Physiological and Molecular Insights into Citrus Rootstock–Scion Interactions: Compatibility, Signaling, and Impact on Growth, Fruit Quality and Stress Responses
Abstract
1. Introduction
2. The Commonly Used Rootstocks in Citrus Production
Name | Scientific Name | Features | Insufficiency | Suitable Scions | Reference |
---|---|---|---|---|---|
Trifoliate orange | Citrus trifoliata | (1) tolerance to low-temperature stress, drought, and soil impoverishment, (2) dwarfed tree structure, early fruiting, and superior fruit quality, (3) resistant to foot rot disease, gummosis, and nematode diseases | (1) Susceptible to cracking bark disease and broken leaf disease, (2) Sensitive to iron deficiency and boron deficiency | The vast majority of citrus varieties | [18,19,20,21,22,23,24] |
Citrange | C. trifoliata × C. sinensis ‘Washington’ | (1) robust root system, vigorous growth, (2) resistance to CTV, foot rot | sensitive to iron deficiency and salinity | sweet lime, satsuma mandarin, Bendizao, Pokan, sweet orange, and grapefruit | [19,25,35] |
Citrumelo | C. grandi × C. trifoliata | (1) vigorous growth, a robust root system, strong cold resistance, (2) resistance to CTV, foot rot, and HLB | sensitive to cracking bark disease | loose-skin mandarin and Hamlin sweet orange | [27] |
Hongju | C. reticulata | (1) upright tree structure, a robust root system with prolific fibrous roots, (2) tolerance to drought, waterlogging, and poor soil conditions, (3) resistance to root rot and CEVd | delaying maturation time | oranges, mandarins, and lemons | [27] |
Xiangcheng | C. junos | (1) vigorous tree growth, lush root systems, deep main roots, numerous fibrous roots, early fruiting and high yield, good fruit quality, (2) tolerance to heat, poor soil, and iron deficiency | sensitive to moisture | Lemon, sweet orange, hybrid citrus, Pokan, satsuma mandarin | [28,29,30,36] |
Sour orange | C. aurantium | (1) scion plants grow vigorously, robust root system, good fruit quality, (2) tolerance to drought, salt, moisture, and aluminum stress | (1) delaying maturation time, (2) sensitive to CTV | orange, tangerine, satsuma mandarin, lemons, and grapefruit | [31,37,38] |
Sour pomelo | C. grandi | (1) strong tree vigor (2) tolerance to drought | sensitive to waterlogging | ‘Shatian’ pomelo, ‘Guanxi’ pomelo | [39,40] |
Rough lemon | C. jambhiri | (1) vigorous growth, robust taproot system, (2) tolerance to waterlogging and aluminum stress, (3) resistance to CTV and CEVd | (1) sensitive to low temperatures, (2) highly susceptible to foot rot disease | lemon, lime, Ponkan, clemenules, grapefruit | [37] |
Forner Alcaide | C. reshni × C. trifoliata | (1) substandard to semidwarfing, (2) resistance to nematode Tylenchulus semipenetrans and Phytophthora sp. | F-A13 is susceptible to the citrus nematode | sweet orange, lemon | [35,41,42] |
US-812 | C. reticulata × C. trifoliata | (1) highly productive, good fruit quality, moderate-sized tree, (2) tolerance or resistance to citrus tristeza virus (CTV) and citrus blight | susceptible to Phytophthora palmivora | sweet orange, grapefruit, tangelo, citrus hybrids | [43] |
US-942 | C. trifoliata ‘Flying Dragon’ × C. reticulate ‘Sunki’ | (1) medium-sized tree, highly productive, good, (2) tolerance to mild salt stress, (3) tolerance to CTV, Phytophthora root rot/gummosis, | susceptible to CEVd | ‘hamlin’ and ‘Valencia’ orange, mandarin | [39,44] |
X639 | C. reticulata ‘Cleopatra’ × C. trifoliata ‘Rubidoux’ | (1) medium-sized tree, good internal fruit quality, (2) performs well on higher pH soil, (3) tolerance to Phytophthora root rot/gummosis, nematode, and CTV | (1) sensitive to Phytophthora root rot, (2) Susceptible to creasing | grapefruit, Eureka lemons | [45] |
3. The Healing of the Grafting Union and the Compatibility Between the Stock and Scion
4. The Macromolecules and Information Exchange Between the Rootstock and the Scion
5. Effect of Rootstock–Scion Interactions on Plant Growth, Development, and Precocity
6. Effect of Rootstock–Scion Interactions on Nutrient Absorption
7. Effect of Rootstock–Scion Interactions on Fruit Quality
8. Effect of Rootstock–Scion Interactions on Responses to Biotic and Abiotic Stresses
8.1. Drought
8.2. Cold
8.3. Salinity
8.4. High Soil pH
8.5. Huanglongbing
9. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Melnyk, C.W.; Meyerowitz, E.M. Plant grafting. Curr. Biol. 2015, 25, R183–R188. [Google Scholar] [CrossRef]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A history of grafting. Hortic. Rev. 2009, 35, 437–493. [Google Scholar]
- Kragler, F.; Bock, R. The biology of grafting and its applications in studying information exchange between plants. Nat. Plants 2025, 11, 955–966. [Google Scholar] [CrossRef]
- Feng, M.; Augstein, F.; Kareem, A.; Melnyk, C.W. Plant grafting: Molecular mechanisms and applications. Mol. Plant 2024, 17, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ai, X.; Sun, L.; Zhang, D.; Guo, W.; Deng, X.; Hu, C. Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing. BMC Genom. 2011, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Z.; Jiang, S.; Wang, Y.; Fang, H.; Zhang, Z.; Chen, X.; Wang, N. Research Progress on Genetic Basis of Fruit Quality Traits in Apple (Malus × domestica). Front. Plant Sci. 2022, 13, 918202. [Google Scholar] [CrossRef]
- Erickson, L.C. Citrus Fruit Grafting. Science 1957, 125, 994. [Google Scholar] [CrossRef]
- Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M.Á.; Salvador, A. Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’ and ‘Taroc-co Rosso’ grown in Spain. Food Chem. 2021, 342, 128305. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bakshi, P.; Kumar, V.; Kour, K.; Sharma, R.; Sharma, N.; Sinha, B.K.; Raina, V.; Deepjibhat; Sanjay, K. Influence of different rootstocks on Physico-Chemical Quality attributes of Kinnow mandarin. Agric. Mech. Asia Afr. Lat. Am. 2022, 53, 7809–7813. [Google Scholar]
- Allario, T.; Brumos, J.; Colmenero-Flores, J.M.; Iglesias, D.J.; Pina, J.A.; Navarro, L.; Talon, M.; Ollitrault, P.; Moril-lon, R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ. 2013, 36, 856–868. [Google Scholar] [CrossRef]
- Oustric, J.; Morillon, R.; Luro, F.; Herbette, S.; Lourkisti, R.; Giannettini, J.; Berti, L.; Santini, J. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). J. Plant Physiol. 2017, 214, 108–115. [Google Scholar] [CrossRef]
- Rehman, S.U.; Shafqat, W.; Ikram, S.; Chattha, W.S.; Amen, R.; Deng, H.; Khalid, M.F.; Jaskani, M.J. Citrus root-stocks physiological and anatomical response to heat stress. Acta Physiol. Plant 2024, 46, 88. [Google Scholar] [CrossRef]
- He, W.; Luo, L.; Xie, R.; Chai, J.; Wang, H.; Wang, Y.; Chen, Q.; Wu, Z.; Yang, S.; Li, M.; et al. Transcriptome sequencing analyses uncover mechanisms of citrus rootstock seedlings under waterlogging stress. Front. Plant Sci. 2023, 14, 1198930. [Google Scholar] [CrossRef] [PubMed]
- Sivager, G.; Calvez, L.; Bruyere, S.; Boisne-Noc, R.; Hufnagel, B.; Cebrian-Torrejon, G.; Doménech-Carbó, A.; Gros, O.; Ollitrault, P.; Morillon, R. Better tolerance to Huanglongbing is conferred by tetraploid Swingle citrumelo root-stock and is influenced by the ploidy of the scion. Front. Plant Sci. 2022, 13, 1030862. [Google Scholar] [CrossRef] [PubMed]
- Morales Alfaro, J.; Bermejo, A.; Navarro, P.; Quiñones, A.; Salvador, A. Effect of Rootstock on Citrus Fruit Quality: A Review. Food Rev. Int. 2023, 39, 2835–2853. [Google Scholar] [CrossRef]
- Fadel, A.L.; Stuchi, E.S.; Silva, S.R.D.; Parolin, L.G.; Oliveira, C.R.D.; Müller, G.W.; Donadio, L.C. Compatibility and horticultural performance of Pera sweet orange clones grafted to Swingle citrumelo rootstock. Bragantia 2019, 78, 564–572. [Google Scholar] [CrossRef]
- Vashisth, T.; Chun, C.; Ozores Hampton, M. Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae 2020, 6, 8. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Jiang, X.; Yu, H.; Jia, H.; Tan, C.; Hu, G.; Hu, Y.; Rao, M.J.; Deng, X.; et al. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic. Res. 2021, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Deng, X. Cirus Varieties in China; China Agriculture Pess: Beijing, China, 2023. [Google Scholar]
- Wang, M.; Dai, W.; Du, J.; Ming, R.; Dahro, B.; Liu, J.H. ERF 109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnol. J. 2019, 17, 1316–1332. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Khan, M.; Wang, Y.; Xiao, W.; Fang, T.; Qu, J.; Xiao, P.; Li, C.; Liu, J. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol. 2023, 191, 591–609. [Google Scholar] [CrossRef]
- Hayat, F.; Li, J.; Iqbal, S.; Peng, Y.; Hong, L.; Balal, R.M.; Khan, M.N.; Nawaz, M.A.; Khan, U.; Farhan, M.A.; et al. A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards. Plants 2022, 11, 2876. [Google Scholar] [CrossRef]
- Hayat, F.; Li, J.; Liu, W.; Li, C.; Song, W.; Iqbal, S.; Khan, U.; Umer Javed, H.; Ahsan Altaf, M.; Tu, P.; et al. Influence of Citrus Rootstocks on Scion Growth, Hormone Levels, and Metabolites Profile of ‘Shatangju’ Mandarin (Citrus reticulata Blanco). Horticulturae 2022, 8, 608. [Google Scholar] [CrossRef]
- Fu, L.; Chai, L.; Ding, D.; Pan, Z.; Peng, S. A Novel Citrus Rootstock Tolerant to Iron Deficiency in Calcareous Soil. J. Am. Soc. Hortic. Sci. 2016, 141, 112–118. [Google Scholar] [CrossRef]
- Belknap, W.R.; Wang, Y.; Huo, N.; Wu, J.; Rockhold, D.R.; Gu, Y.Q.; Stover, E. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 2011, 54, 1005–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Barthe, G.; Grosser, J.W.; Wang, N. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genom. 2016, 17, 485. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Peng, S. The Citrus; Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Tan, F.; Tu, H.; Liang, W.; Long, J.; Wu, X.; Zhang, H.; Guo, W. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol. 2015, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, J.; Su, M.; Feng, G.; Xu, Y.; Yi, H. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Hortic. Res. 2019, 6, 33. [Google Scholar] [CrossRef]
- He, W.; Chai, J.; Xie, R.; Wu, Y.; Wang, H.; Wang, Y.; Chen, Q.; Wu, Z.; Li, M.; Lin, Y.; et al. The Effects of a New Citrus Rootstock Citrus junos cv. Shuzhen No. 1 on Performances of Ten Hybrid Citrus Cultivars. Plants 2024, 13, 794. [Google Scholar] [CrossRef]
- Lu, Q.; Jin, L.; Wang, P.; Liu, F.; Huang, B.; Wen, M.; Wu, S. Effects of Interaction of Protein Hydrolysate and Arbuscular Mycorrhizal Fungi Effects on Citrus Growth and Expressions of Stress-Responsive Genes (Aquaporins and SOSs) under Salt Stress. J. Fungi 2023, 9, 983. [Google Scholar] [CrossRef]
- Kumar, S.; Awasthi, O.P.; Dubey, A.K.; Pandey, R.; Sharma, V.K.; Mishra, A.K.; Sharma, R.M. Root morphology and the effect of rootstocks on leaf nutrient acquisition of Kinnow mandarin (Citrus nobilis Loureiro × Citrus reticulata Blanco). J. Hortic. Sci. Biotechnol. 2018, 93, 100–106. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Nayyar, S.; Kaur, A.; Kaur, R.; Kalia, A.; Arora, A.; Kaur, Y.; Thind, S.K.; Chhabra, G. Foot rot tolerant transgenic rough lemon rootstock developed through expression of β-1,3-glucanase from Trichoderma spp. Plant Biotechnol. J. 2019, 17, 2023–2025. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; Sorribas, F.J.; Forner, J.B.; Alcaide, A. Screening Hybrid Citrus Rootstocks for Resistance to Tylenchulus semipenetrans Cobb. Hortscience 1997, 32, 1116–1119. [Google Scholar] [CrossRef]
- Morales, J.; Salvador, A.; Besada, C.; Navarro, P.; Bermejo, A. Physico-chemical, sensorial and nutritional quality during the harvest season of ‘Tango’ mandarins grafted onto Carrizo Citrange and Forner-Alcaide no. 5. Food Chem. 2021, 339, 127781. [Google Scholar] [CrossRef]
- Xie, R.; He, W.; Chai, J.; Luo, L.; Wang, Y.; Chen, Q.; Tang, H.; Wang, X. A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’. Horticulturae 2022, 8, 1039. [Google Scholar] [CrossRef]
- Ningombam, L.; Hazarika, B.N.; Singh, Y.D.; Singh, R.P.; Yumkhaibam, T. Aluminium stress tolerance by Citrus plants: A consolidated review. Physiol. Mol. Biol. 2024, 30, 705–718. [Google Scholar] [CrossRef]
- Raveh, E.; Saban, T.; Zipi, H.; Beit-Yannai, E. Influence of rootstock and scion on antioxidant capacity of juice from new pomelo and mandarin varieties. J. Sci. Food Agric. 2009, 89, 1825–1830. [Google Scholar] [CrossRef]
- Adams, S.N.; Ac-Pangan, W.O.; Rossi, L. Effects of Soil Salinity on Citrus Rootstock ‘US-942’ Physiology and Anatomy. Hortscience 2019, 54, 789–792. [Google Scholar] [CrossRef]
- Chen, P.; Qin, H.; Ou, Z.; Chen, C.; Li, X.; Liu, J.; Li, F.; Luo, S.; Bo, F. Effect of Different Scion/Rootstock Combinations on Tree Growth and Fruit Quality of Red-flesh Sweet Pomelo. Chin. Agric. Sci. Bull. 2018, 34, 61–65. [Google Scholar]
- Forner-Giner, M.A.; Legaz, F.; Primo-Millo, E.; Forner, J. Nutritional responses of citrus rootstocks to salinity: Performance of the new hybrids forner-alcaide 5 and forner-alcaide 13. J. Plant Nutr. 2011, 34, 1437–1452. [Google Scholar] [CrossRef]
- Forner, J.B.; Forner-Giner, M.A.; Alcaide, A. Forner-Alcaide 5 and Forner-Alcaide 13: Two New Citrus Rootstocks Released in Spain. Hortscience 2003, 38, 629–630. [Google Scholar] [CrossRef]
- Bowman, K. US-812 citrus rootstock. Hortscience 2006, 41, 832–836. [Google Scholar] [CrossRef]
- Moreno-Lora, A.; Calero-Velázquez, R.; Arenas-Arenas, F.J. Physiological Responses of New Citrus Rootstocks to Salinity Stress Induced by Increasing Sodium and Chloride Concentrations in the Irrigation Solution. J. Soil Sci. Plant Nut. 2025, 25, 7868–7877. [Google Scholar] [CrossRef]
- Zapien-Macias, J.M.; Ferrarezi, R.S.; Spyke, P.D.; Castle, W.S.; Gmitter, F.G.; Grosser, J.W.; Rossi, L. Early Performance of Recently Released Rootstocks with Grapefruit, Navel Orange, and Mandarin Scions under Endemic Huanglongbing Conditions in Florida. Horticulturae 2022, 8, 1027. [Google Scholar] [CrossRef]
- Miao, L.; Li, S.; Bai, L.; Anwar, A.; Li, Y.; He, C.; Yu, X. Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Sci. Hortic. 2019, 244, 249–256. [Google Scholar] [CrossRef]
- Baron, D.; Esteves Amaro, A.C.; Pina, A.; Ferreira, G. An overview of grafting re-establishment in woody fruit species. Sci. Hortic. 2019, 243, 84–91. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, H.; Jin, T.; Cai, T.; Jiang, M.; Wang, M.; Liang, D. A Sequential Three-Phase Pathway Constitutes Tracheary Element Connection in the Arabidopsis/Nicotiana Interfamilial Grafts. Front. Plant Sci. 2021, 12, 664342. [Google Scholar] [CrossRef]
- Niedz, R.P.; Bowman, K.D. Improving citrus bud grafting efficiency. Sci. Rep. 2023, 13, 17807. [Google Scholar] [CrossRef]
- Chambaud, C.; Cookson, S.J.; Ollat, N.; Bayer, E.; Brocard, L. A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft interface. Plant Physiol. 2022, 188, 44–55. [Google Scholar] [CrossRef]
- He, W.; Xie, R.; Wang, Y.; Chen, Q.; Wang, H.; Yang, S.; Luo, Y.; Zhang, Y.; Tang, H.; Gmitter, F.G.; et al. Comparative transcriptomic analysis on compatible/incompatible grafts in Citrus. Hortic. Res. 2022, 9, uhab072. [Google Scholar] [CrossRef]
- He, W.; Xie, R.; Guo, D.; Chai, J.; Wang, H.; Wang, Y.; Chen, Q.; Zhang, J.; Wu, Z.; Li, M.; et al. The starch excess and key genes underlying citrus leaf chlorosis by rootstock–scion incompatibility. Int. J. Biol. Macromol. 2024, 282, 137111. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Wu, R. Plant grafting: How genetic exchange promotes vascular reconnection. New Phytol. 2017, 214, 56–65. [Google Scholar] [CrossRef]
- Fuentes, I.; Stegemann, S.; Golczyk, H.; Karcher, D.; Bock, R. Horizontal genome transfer as an asexual path to the formation of new species. Nature 2014, 511, 232–235. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, F.; Pan, Z. Identification of mRNA transfer between citrus rootstock and scion based on characteristic SNP. J. Fruit Sci. 2022, 39, 2217–2224. [Google Scholar]
- Chen, F. Using Transcriptome Analysis to Investigate the Movement of mRNA Between Citrus Rootstock and Scion. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Wu, Y.; Ma, Y.; Wang, M.; Zhou, H.; Gan, Z.; Zeng, R.; Ye, L.; Zhou, J.; Zhang, J.; Hu, C. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. Hortic. Res. 2022, 9, uhac056. [Google Scholar] [CrossRef]
- Soares, J.M.; Weber, K.C.; Qiu, W.; Stanton, D.; Mahmoud, L.M.; Wu, H.; Huyck, P.; Zale, J.; Al Jasim, K.; Grosser, J.W.; et al. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci. Rep. 2020, 10, 21404–21418. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, Q.; Hu, Y.; Chen, M.; Chen, Z.; Zheng, S.; Ma, Q.; Luo, Z. Physiological and Full-Length Transcriptome Analyses Reveal the Dwarfing Regulation in Trifoliate Orange (Poncirus trifoliata L.). Plants 2023, 12, 271. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Liu, M.; Yao, Q.; Chen, J. Transcriptome Profiling to Understand the Effect of Citrus Rootstocks on the Growth of ‘Shatangju’ Mandarin. PLoS ONE 2017, 12, e0169897. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, T.; Yu, X.; Hong, Q.; Xiang, J.; Zeng, A.; Gong, G.; Zhao, X. The effects of rootstocks on performances of three late-ripening navel orange varieties. J. Integr. Agric. 2020, 19, 1802–1812. [Google Scholar] [CrossRef]
- Mesquita, G.L.; Zambrosi, F.C.B.; Tanaka, F.A.O.; Boaretto, R.M.; Quaggio, J.A.; Ribeiro, R.V.; Mattos, D. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock. Front. Plant Sci. 2016, 7, 224. [Google Scholar] [CrossRef]
- Saeed, M.; Dodd, P.B.; Sohail, L. Anatomical studies of stems, roots and leaves of selected citrus rootstock varieties in relation to their vigour. J. Hortic. For. 2010, 2, 87–94. [Google Scholar]
- Martínez-Alcántara, B.; Rodriguez-Gamir, J.; Martínez-Cuenca, M.R.; Iglesias, D.J.; Primo-Millo, E.; Forner-Giner, M.A. Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa). Trees-Struct. Funct. 2013, 27, 629–638. [Google Scholar] [CrossRef]
- Caruso, M.; Continella, A.; Modica, G.; Pannitteri, C.; Russo, R.; Salonia, F.; Arlotta, C.; Gentile, A.; Russo, G. Root-stocks Influence Yield Precocity, Productivity, and Pre-Harvest Fruit Drop of Mandared Pigmented Mandarin. Agronomy 2020, 10, 1305. [Google Scholar] [CrossRef]
- Continella, A.; Pannitteri, C.; La Malfa, S.; Legua, P.; Distefano, G.; Nicolosi, E.; Gentile, A. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hortic. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2014, 65, 4561–4575. [Google Scholar] [CrossRef]
- Zhou, G.F.; Peng, S.A.; Liu, Y.Z.; Wei, Q.J.; Han, J.; Islam, M.Z. Physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees-Struct. Funct. 2014, 28, 295–307. [Google Scholar] [CrossRef]
- Ahmed, W.; Nawaz, M.A.; Iqbal, M.A.; Khan, M.M. Effect of different rootstocks on plant nutrient status and yield in Kinnow mandarin (Citrus reticulata blanco). Mol. Plant-Microbe Interact. 2007, 39, 1779–1786. [Google Scholar] [CrossRef]
- Mei, L.; Sheng, O.; Peng, S.A.; Zhou, G.F.; Wei, Q.J.; Li, Q.H. Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Sci. Hortic. 2011, 129, 426–432. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Guo, L.; Liu, Y.; Jin, L.; Hussain, S.B.; Du, W.; Deng, Z.; Peng, S. Transcriptome Changes Associated with Boron Deficiency in Leaves of Two Citrus Scion-Rootstock Combinations. Front. Plant Sci. 2017, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jiang, C.; Wang, Y. Distribution of boron and its forms in young ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks in response to deficient and excessive boron. Soil Sci. Plant Nutr. 2011, 57, 93–104. [Google Scholar] [CrossRef]
- Liu, G.; Wang, R.; Liu, L.; Wu, L.; Jiang, C. Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response. Plant Soil 2013, 370, 555–565. [Google Scholar] [CrossRef]
- Wang, N.; Yan, T.; Fu, L.; Zhou, G.; Liu, Y.; Peng, S.A. Differences in boron distribution and forms in four citrus scion–rootstock combinations with contrasting boron efficiency under boron-deficient conditions. Trees-Struct. Funct. 2014, 28, 1589–1598. [Google Scholar] [CrossRef]
- Wang, N.; Wei, Q.; Yan, T.; Pan, Z.; Peng, S. Improving the boron uptake of boron-deficient navel orange plants under low boron conditions by inarching boron-efficient rootstock. Sci. Hortic. 2016, 199, 49–55. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, Q.; Sun, Y.; Du, W.; Pan, Z.; Peng, S.A. Physiological and Transcriptional Changes of Three Citrus Root-stock Seedlings under Iron Deficiency. Front. Plant Sci. 2017, 8, 1104. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, Y.; Zhao, L.; Fu, L.; Deng, L.; Deng, J.; Ding, D.; Xiao, S.; Deng, X.; Peng, S.; et al. MYB308-mediated transcriptional activation of plasma membrane H+-ATPase 6 promotes iron uptake in citrus. Hortic. Res. 2022, 9, uhac088. [Google Scholar] [CrossRef]
- Song, F.; Pan, Z.; Bai, F.; An, J.; Liu, J.; Guo, W.; Bisseling, T.; Deng, X.; Xiao, S. The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus. Front. Microbiol. 2015, 6, 1372. [Google Scholar] [CrossRef] [PubMed]
- Forner-Giner, M.A.; Rodriguez-Gamir, J.; Martinez-Alcantara, B.; Quiñones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner, J. Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and For-ner-Alcaide 418). Sci. Hortic. 2014, 179, 376–387. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Huang, M.; Chen, J. Mechanisms for the Influence of Citrus Rootstocks on Fruit Size. J. Agric. Food Chem. 2015, 63, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, F.; Wu, R.A.; Chen, J.; Wang, W.; Ye, X.; Liu, D.; Cheng, H. An up-to-date review: Differential biosynthesis mechanisms and enrichment methods for health-promoting anthocyanins of citrus fruits during processing and storage. Crit. Rev. Food Sci. 2024, 64, 3989–4015. [Google Scholar] [CrossRef]
- Machado, F.L.D.C.; Costa, J.M.C.D.; Teixeira, A.D.S.; Costa, J.D.P.D. The influence of rootstock and time of harvest on the fruit quality during storage of in two grapefruit cultivars. Acta Sci. Agron. 2015, 37, 339–346. [Google Scholar] [CrossRef]
- Dong, T.; Xiong, B.; Huang, S.; Liao, L.; Qiu, X.; Sun, G.; He, Y.; Duan, C.; Wang, X.; Zhang, X.; et al. Investigation of the cause of reduced sugar content in Kiyomi tangor fruit of Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) rootstock. Sci. Rep. 2019, 9, 19263. [Google Scholar] [CrossRef]
- Ramin, A.; Alirezanezhad, A. Effects of citrus rootstocks on fruit yield and quality of Ruby Red and Marsh grape-fruit. Fruits 2005, 60, 311–317. [Google Scholar] [CrossRef]
- Ma, X.; Chang, Y.; Li, F.; Yang, J.; Ye, L.; Zhou, T.; Jin, Y.; Sheng, L.; Lu, X. CsABF3-activated CsSUT1 pathway is implicated in pre-harvest water deficit inducing sucrose accumulation in citrus fruit. Hortic. Plant J. 2024, 10, 103–114. [Google Scholar] [CrossRef]
- Noda, K.; Okuda, H.; Iwagaki, I. Indole acetic acid and abscisic acid levels in new shoots and fibrous roots of citrus scion-rootstock combinations. Sci. Hortic. 2000, 84, 245–254. [Google Scholar] [CrossRef]
- Lu, W.; Hao, W.; Liu, K.; Liu, J.; Yin, C.; Su, Y.; Hang, Z.; Peng, B.; Liu, H.; Xiong, B.; et al. Analysis of sugar com-ponents and identification of SPS genes in citrus fruit development. Front. Plant Sci. 2024, 15, 1372809. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Liu, D.; Alam, S.M.; Zaman, F.; Luo, Y.; Han, H.; Ateeq, M.; Liu, Y. Molecular physiology for the in-crease of soluble sugar accumulation in citrus fruits under drought stress. Plant Physiol. Biochem. 2023, 203, 108056. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, F.; Yu, H.; Zhang, M.; Jiang, D.; Huang, T.; Xiang, J.; Zhu, S.; Zhao, X. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Sci. Hortic. 2022, 298, 110974. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Shen, W.; Liao, B.; Liu, X.; Yang, Z.; Chen, J.; Zhao, C.; Liao, Z.; Cao, J.; et al. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. Mol. Plant 2024, 17, 1753–1772. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Wang, M.; Chen, Y.; Yu, J.; Chen, H.; Yang, H.; Wang, W.; Cai, Z.; Hong, L. Effects of rootstocks and developmental time on the dynamic changes of main functional substances in ‘Orah’ (Citrus reticulata Blanco) by HPLC coupled with UV detection. Front. Plant Sci. 2024, 15, 1382768. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Li, S.; Yu, J.; Yang, L.; Hong, L. Widely Targeted Metabolomic Analysis Provides New Insights into the Effect of Rootstocks on Citrus Fruit Quality. Metabolites 2024, 14, 242. [Google Scholar] [CrossRef]
- Feng, S.; Niu, L.; Suh, J.H.; Hung, W.; Wang, Y. Comprehensive Metabolomics Analysis of Mandarins (Citrus reticulata) as a Tool for Variety, Rootstock, and Grove Discrimination. J. Agric. Food Chem. 2018, 66, 10317–10326. [Google Scholar] [CrossRef]
- Peng, Z.; Song, L.; Chen, M.; Liu, Z.; Yuan, Z.; Wen, H.; Zhang, H.; Huang, Y.; Peng, Z.; Yang, H.; et al. Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus. Proc. Natl. Acad. Sci. USA 2024, 121, e2321615121. [Google Scholar] [CrossRef]
- Huang, D.; Li, J.; Wei, Y.; Xie, X.; Qin, Z.; Chen, J.; Yao, S.; Li, L.; Chen, J.; Deng, C.; et al. Integrating multi-omics analysis unravels the molecular mechanisms underlying variations in bioactive flavonoids in Citrus reticulata ‘Chachi’ grafted onto different citrus rootstocks. Ind. Crop Prod. 2025, 232, 121287. [Google Scholar] [CrossRef]
- Ke, F.; Nie, Z.; Huang, X.; Cui, C.; Yang, Y.; Xu, J.; Wang, L.; Sun, L. Investigating the Effect of Two Interstocks, Changshanhuyou and Ponkan, on the Fruit Quality and Volatile Flavor of Cocktail Grapefruit (Citrus paradisi Macf. cv. Cocktail). Horticulturae 2025, 11, 403. [Google Scholar] [CrossRef]
- Dahro, B.; Li, C.; Liu, J. Overlapping responses to multiple abiotic stresses in citrus: From mechanism understanding to genetic improvement. Hortic. Adv. 2023, 1, 4. [Google Scholar] [CrossRef]
- Ma, X.; Sheng, L.; Li, F.; Zhou, T.; Guo, J.; Chang, Y.; Yang, J.; Jin, Y.; Chen, Y.; Lu, X. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway. New Phytol. 2024, 242, 1131–1145. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Zhu, S.; Zhao, X. Evaluation of drought tolerance in different citrus rootstocks. J. Fruit Sci. 2016, 33, 1230–1240. [Google Scholar]
- Shafqat, W.; Muhmmad, J.J.; Rizwana, M.; Ahmad, S.K.; Ali, A.Z. Evaluation of Citrus Rootstocks against Drought, Heat and their Combined Stress Based on Growth and Photosynthetic Pigments. Int. J. Agric. Biol. 2019, 22, 1001–1009. [Google Scholar]
- Shafqat, W.; Mazrou, Y.S.A.; Sami-ur-Rehman; Nehela, Y.; Ikram, S.; Bibi, S.; Naqvi, S.A.; Hameed, M.; Jaskani, M.J. Effect of Three Water Regimes on the Physiological and Anatomical Structure of Stem and Leaves of Different Citrus Rootstocks with Distinct Degrees of Tolerance to Drought Stress. Horticulturae 2021, 7, 554. [Google Scholar] [CrossRef]
- Balfagón, D.; Terán, F.; de Oliveira, T.D.R.; Santa-Catarina, C.; Gómez-Cadenas, A. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Plant Cell Rep. 2022, 41, 593–602. [Google Scholar] [CrossRef]
- Da Silva Costa, L.; Freschi, L.; Coelho Filho, M.A.; Araújo Da Silva, M.A.; Dos Santos Nascimento, F.; Da Silva Gesteira, A. Reassessing Drought Tolerance in Citrus Tetraploid Rootstocks: Myth or Reality? Physiol. Plant. 2025, 177, e70199. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.P.; Boscariol Camargo, R.L.; Takita, M.A.; Machado, M.A.; Dos Soares Filho, W.S.; Costa, M.G.C. Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genom. 2019, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Dutra De Souza, J.; de Andrade Silva, E.M.; Coelho Filho, M.A.; Morillon, R.; Bonatto, D.; Micheli, F.; Da Silva Gesteira, A. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS ONE 2017, 12, e0177993. [Google Scholar] [CrossRef]
- Huang, Y.; He, J.; Xu, Y.; Zheng, W.; Wang, S.; Chen, P.; Zeng, B.; Yang, S.; Jiang, X.; Liu, Z.; et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat. Genet. 2023, 55, 1964–1975. [Google Scholar] [CrossRef] [PubMed]
- Primo-Capella, A.; Martínez-Cuenca, M.; Forner-Giner, M.Á. Cold Stress in Citrus: A Molecular, Physiological and Biochemical Perspective. Horticulturae 2021, 7, 340. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Yang, H.; Tang, Y.; Liu, B.; Hu, X.; Hu, Z. Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings. Plant Signal. Behav. 2023, 18, 2285169. [Google Scholar] [CrossRef] [PubMed]
- Primo-Capella, A.; Forner-Giner, M.A.; Martinez-Cuenca, M.R.; Terol, J. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. BMC Plant Biol. 2022, 22, 209. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef]
- Othman, Y.A.; Hani, M.B.; Ayad, J.Y.; St Hilaire, R. Salinity level influenced morpho-physiology and nutrient up-take of young citrus rootstocks. Heliyon 2023, 9, e13336. [Google Scholar] [CrossRef]
- Navarro, J.M.; Antolinos, V.; Robles, J.M.; Botía, P. Citrus Irrigation with Desalinated Seawater Under a Climate Change Scenario. Front. Plant Sci. 2022, 13, 909083. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. Citrus Decline: Soil Fertility and Plant Nutrition. J. Plant Nutr. 2009, 32, 197–245. [Google Scholar] [CrossRef]
- Asins, M.J.; Raga, M.V.; Romero-Aranda, M.R.; Jaime-Fernández, E.; Carbonell, E.A.; Belver, A. Salt Tolerance Diversity in Citrus Rootstocks Agrees with Genotypic Diversity at the LCl-6 Quantitative Trait Locus. Genes 2025, 16, 683. [Google Scholar] [CrossRef]
- WEI, Q.; FENG, F.; GU, X.; GU, S.; SU, S.; GU, Q. Effect of NaCl Stress on Seedling Growth and Saline Ions Distribution in Trifoliate and Citrus aurantium cv.Goutoucheng. South China Fruits 2016, 45, 7–11. [Google Scholar]
- Zhang, X.; Qiu, J.; Hui, Q.; Xu, Y.; He, Y.; Peng, L.; Fu, X. Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the re-sponse to iron deficiency. BMC Genom. 2020, 21, 233. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, H.; Sun, Y.; Zhang, J.; Gao, K.; Wu, J.; Zhu, C.; Yin, C.; Chen, X.; Liu, Q.; et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 2025, 388, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, L.M.; Huyck, P.J.; Vincent, C.I.; Gmitter, F.G.; Grosser, J.W.; Dutt, M. Physiological Responses and Gene Expression Patterns in Open-Pollinated Seedlings of a Pummelo-Mandarin Hybrid Rootstock Exposed to Salt Stress and Huanglongbing. Plants 2021, 10, 1439. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Dutt, M. Novel citrus hybrids incorporating Australian lime genetics: Development of HLB-tolerant citrus rootstocks and physiological changes in ‘Valencia’ sweet orange scions. Front. Plant Sci. 2025, 16, 1614845. [Google Scholar] [CrossRef]
- Hernández-Suárez, E.; Suárez-Méndez, L.; Parrilla, M.; Arjona-López, J.M.; Hervalejo, A.; Arenas-Arenas, F.J. Feeding and Oviposition Behaviour of Trioza erytreae (Hemiptera: Triozidae) on Different Citrus Rootstock Materi-al Available in Europe. Insects 2021, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Morade, A.S.; Sharma, R.M.; Dubey, A.K.; Sathee, L.; Kumar, S.; Kadam, D.M.; Awasthi, O.P.; Kumar, A.; Yadav, D. Phenotyping drought stress tolerance in citrus rootstocks using high-throughput imaging and physio-biochemical techniques. BMC Plant Biol. 2025, 25, 753. [Google Scholar] [CrossRef]
- Bonnin, M.; Favreau, B.; Soriano, A.; Leonhardt, N.; Oustric, J.; Lourkisti, R.; Ollitrault, P.; Morillon, R.; Berti, L.; Santini, J. Insight into Physiological and Biochemical Determinants of Salt Stress Tolerance in Tetraploid Citrus. Antioxidants 2023, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Quiñones, A.; Martínez-Cuenca, M.R.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Mar-tínez-Alcántara, B. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. J. Plant Physiol. 2016, 205, 1–10. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Continella, A.; Grosser, J.W. Citrus Rootstock Breeding and Selection. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–74. [Google Scholar]
- Parajuli, S.; Huo, H.; Gmitter, F.G.J.; Duan, Y.; Luo, F.; Deng, Z. Editing the CsDMR6 gene in citrus results in resistance to the bacterial disease citrus canker. Hortic. Res. 2022, 9, uhac082. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Santiago Vazquez, J.; Zhou, M.; Levy, A.; Mou, Z.; Orbović, V. Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene. Transgenic Res. 2024, 33, 59–66. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liu, F.; Sun, Y.; Liu, X.; Jin, L. Physiological and Molecular Insights into Citrus Rootstock–Scion Interactions: Compatibility, Signaling, and Impact on Growth, Fruit Quality and Stress Responses. Horticulturae 2025, 11, 1110. https://doi.org/10.3390/horticulturae11091110
Wang P, Liu F, Sun Y, Liu X, Jin L. Physiological and Molecular Insights into Citrus Rootstock–Scion Interactions: Compatibility, Signaling, and Impact on Growth, Fruit Quality and Stress Responses. Horticulturae. 2025; 11(9):1110. https://doi.org/10.3390/horticulturae11091110
Chicago/Turabian StyleWang, Peng, Feng Liu, Yueting Sun, Xiao Liu, and Longfei Jin. 2025. "Physiological and Molecular Insights into Citrus Rootstock–Scion Interactions: Compatibility, Signaling, and Impact on Growth, Fruit Quality and Stress Responses" Horticulturae 11, no. 9: 1110. https://doi.org/10.3390/horticulturae11091110
APA StyleWang, P., Liu, F., Sun, Y., Liu, X., & Jin, L. (2025). Physiological and Molecular Insights into Citrus Rootstock–Scion Interactions: Compatibility, Signaling, and Impact on Growth, Fruit Quality and Stress Responses. Horticulturae, 11(9), 1110. https://doi.org/10.3390/horticulturae11091110