes Sugar Accumulation in Longan Fruit via Upregulation of the Plasma Membrane Sugar Transporter DlSWEET3a. Horticulturae, 12(1), 96. https://doi.org/10.3390/horticulturae12010096

