Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety
Abstract
1. Introduction
2. Materials and Methods
2.1. Total Phenolic Content Analysis
2.2. Antioxidant Activity (%DPPH)
2.3. Physiological Analysis
2.4. Statistical Analysis
3. Results
3.1. Soluble Solids Content, Yield, pH and Titratable Acidity
3.2. Cluster Characteristics
3.3. Berry Characteristics
3.4. Berry Detachment Force and Skin Rupture Force
3.5. Total Phenolic Content (μg GAE/100 mL) and Antioxidant Activity (%DPPH)
3.6. Color (Lightness, Chroma and Hue) Values
3.7. Leaf Temperature (LT), Photosynthetic Efficiency (PSII) and Stomatal Conductance (gs)
3.8. Hierarchical Clustering Analysis (HCA)
3.9. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taskos, D.; Stamatiadis, S.; Yvin, J.-C.; Jamois, F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Sci. Hortic. 2019, 250, 27–32. [Google Scholar] [CrossRef]
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera l. cultivars. Plants 2022, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Abo-El-Ez, A.E.-D.; Abd-Elghany, A.-E.; Hussien, M.; Elshiekh, B. Effect of foliar spraying with seaweed extract (Halamphora coffeaeformis) and Nanosize fertilizer on growth, yield, and fruit quality of Flame Seedless grapevines. Sohag J. Jr. Sci. Res. 2023, 3, 1–16. [Google Scholar] [CrossRef]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murua, P.; Yang, Z. The Global Status of Seaweed Production, Trade and Utilization; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006, 20, 156–161. [Google Scholar]
- Mugnai, S.; Azzarello, E.; Pandolfi, C.; Salamagne, S.; Briand, X.; Mancuso, S. Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J. Appl. Phycol. 2008, 20, 177–182. [Google Scholar] [CrossRef]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Khan, W.; Zhai, R.; Souleimanov, A.; Critchley, A.T.; Smith, D.L.; Prithiviraj, B. Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun. Soil Sci. Plant Anal. 2012, 43, 2425–2436. [Google Scholar] [CrossRef]
- Popescu, G.C.; Popescu, M. Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis vinifera L.). Curr. Trends Nat. Sci. 2014, 3, 61–67. [Google Scholar]
- El-Kareem, G.; El-Rahman, A. Response of Ruby Seedless grapevines to foliar application of seaweed extract, salicylic acid and roselle extract. Hortsci. J. Suez. Canal Univ. 2013, 1, 294–303. [Google Scholar]
- El-Sayed, M.Q.; Sameh, H.; Kh, O. Response of Early Sweet grapevines to foliar application of algae extract and some micronutrients. Hortsci. J. Suez. Canal Univ. 2021, 10, 77–84. [Google Scholar] [CrossRef]
- El-Sese, A.; Mohamed, A.; Abou-Zaid, E.A.; Abd-El-Ghany, A. Impact of foliar application with seaweed extract, amino acids and vitamins on yield and berry quality of some Grapevine cultivars. SVU-Int. J. Agric. Sci. 2020, 2, 73–84. [Google Scholar] [CrossRef]
- Belal, B.E.-S.; El-Kenawy, M.A.; El-Mogy, S.; Mostafa Omar, A.S. Influence of arbuscular mycorrhizal fungi, seaweed extract and nano-zinc oxide particles on vegetative growth, yield and clusters quality of ‘Early Sweet’ grapevines. Egypt. J. Hortic. 2023, 50, 1–16. [Google Scholar] [CrossRef]
- Carmen, S.; Mihai, C.T.; Nicoleta, M.; Geanina, B. The biostimulatory effect of brown algae Ascophyllum nodosum on grapevine. Analele Univ. Din Craiova. Ser. Biol. Hortic. Tehnol. Prelucr. Prod. Agric. Ing. Mediu. 2023, 28, 77–84. [Google Scholar] [CrossRef]
- Salvi, L.; Niccolai, A.; Cataldo, E.; Sbraci, S.; Paoli, F.; Storchi, P.; Rodolfi, L.; Tredici, M.R.; Mattii, G.B. Effects of Arthrospira platensis extract on physiology and berry traits in Vitis vinifera. Plants 2020, 9, 1805. [Google Scholar] [CrossRef]
- Almashhadani, B.M.; Abbood, S.M.; Hussein, S.S.; Jerri, S.F. Role of seaweed extract spray and date palm leaves compost (DPLC) on growth and leaf mineral and hormonal content of mango transplants. Plant Arch. 2020, 20, 7433–7436. [Google Scholar]
- Gomaa, A.; Ibrahim, H.F. Williams banana growth, nutritional status, yield and fruit quality as influenced by spraying humic acid and seaweed extract. J. Plant Prod. 2020, 11, 1121–1128. [Google Scholar] [CrossRef]
- Almoussawi, A.M.; Al-Abbasi, G.B. Effect of fertilization of Seaweed extracts and CuSO4 on some vegetative growth indicators of Citrus limon L. grafted seedlings on rootstock aurantifolia. Kufa J. Agric. Sci. 2023, 15, 84–95. [Google Scholar] [CrossRef]
- Ghafouri, M.; Razavi, F.; Arghavani, M.; Abedi Gheshlaghi, E. Enhancing mineral uptake and antioxidant enzymes activity of kiwifruit via foliar application of brown macroalga extract. J. Hortic. Postharvest Res. 2024, 7, 15–30. [Google Scholar] [CrossRef]
- Bonomelli, C.; Celis, V.; Lombardi, G.; Mártiz, J. Salt stress effects on avocado (Persea americana Mill.) plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy 2018, 8, 64. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front. Plant Sci. 2018, 9, 1342. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Ricciardi, M.; Gatti, N.; Serio, G.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. Changes in the phytochemical profile and antioxidant properties of Prunus persica fruits after the application of a commercial biostimulant based on seaweed and yeast extract. Int. J. Mol. Sci. 2022, 23, 15911. [Google Scholar] [CrossRef] [PubMed]
- Al-Shatri, A.; Pakyürek, M.; Yavic, A. Effect of seaweed application on the vegetative growth of strawberry cv. Albion grown under Iraq ecological conditions. Appl. Ecol. Environ. Res. 2020, 18, 1211–1225. [Google Scholar] [CrossRef]
- Nikoogoftar-Sedghi, M.; Rabiei, V.; Razavi, F.; Molaei, S.; Khadivi, A. The effect of foliar application of Ascophyllum nodosum (L.) Le Jol. seaweed extract on biochemical traits related to abiotic stresses in pistachio (Pistacia vera L. cv. Kaleh-Ghoochi). BMC Plant Biol. 2023, 23, 635. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- AL-ahbaby, A.J.A. The effect of foliar spraying with KT-30, Brassinolide and seaweeds extract in some vegetative growth of seedlings vine varieties Vitis vinifera L. Al-Anbar J. Agric. Sci. 2016, 41, 8e–17e. [Google Scholar]
- Ben Salah, I.; Aghrouss, S.; Douira, A.; Aissam, S.; El Alaoui-Talibi, Z.; Filali-Maltouf, A.; El Modafar, C. Seaweed polysaccharides as bio-elicitors of natural defenses in olive trees against verticillium wilt of olive. J. Plant Interact. 2018, 13, 248–255. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 462648. [Google Scholar] [CrossRef]
- Monteiro, E.; Baltazar, M.; Pereira, S.; Correia, S.; Ferreira, H.; Alves, F.; Cortez, I.; Castro, I.; Gonçalves, B. Ascophyllum nodosum extract and glycine betaine preharvest application in grapevine: Enhancement of berry quality, phytochemical content and antioxidant properties. Antioxidants 2023, 12, 1835. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Castro, A.J.; Juárez, J.R.; Suárez, S.; Alcarraz, M.; Ramos, N.J.; Hinostroza, L.; Ráez, E.; Ponce, J.J.; Santa María, O.; Gutiérrez, P. Efecto antioxidante y antifotoenvejecimiento de extractos de la macroalga del litoral peruano de Macrocystis integrifolia Bory y elaboración de una forma dermocosmética. Cienc. E Investig. 2014, 17, 80–87. [Google Scholar] [CrossRef]
- Graham, M.H.; Vasquez, J.A.; Buschmann, A.H. Global ecology of the giant kelp Macrocystis: From ecotypes to ecosystems. Oceanogr. Mar. Biol. 2007, 45, 39. [Google Scholar]
- Griffiths, C.L.; Robinson, T.B.; Lange, L.; Mead, A. Marine biodiversity in South Africa: An evaluation of current states of knowledge. PLoS ONE 2010, 5, e12008. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Hill, J. Ascophyllum nodosum. Knotted Wrack. In Marine Life Information Network: Biology and Sensitivity Key Information Reviews [on-line]; Tyler-Walters, H., Hiscock, K., Eds.; Marine Biological Association of the United Kingdom: Plymouth, UK, 2008. [Google Scholar]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Kara, Z.; Yazar, K.; Doğan, O.; Akinci, S.P.S. The effects of rootstock-scion relationships on yield and quality in grapevine cv. Ekşi Kara (Vitis vinifera L.). Selcuk J. Agric. Food Sci. 2023, 37, 248–257. [Google Scholar] [CrossRef]
- Kara, Z.; Uğur, B.N.; Doğan, O. The effects of ortho silicon (Optysil) and Ascophyllum nodosum based seaweed extract (KelpGreen) applications on the quality of table grape cvs. Gök Üzüm and Müşküle. Selcuk J. Agric. Food Sci. 2022, 36, 482–492. [Google Scholar] [CrossRef]
- Doğan, O. Determination of Effects of Some Summer Pruning Applications on Yield and Quality Characteristics of Alphonse Lavallée (Vitis vinifera L.) Grape Variety. Horticulturae 2025, 11, 445. [Google Scholar] [CrossRef]
- Seymen, M.; Alkhateb, R.; Mutlu, A.; Yavuz, D. Do exogenous melatonin and nitric oxide mitigate the adverse effects of flooding stress in spinach? Sci. Hortic. 2024, 330, 113081. [Google Scholar] [CrossRef]
- Kara, Z.; Doğan, O. Mutagenic effects of nitrogen protoxide and oryzalin on “41 B” and “Fercal” grapevine rootstocks seedlings. Breed. Sci. 2023, 73, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Yazar, K.; Kara, Z.; Avcı, A.; Doğan, O.; Ekinci, H.; Demir, N. 41 B asma anacı çekirdeklerinde gümüş nano parçacık uygulamalarının çimlenme ve vejetatif gelişmeye etkileri. Bahçe 2023, 52, 72–77. [Google Scholar]
- Ekinci, H.; Saskin, N.; Ak, B.E.; Dogan, B.D. Effects of different healing agents on acclimatization success of in vitro rooted Garnem (Prunus dulcis× Prunus persica) rootstock. Vitr. Cell. Dev. Biol.-Plant 2024, 60, 309–317. [Google Scholar] [CrossRef]
- McHugh, D.J. A guide to the seaweed industry. FAO Fish. Tech. Pap. 2003, 441, 105. [Google Scholar]
- Abdel-Mawgoud, A.; Tantaway, A.; Hafez, M.M.; Habib, H.A. Seaweed extract improves growth, yield and quality of different watermelon hybrids. Res. J. Agric. Biol. Sci. 2010, 6, 161–168. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Fornes, F.; Sanchez-Perales, M.; Guardiola, J. Effect of a seaweed extract on the productivity of ‘de Nules’ clementine mandarin and navelina orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. J. Food Agric. Environ. 2005, 3, 86. [Google Scholar]
- Norrie, J.; Keathley, J. Benefits of Ascophyllum nodosum marine-plant extract applications to  Thompson Seedlessâ grape production. In Proceedings of the X International Symposium on Plant Bioregulators in Fruit Production 727, Saltillo, Mexico, 26–30 June 2005; pp. 243–248. [Google Scholar]
- Ramteke, S.D.; Langote, A.; Gavali, A.H.; Khalate, S.; Bhagwat, S.R.; Kalbhor, J.N. Efficacy of Ascophyllum nodosum seaweed extracts on growth, yield and quality parameters in Thompson Seedless grapes. J. Exp. Agric. Int. 2024, 46, 290–297. [Google Scholar] [CrossRef]
- Omar, A.-D.; Ahmed, M.-A.; Al-Obeed, R.; Alebidi, A. Influence of foliar applications of yeast extract, seaweed extract and dif-ferent potassium sources fertilization on yield and fruit quality of ‘Flame Seedless’ grape. Acta Sci. Polonorum. Hortorum Cultus 2020, 19, 143–150. [Google Scholar] [CrossRef]
- Ramteke, S.D.; Gavali, A.H.; Bhagwat, S.R.; Langote, A.R.; Khalate, S.M.; Kalbhor, J.N. Effect of Ecklonia maxima on yield and quality in Manik Chaman grapes (Vitis vinifera L.). J. Pharmacogn. Phytochem. 2022, 11, 107–110. [Google Scholar]
- Petoumenou, D.G.; Patris, V.-E. Effects of several preharvest canopy applications on yield and quality of table grapes (Vitis vinifera L.) Cv. Crimson Seedless. Plants 2021, 10, 906. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Jafari, A.; Shirmardi, M. The effect of seaweed foliar application on yield and quality of apple cv.‘Golden Delicious’. Sci. Hortic. 2024, 323, 112529. [Google Scholar] [CrossRef]
- Ashour, M.; Al-Souti, A.S.; Hassan, S.M.; Ammar, G.A.; Goda, A.M.-S.; El-Shenody, R.; Abomohra, A.E.-F.; El-Haroun, E.; Elshobary, M.E. Commercial seaweed liquid extract as strawberry biostimulants and bioethanol production. Life 2022, 13, 85. [Google Scholar] [CrossRef]
- Hameedawi, A.; Malikshah, Z. Influence of amino acids, bleed grape and seaweed extract on vegetative growth, yield and its quality of Fig. Int. J. Environ. Agric. Res 2017, 3, 1–5. [Google Scholar]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chem. Biol. Technol. Agric. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Seaweed foliar applications at two dosages to Tempranillo blanco (Vitis vinifera L.) grapevines in two seasons: Effects on grape and wine volatile composition. Food Res. Int. 2020, 130, 108918. [Google Scholar] [CrossRef] [PubMed]
- Topuz, H.; Keskin, N.; Kiraz, M.E.; Tarım, G.; Topuz, F.; Ozel, N.; Kaya, O. Effect of Foliar Spraying of Ascophyllum nodosum Extracts on Grape Quality of ‘Tarsus Beyazı’. Erwerbs-Obstbau 2023, 65, 1873–1879. [Google Scholar] [CrossRef]
- Kapłan, M.; Baryła, P.; Krawiec, M.; Kiczorowski, P. Effect of N Pro technology and seactiv complex on growth, yield quantity and quality of ‘Szampion’apple trees. Acta Sci. Pol. Hortorum Cultus 2013, 12, 45–56. [Google Scholar]
- Trejo Valencia, R.; Sánchez Acosta, L.; Fortis Hernández, M.; Preciado Rangel, P.; Gallegos Robles, M.Á.; Antonio Cruz, R.d.C.; Vázquez Vázquez, C. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Goni, O.; Fort, A.; Quille, P.; McKeown, P.C.; Spillane, C.; O’Connell, S. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different. J. Agric. Food Chem. 2016, 64, 2980–2989. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Xia, H.; Lin, L.; Wang, J.; Yuan, L.; Li, K.; Zhang, J.; Lv, X.; Liang, D. SUNRED, a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Sci. Rep. 2019, 9, 2590. [Google Scholar] [CrossRef]
- Monteiro, E.; De Lorenzis, G.; Ricciardi, V.; Baltazar, M.; Pereira, S.; Correia, S.; Ferreira, H.; Alves, F.; Cortez, I.; Gonçalves, B. Exploring seaweed and glycine betaine biostimulants for enhanced phenolic content, antioxidant properties, and gene expression of Vitis vinifera cv.”Touriga Franca” berries. Int. J. Mol. Sci. 2024, 25, 5335. [Google Scholar] [CrossRef]
- Pereira, S.; Silva, V.; Guedes, F.; Raimundo, F.; Sousa, J.R.; Silva, A.P.; Gonçalves, B. Physiological and biochemical responses of ‘Burlat’ sweet cherry to pre-harvest foliar application of calcium and seaweed extracts. Horticulturae 2024, 10, 1173. [Google Scholar] [CrossRef]
- Samuels, L.J.; Papageorgiou, A.E.; Setati, M.E.; Blancquaert, E.H. Effects of Ecklonia maxima seaweed extract on the fruit, wine quality and microbiota in Vitis vinifera L. cv. Cabernet Sauvignon. S. Afr. J. Bot. 2024, 172, 647–662. [Google Scholar] [CrossRef]
- Roberto, S.R.; de Assis, A.M.; Yamamoto, L.Y.; Miotto, L.C.V.; Sato, A.J.; Koyama, R.; Genta, W. Application timing and concentration of abscisic acid improve color of ‘Benitaka’ table grape. Sci. Hortic. 2012, 142, 44–48. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic acid application timing and concentration affect firmness, pigmentation, and color of Flame Seedless grapes. HortScience 2006, 41, 1440–1445. [Google Scholar] [CrossRef]
- Markakis, P. Stability of anthocyanins in foods. Anthocyanins Food Colors 1982, 163, 180. [Google Scholar]
- Ban, T.; Ishimaru, M.; Kobayashi, S.; Goto-Yamamoto, N.; Horiuchi, S. Abscisic acid and 2, 4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’grape berries. J. Hortic. Sci. Biotechnol. 2003, 78, 586–589. [Google Scholar] [CrossRef]
- Owen, S.J.; Lafond, M.D.; Bowen, P.; Bogdanoff, C.; Usher, K.; Abrams, S.R. Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. Am. J. Enol. Vitic. 2009, 60, 277–284. [Google Scholar] [CrossRef]
- Neto, F.J.D.; Tecchio, M.A.; Pimentel, A.; Vedoato, B.T.F.; Lima, G.P.P.; Roberto, S.R. Effect of ABA on colour of berries, anthocyanin accumulation and total phenolic compounds of’Rubi’table grape (‘Vitis vinifera’). Aust. J. Crop Sci. 2017, 11, 199–205. [Google Scholar] [CrossRef]
- Ju, Y.-L.; Liu, M.; Zhao, H.; Meng, J.-F.; Fang, Y.-L. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 2016, 21, 1354. [Google Scholar] [CrossRef]
- Luan, L.-Y.; Zhang, Z.-W.; Xi, Z.-M.; Huo, S.-S.; Ma, L.-N. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. S. Afr. J. Enol. Vitic. 2013, 34, 196–203. [Google Scholar] [CrossRef]
- Liu, Q.; Xi, Z.; Gao, J.; Meng, Y.; Lin, S.; Zhang, Z. Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int. J. Food Sci. Technol. 2016, 51, 1236–1243. [Google Scholar] [CrossRef]
- Villegas, D.; Handford, M.; Alcalde, J.A.; Perez-Donoso, A. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 2016, 104, 125–133. [Google Scholar] [CrossRef]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.-T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front. Plant Sci. 2016, 7, 1150. [Google Scholar] [CrossRef] [PubMed]
- Lo’ay, A. Improvement berry color skin profile by exogenous cyanocobalamin treatment of ‘Crimson seedless’ grapevines. Egypt. J. Basic Appl. Sci. 2017, 4, 231–235. [Google Scholar] [CrossRef]
- Stokes, V.; Kerr, G. Relationships between growth and leaf-scale physiological parameters in five Wildstar™ cherry clones (Prunus avium L.). Eur. J. For. Res. 2006, 125, 369–375. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Correia, C.M. Physiological responses of different olive genotypes to drought conditions. Acta Physiol. Plant. 2009, 31, 611–621. [Google Scholar] [CrossRef]
- Lefi, E.; Badri, M.; Hamed, S.B.; Talbi, S.; Mnafgui, W.; Ludidi, N.; Chaieb, M. Influence of brown seaweed (Ecklonia maxima) extract on the morpho-physiological parameters of melon, cucumber, and tomato plants. Agronomy 2023, 13, 2745. [Google Scholar] [CrossRef]
- Stasio, E.d.; Rouphael, Y.; Colla, G.; Raimondi, G.; Giordano, M.; Pannico, A.; El-Nakhel, C.; Pascale, S.d. The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral composition of Brassica rapa L. subsp. sylvestris under nutrient stress conditions. Eur. J. Hortic. Sci. 2017, 86, 286–293. [Google Scholar] [CrossRef]
- Egea, I.; Estrada, Y.; Flores, F.B.; Bolarín, M.C. Improving production and fruit quality of tomato under abiotic stress: Genes for the future of tomato breeding for a sustainable agriculture. Environ. Exp. Bot. 2022, 204, 105086. [Google Scholar] [CrossRef]
Extract | Organic Matter (%) | Alginic Acid (%) | pH | EC (dS/m) |
---|---|---|---|---|
E. maxima (Agrikelp 100 Ekstra) | 5 | 0.001 | 4.5–6.5 | 20 |
M. integrifolia (Alga cifo 3000) | 5 | 0.02 | 6–8 | 40 |
A. nodosum (Algastim) | 10 | 0.1 | 6.9–8.1 | 20 |
Lightness | Chroma | Hue | |
---|---|---|---|
Control | 30.14 ± 0.30 a | 1.99 ± 0.12 a | 312.64 ± 4.63 a |
E. maxima | 29.00 ± 0.81 a | 1.85 ± 0.10 a | 285.76 ± 4.74 b |
M. intergrifolia | 30.40 ± 0.88 a | 1.76 ± 0.08 ab | 280.25 ± 6.34 b |
A. nodosum | 30.18 ± 0.99 a | 1.56 ± 0.16 b | 279.28 ± 7.63 b |
LT (°C) | PSII | gs (mol m−2 s−1) | |
---|---|---|---|
Control | 26.17 ± 0.30 a | 0.32 ± 0.031 c | 86.17 ± 7.01 b |
E. maxima | 24.90 ± 0.04 b | 0.47 ± 0.035 b | 117.33 ± 4.62 a |
M. intergrifolia | 25.24 ± 0.48 b | 0.46 ± 0.033 b | 131.33 ± 12.22 a |
A. nodosum | 24.85 ± 0.35 b | 0.53 ± 0.022 a | 132.67 ± 7.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doğan, O.; Yazar, K. Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety. Horticulturae 2025, 11, 1118. https://doi.org/10.3390/horticulturae11091118
Doğan O, Yazar K. Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety. Horticulturae. 2025; 11(9):1118. https://doi.org/10.3390/horticulturae11091118
Chicago/Turabian StyleDoğan, Osman, and Kevser Yazar. 2025. "Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety" Horticulturae 11, no. 9: 1118. https://doi.org/10.3390/horticulturae11091118
APA StyleDoğan, O., & Yazar, K. (2025). Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety. Horticulturae, 11(9), 1118. https://doi.org/10.3390/horticulturae11091118