Genetic Diversity and Population Structure of Tea (Camellia sinensis) Germplasm from the Xizang Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Measurement of Phenotypic Traits
2.3. DNA Extraction
2.4. Primers
2.5. Genotyping with SSR Marker
2.6. Data Analysis
3. Results
3.1. Phenotypical Diversity
3.1.1. Variation of Phenotypic Traits Among 50 Tea Accessions
3.1.2. Shannon Diversity Index
3.1.3. Principal Component Analysis (PCA)
3.2. SSR Diversity
3.2.1. Level of Polymorphism of the SSR Markers
3.2.2. Level of Polymorphism of the Five Population
3.2.3. Analysis of Molecular Variance (AMOVA)
3.2.4. Cluster Analysis
3.2.5. Discriminant Analysis of Principal Components (DAPC)
3.2.6. Population Structure
4. Discussion
4.1. Genetic Diversity of Tibetan Tea Germplasm
4.2. Genetic Differentiation and Population Structure Analysis
4.3. Phylogenetic Relationships and Breeding Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.Q.; Kamunya, S.M.; Yamaguchi, S.; Ranatunga, M.A.; Chen, L. Classic genetics and traditional breeding of tea plant. In The Tea Plant Genome; Springer: Singapore, 2024; pp. 79–120. [Google Scholar]
- Chen, Z. Roads, riding stables, and highland barley: Livelihood diversification as climate change adaptation among Tibetans in Shangri-La, China. In Routledge Handbook of Climate Change Impacts on Indigenous Peoples and Local Communities; Routledge: Abingdon, UK, 2023; pp. 336–347. [Google Scholar]
- Sina, B. Exploring the Symbolic and Socio-Cultural Meanings of Yak Butter Tea in Tibet. Master’s Thesis, Auckland University of Technology, Auckland, New Zealand, 2019. [Google Scholar]
- Zhiyang, L. The Spread and Changes of Tea and Tea Drinking Customs in Minority Areas of North and the Tibetan Plateau in China. Int. J. Bus. Anthropol. 2024, 14, 64–79. [Google Scholar]
- Xingang, C. Investigation and Analysis of the Development of Tea-Horse Trade between the Hans and Tibetans During the Period of Early Tang and Late Qing Dynasties. Acad. J. Humanit. Soc. Sci. 2022, 5, 112–118. [Google Scholar] [CrossRef]
- Haitao, L. The strategic significance of the ancient tea horse road from the perspective of history. In Proceedings of the IConSES 2021, Chicago, IL, USA, 21–24 October 2021; pp. 170–177. [Google Scholar]
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 1, 431487. [Google Scholar] [CrossRef]
- Yao, M.Z.; Ma, C.L.; Qiao, T.T.; Jin, J.Q.; Chen, L. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 2012, 8, 205–220. [Google Scholar] [CrossRef]
- He, Z.; Liu, C.; Wang, X.; Wang, R.; Chen, Y.; Tian, Y. Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breed. Sci. 2020, 70, 586–593. [Google Scholar] [CrossRef]
- Kottawa-Arachchi, J.D.; Ranatunga, M.A.; Sharma, R.K.; Chaudhary, H.; Attanayake, R.N.; Amarakoon, A.; Gunasekare, M.K.; Sharma, B.; Kumar, N.; Sood, V. Morpho-molecular genetic diversity and population structure analysis to enrich core collections in tea [Camellia sinensis (L) O. Kuntze] germplasm of Sri Lanka and India. Genet. Resour. Crop Evol. 2024, 71, 2597–2616. [Google Scholar] [CrossRef]
- Clarke, C.; Richter, B.S.; Rathinasabapathi, B. Genetic and morphological characterization of United States tea (Camellia sinensis): Insights into crop history, breeding strategies, and regional adaptability. Front. Plant Sci. 2023, 14, 1149682. [Google Scholar] [CrossRef]
- Samarina, L.S.; Matskiv, A.O.; Shkhalakhova, R.M.; Koninskaya, N.G.; Hanke, M.-V.; Flachowsky, H.; Shumeev, A.N.; Manakhova, K.A.; Malyukova, L.S.; Liu, S.; et al. Genetic diversity and genome size variability in the Russian genebank collection of tea plant [Camellia sinensis (L). O. Kuntze]. Front. Plant Sci. 2022, 12, 800141. [Google Scholar] [CrossRef] [PubMed]
- Zaman, F.; Zhang, E.; Xia, L.; Deng, X.; Ilyas, M.; Ali, A.; Guo, F.; Wang, P.; Wang, M.; Wang, Y.; et al. Natural variation of main biochemical components, morphological and yield traits among a panel of 87 tea [Camellia sinensis (L.) O. Kuntze] cultivars. Hortic. Plant J. 2023, 9, 563–576. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Xia, Y.; Xu, M.; Pei, S. Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genet. Resour. Crop Evol. 2005, 52, 41–52. [Google Scholar] [CrossRef]
- Kalendar, R.; Glazko, V.I. Types of molecular-genetic markers and their application. Physiol. Biochem. Cultiv. Plants 2002, 34, 279–296. [Google Scholar]
- Bardakci, F. Random amplified polymorphic DNA (RAPD) markers. Turk. J. Biol. 2001, 25, 185–196. [Google Scholar]
- Osborn, A.M.; Moore, E.R.; Timmis, K.N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2000, 2, 39–50. [Google Scholar] [CrossRef]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef]
- Fang, W.; Cheng, H.; Duan, Y.; Jiang, X.; Li, X. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst. Evol. 2012, 298, 469–483. [Google Scholar] [CrossRef]
- Paux, E.; Sourdille, P.; Mackay, I.; Feuillet, C. Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol. Adv. 2012, 30, 1071–1088. [Google Scholar] [CrossRef]
- International Plant Genetic Resources Institute. Descriptors for Tea (Camellia Sinensis); Bioversity International: Rome, Italy, 1997.
- International Union for Protection of New Varieties of Plants. Descriptor List of UPOV for Tea; International Union for Protection of New Varieties of Plants: Geneva, Switzerland, 2022. [Google Scholar]
- Ma, J.Q.; Yao, M.Z.; Ma, C.L.; Wang, X.C.; Jin, J.Q.; Wang, X.M.; Chen, L. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 2014, 9, e93131. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Li, T.Q.; Yang, W.K.; Liu, Q.; Gao, J.Y. Ancient tea gardens play important role on in situ conservation of epiphytic orchids in southwest Yunnan, China. Glob. Ecol. Conserv. 2024, 49, e02778. [Google Scholar] [CrossRef]
- Yuan, Y.; Horikoshi, M.; Li, W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016, 8, 474–485. [Google Scholar] [CrossRef]
- Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef]
- Marshall, T.C. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Xia, E.H.; Tong, W.; Wu, Q.; Wei, S.; Zhao, J.; Zhang, Z.Z.; Wei, C.L.; Wan, X.C. Tea plant genomics: Achievements, challenges and perspectives. Hortic. Res. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Lin, K.; Wang, A.; Li, Y.; Li, L.; Wei, J.; Zhou, F.; Zhao, D.; Yan, D. Exploring Genetic Variation and Trait Correlations in ‘Shiqian Taicha’Tea Based on Comprehensive Analyses of Morphological and Biochemical Diversity. Horticulturae 2024, 10, 1128. [Google Scholar] [CrossRef]
- Pan, Y.T.; Yuan, Z.F.; Yuan, H.Y.; Ban, Q.Y.; Jiang, C.J. Diversity analysis of phenotypic characteristics for Henan local tea germplasm resources. J. Xinyang Norm. Univ. (Nat. Sci. Ed. ) 2018, 31, 578–585. [Google Scholar]
- Xu, J.J.; Zhu, Y.Y.; Wang, W. Comprehensive Evaluation and Phenotypic Diversity Analysis of Camellia meiocarpa in Guizhou. J. Zhejiang For. Sci. Technol. 2021, 41, 15–23. [Google Scholar]
- Liu, C.G.; Yu, W.T.; Cai, C.P.; Huang, S.J.; Wu, H.H.; Wang, Z.H.; Wang, P.; Zheng, Y.C.; Wang, P.J.; Ye, N.X. Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi Mountain of China based on Single Nucleotide Polymorphism (SNP) markers. Horticulturae 2022, 8, 932. [Google Scholar] [CrossRef]
- Huang, F.F.; Duan, J.H.; Lei, Y.; Liu, Z.; Kang, Y.K.; Luo, Y.; Chen, Y.Y.; Li, Y.Y.; Liu, S.Q.; Li, S.J.; et al. Genetic diversity, population structure and core collection analysis of Hunan tea plant germplasm through genotyping-by-sequencing. Beverage Plant Res. 2022, 2, 5. [Google Scholar] [CrossRef]
- Ji, P.; Li, H.; Gao, L.Z.; Zhang, J.; Cheng, Z.; Huang, X. ISSR diversity and genetic differentiation of ancient tea (Camellia sinensis var. assamica) plantations from China: Implications for precious tea germplasm conservation. Pak. J. Bot. 2011, 43, 281–291. [Google Scholar]
- Younger, J.L.; Clucas, G.V.; Kao, D.; Rogers, A.D.; Gharbi, K.; Hart, T.; Miller, K.J. The challenges of detecting subtle population structure and its importance for the conservation of emperor penguins. Mol. Ecol. 2017, 26, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, D.; Wang, B.; Meinhardt, L.; Zhou, L.; Tan, H. Multiple distinctive lineages of Camellia sinensis var. assamica from India and China revealed by Single Nucleotide Polymorphism markers. Beverage Plant Res. 2025, 5, e026. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.X.; Ji, P.Z.; Gao, L.Z. Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: Insights into evolutionary history and conservation. BMC Evol. Biol. 2012, 12, 92. [Google Scholar] [CrossRef]
- Zhao, D.W.; Yang, J.B.; Yang, S.B.; Kato, K.; Luo, J.P. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biol. 2014, 14, 14. [Google Scholar] [CrossRef]
- Yi, M.; Hu, R.; Huang, W.D.; Chen, T.X.; Xie, W.L.; Xie, H.P.; Luo, X.; Lai, M. Genetic Diversity and Population Structure Analysis of Pinus elliottii Germplasm Resources in Jiangxi Province. Life 2024, 14, 1401. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.C.; Gao, C.J.; Li, J.; Liu, Z.R.; Cui, K. Genetic diversity, population structure and a core collection establishment of Pinus yunnanensis using microsatellite markers. Eur. J. For. Res. 2023, 142, 1439–1451. [Google Scholar] [CrossRef]
- Taniguchi, F.; Kimura, K.; Saba, T.; Ogino, A.; Yamaguchi, S.; Tanaka, J. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet. Genomes 2014, 10, 1555–1565. [Google Scholar] [CrossRef]
- Khoury, C.K.; Brush, S.; Costich, D.E.; Curry, H.A.; De Haan, S.; Engels, J.M.; Guarino, L.; Hoban, S.; Mercer, K.L.; Miller, A.J. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytol. 2022, 233, 84–118. [Google Scholar] [CrossRef]
- Li, M.M.; Meegahakumbura, M.K.; Wambulwa, M.C.; Burgess, K.S.; Möller, M.; Shen, Z.F.; Li, D.Z.; Gao, L.M. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica). Plant Divers. 2024, 46, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Kunte, K. Adaptive genetic exchange: A tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 2017, 32, 601–611. [Google Scholar] [CrossRef] [PubMed]






| Population Code | Location | Longitude (E) | Latitude (N) | Sample Size |
|---|---|---|---|---|
| MT | Motuo, Nyingchi | 95.33 | 29.33 | 10 |
| BM | Bomi, Nyingchi | 95.77 | 29.86 | 12 |
| CY | Chayu, Nyingchi | 97.47 | 28.66 | 17 |
| CN | Cuona, Shannan | 95.96 | 27.99 | 8 |
| NML | Nielamu, Shigatse | 95.98 | 28.16 | 3 |
| Tolal | 50 |
| Traits | Avg ± SE | CV (%) | Max | Min | Skewness | Kurtosis |
|---|---|---|---|---|---|---|
| PH (m) | 4.16 ± 1.38 | 33.25 | 6.80 | 1.60 | 0.11 | −1.02 |
| BSD (cm) | 5.41 ± 2.58 | 47.80 | 14.83 | 1.87 | 1.10 | 2.05 |
| LL (cm) | 10.40 ± 1.72 | 16.54 | 18.80 | 7.17 | 2.30 | 10.92 |
| LW (cm) | 4.15 ± 0.68 | 16.31 | 6.60 | 2.49 | 0.63 | 2.60 |
| LA (cm2) | 30.86 ± 10.73 | 34.77 | 86.86 | 13.19 | 2.85 | 14.47 |
| LC | 4.84 ± 0.55 | 11.32 | 5.00 | 3.00 | −3.19 | 8.53 |
| ILC | 5.48 ± 1.11 | 20.27 | 8.00 | 5.00 | 1.91 | 1.73 |
| LS | 2.20 ± 0.45 | 20.53 | 3.00 | 1.00 | 0.83 | 0.48 |
| LSCS | 1.54 ± 0.68 | 43.92 | 3.00 | 1.00 | 0.88 | −0.34 |
| Grouping Methods | No | PH | BSD | LL | LW | LA | LC | ILC | LS | LSCS | Mean | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All genotypes as a single group | 50 | 1.96 | 1.88 | 1.80 | 1.95 | 1.72 | 0.28 | 0.44 | 0.62 | 0.92 | 1.29 | |
| Population | MT | 10 | 1.75 | 1.31 | 1.22 | 1.47 | 1.22 | 0.61 | 0.50 | 0.94 | 0.90 | 1.10 |
| BM | 12 | 1.94 | 1.63 | 1.47 | 1.68 | 1.24 | 0.00 | 0.45 | 0.00 | 0.89 | 1.03 | |
| CY | 17 | 1.78 | 1.76 | 1.81 | 1.84 | 1.93 | 0.22 | 0.47 | 0.36 | 0.85 | 1.22 | |
| CN | 8 | 1.73 | 1.49 | 1.56 | 1.32 | 1.56 | 0.00 | 0.38 | 0.69 | 0.38 | 1.01 | |
| NLM | 3 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | |
| Mean | 1.71 | 1.53 | 1.49 | 1.56 | 1.46 | 0.19 | 0.37 | 0.44 | 0.66 | 1.04 | ||
| Altitudinal categories | L | 4 | 1.04 | 1.39 | 1.04 | 1.39 | 1.39 | 0.56 | 0.56 | 0.69 | 0.69 | 0.97 |
| M | 17 | 1.84 | 1.67 | 1.48 | 1.65 | 1.48 | 0.22 | 0.47 | 0.85 | 0.96 | 1.18 | |
| H | 29 | 1.96 | 1.73 | 1.88 | 1.94 | 1.89 | 0.25 | 0.40 | 0.33 | 0.91 | 1.26 | |
| Mean | 1.62 | 1.60 | 1.47 | 1.66 | 1.59 | 0.35 | 0.48 | 0.62 | 0.85 | 1.14 | ||
| SSR Locus | Na | Ne | I | Ho | He | Fis | Fit | Fst | Nm | PIC |
|---|---|---|---|---|---|---|---|---|---|---|
| MSE0191 | 30.000 | 16.667 | 3.053 | 0.960 | 0.940 | −0.095 | −0.026 | 0.063 | 3.733 | 0.937 |
| TM107 | 13.000 | 6.887 | 2.137 | 0.860 | 0.855 | 0.023 | 0.139 | 0.119 | 1.850 | 0.839 |
| TM157 | 6.000 | 2.206 | 1.010 | 0.680 | 0.547 | −0.296 | −0.164 | 0.102 | 2.209 | 0.485 |
| TM169 | 11.000 | 2.519 | 1.283 | 0.740 | 0.603 | −0.401 | −0.263 | 0.099 | 2.282 | 0.550 |
| TM209 | 19.000 | 3.937 | 2.071 | 0.660 | 0.746 | 0.074 | 0.146 | 0.078 | 2.946 | 0.735 |
| TM237 | 6.000 | 2.042 | 1.080 | 0.380 | 0.510 | −0.044 | 0.074 | 0.113 | 1.964 | 0.484 |
| TM239 | 10.000 | 2.795 | 1.327 | 0.800 | 0.642 | −0.409 | −0.283 | 0.089 | 2.549 | 0.589 |
| TM364 | 13.000 | 4.252 | 1.875 | 0.720 | 0.765 | −0.034 | 0.114 | 0.143 | 1.502 | 0.742 |
| TM384 | 7.000 | 3.751 | 1.466 | 0.920 | 0.733 | −0.348 | −0.248 | 0.074 | 3.129 | 0.686 |
| TM400 | 16.000 | 7.143 | 2.278 | 0.960 | 0.860 | −0.283 | −0.153 | 0.102 | 2.206 | 0.846 |
| TM406 | 13.000 | 6.993 | 2.195 | 0.960 | 0.857 | −0.280 | −0.125 | 0.121 | 1.810 | 0.843 |
| TM427 | 12.000 | 4.092 | 1.771 | 0.860 | 0.756 | −0.309 | −0.197 | 0.085 | 2.674 | 0.727 |
| TM428 | 11.000 | 5.429 | 1.948 | 0.900 | 0.816 | −0.217 | 0.008 | 0.185 | 1.099 | 0.794 |
| TM435 | 10.000 | 4.864 | 1.812 | 0.820 | 0.794 | −0.261 | −0.085 | 0.140 | 1.539 | 0.769 |
| TM444 | 8.000 | 4.975 | 1.736 | 0.800 | 0.799 | 0.049 | 0.131 | 0.086 | 2.645 | 0.770 |
| TM448 | 6.000 | 2.677 | 1.162 | 0.600 | 0.626 | −0.066 | 0.128 | 0.182 | 1.122 | 0.555 |
| TM461 | 7.000 | 2.875 | 1.248 | 0.800 | 0.652 | −0.342 | −0.311 | 0.023 | 10.452 | 0.590 |
| TM479 | 10.000 | 4.216 | 1.725 | 0.880 | 0.763 | −0.306 | −0.149 | 0.120 | 1.832 | 0.731 |
| TM507 | 6.000 | 2.329 | 1.038 | 0.660 | 0.571 | −0.283 | −0.094 | 0.147 | 1.448 | 0.501 |
| TM508 | 5.000 | 1.802 | 0.751 | 0.600 | 0.445 | −0.430 | −0.278 | 0.106 | 2.102 | 0.370 |
| TM531 | 5.000 | 2.755 | 1.156 | 0.300 | 0.637 | 0.159 | 0.362 | 0.242 | 0.783 | 0.567 |
| TM532 | 8.000 | 1.976 | 1.059 | 0.540 | 0.494 | −0.153 | −0.078 | 0.066 | 3.562 | 0.465 |
| TM536 | 7.000 | 3.274 | 1.330 | 0.720 | 0.695 | 0.034 | 0.138 | 0.107 | 2.084 | 0.637 |
| TM547 | 2.000 | 1.923 | 0.673 | 0.680 | 0.480 | −0.514 | −0.284 | 0.152 | 1.399 | 0.365 |
| TM551 | 7.000 | 2.175 | 1.133 | 0.580 | 0.540 | −0.175 | −0.069 | 0.090 | 2.524 | 0.508 |
| TM552 | 8.000 | 4.329 | 1.655 | 0.700 | 0.769 | −0.086 | 0.065 | 0.138 | 1.557 | 0.735 |
| TM577 | 4.000 | 1.597 | 0.634 | 0.040 | 0.374 | 0.889 | 0.921 | 0.288 | 0.619 | 0.318 |
| TM580 | 4.000 | 2.234 | 0.902 | 0.680 | 0.552 | −0.361 | −0.316 | 0.034 | 7.211 | 0.454 |
| TM585 | 5.000 | 1.283 | 0.516 | 0.000 | 0.221 | 1.000 | 1.000 | 0.392 | 0.387 | 0.213 |
| TM597 | 5.000 | 2.244 | 1.076 | 0.620 | 0.554 | −0.206 | −0.061 | 0.120 | 1.834 | 0.506 |
| Mean | 9.133 | 3.875 | 1.437 | 0.681 | 0.653 | −0.122 | 0.001 | 0.127 | 2.435 | 0.610 |
| Populations | N | Na | Ne | I | Ho | He | F | PPL (%) |
|---|---|---|---|---|---|---|---|---|
| MT | 10.000 | 5.167 | 3.492 | 1.281 | 0.670 | 0.637 | −0.021 | 100 |
| BM | 12.000 | 5.733 | 3.610 | 1.317 | 0.750 | 0.638 | −0.151 | 100 |
| CY | 17.000 | 6.033 | 3.525 | 1.312 | 0.671 | 0.640 | −0.016 | 100 |
| CN | 8.000 | 3.967 | 2.819 | 1.042 | 0.679 | 0.553 | −0.237 | 93 |
| NLM | 3.000 | 2.000 | 1.901 | 0.554 | 0.500 | 0.361 | −0.359 | 70 |
| Mean | 10.000 | 4.580 | 3.069 | 1.101 | 0.654 | 0.566 | −0.143 | 93 |
| SE | 0.377 | 0.234 | 0.152 | 0.047 | 0.027 | 0.018 | 0.037 | 6 |
| Grouping Units | Source | df | SS | MS | Estimated Variance | Percent Variance | Fst | p | Nm |
|---|---|---|---|---|---|---|---|---|---|
| Populations | Among | 4 | 134.474 | 33.619 | 1.663 | 8.51% | 0.085 | 0.001 | 2.686 |
| Within | 45 | 804.126 | 17.869 | 17.869 | 91.49% | ||||
| Total | 49 | 938.600 | 19.533 | 100.00% | |||||
| Altitudes | Among | 2 | 49.060 | 24.530 | 0.414 | 2.14% | 0.021 | 0.016 | 11.433 |
| Within | 47 | 889.540 | 18.926 | 18.926 | 97.86% | ||||
| Total | 49 | 938.600 | 19.340 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mao, J.; Huang, D.; Wang, K.; Peng, H.; Yao, X.; Mao, Y.; Jiao, L.; Wang, H.; Long, Y.; Tan, R.; et al. Genetic Diversity and Population Structure of Tea (Camellia sinensis) Germplasm from the Xizang Plateau. Horticulturae 2026, 12, 50. https://doi.org/10.3390/horticulturae12010050
Mao J, Huang D, Wang K, Peng H, Yao X, Mao Y, Jiao L, Wang H, Long Y, Tan R, et al. Genetic Diversity and Population Structure of Tea (Camellia sinensis) Germplasm from the Xizang Plateau. Horticulturae. 2026; 12(1):50. https://doi.org/10.3390/horticulturae12010050
Chicago/Turabian StyleMao, Juan, Danjuan Huang, Kejian Wang, Hong Peng, Xinhua Yao, Yingxin Mao, Long Jiao, Hongjuan Wang, Ying Long, Rongrong Tan, and et al. 2026. "Genetic Diversity and Population Structure of Tea (Camellia sinensis) Germplasm from the Xizang Plateau" Horticulturae 12, no. 1: 50. https://doi.org/10.3390/horticulturae12010050
APA StyleMao, J., Huang, D., Wang, K., Peng, H., Yao, X., Mao, Y., Jiao, L., Wang, H., Long, Y., Tan, R., Tsering, O., Wang, W., Tsering, W., Chen, L., Chen, X., & Leng, Y. (2026). Genetic Diversity and Population Structure of Tea (Camellia sinensis) Germplasm from the Xizang Plateau. Horticulturae, 12(1), 50. https://doi.org/10.3390/horticulturae12010050

