Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Spawn Preparation
2.3. Experimental Design
2.4. Cultivation Methods
2.4.1. Land Preparation
2.4.2. Management During Sowing and Mycelial Growth Stage
2.4.3. Placement of Exogenous Nutrient Bags
2.4.4. Fruiting Body Management and Harvesting
2.5. Preparation of Soil Samples
2.6. Data Determination
2.6.1. Agronomic Traits and M. sextelata Yield of Fruiting Bodies
2.6.2. Determination of Soil Physicochemical Properties
2.6.3. Economic Benefit Analysis
2.7. Data Analysis
3. Results
3.1. Effects of Different Nutrient Bag Formulations on the Agronomic Traits of Fruiting Bodies
3.2. Effects of Different Nutrient Bag Formulations on the Yield of M. sextelata
3.3. Effects of Different Nutrient Bag Formulations on Soil Physicochemical Properties
3.4. Correlation Between Soil Physicochemical Properties and Yield
3.5. Effects of Different Nutrient Bag Formulations on Economic Benefits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, X.; Yang, Z. Mating systems in true morels (Morchella). Microbiol. Mol. Biol. Rev. 2021, 85, e0022020. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Che, C.; Zhang, J.; Gong, Z.; Si, M.; Yang, G.; Cao, L.; Liu, J. Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. Int. J. Biol. Macromol. 2019, 129, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Longley, R.; Benucci, G.M.N.; Mills, G.; Bonito, G. Fungal and bacterial community dynamics in substrates during the cultivation of morels (Morchella rufobrunnea) indoors. FEMS Microbiol. Lett. 2019, 366, fnz215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ma, H.; Zhang, Y.; Dong, C. Artificial cultivation of true morels: Current state, issues and perspectives. Crit. Rev. Biotechnol. 2018, 38, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lv, M.L.; Li, L.; Pierce, A.R. The “Allure” and “Pitfalls” of the Morchella Industry in China. Mycosystema 2021, 19, 232–237. (In Chinese) [Google Scholar]
- He, J.; Li, S.; Yang, F.; Wei, Z.; Wei, X.; Su, X.; Su, H. Effects of Exogenous Nutrients and Their Addition Methods on the Cultivation of Morchella. J. Dali Univ. 2020, 5, 42–47. (In Chinese) [Google Scholar]
- Liu, W.; He, P.; Shi, X.; Zhang, Y.; Perez-Moreno, J.; Yu, F. Large-scale field cultivation of Morchella and relevance of basic knowledge for its steady production. J. Fungi 2023, 9, 855. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.; Steudle, E.; Levanon, D.; Hadar, Y.; Chet, I. Turgor Changes in Morchella esculenta during Translocation and Sclerotial Formation. Exp. Mycol. 1995, 19, 129–136. [Google Scholar] [CrossRef]
- Volk, T.J.; Leonard, T.J. Physiological and Environmental Studies of Sclerotium Formation and Maturation in Isolates of Morchella crassipes. Appl. Environ. Microbiol. 1989, 55, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Kohler, A.; Miao, R.; Liu, T.; Zhang, Q.; Zhang, B.; Jiang, L.; Wang, Y.; Xie, L.; Tang, J.; et al. Multi-omic analyses of exogenous nutrient bag decomposition by the black morel Morchella importuna reveal sustained carbon acquisition and transferring. Environ. Microbiol. 2019, 21, 3909–3926. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.-M.; Jayawardena, R.S.; Thongklang, N.; Lv, M.-L.; Zhu, X.-T.; Zhao, Q. Morel production associated with soil nitrogen-fixing and nitrifying microorganisms. J. Fungi 2022, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xie, Y.L.; Qu, J.S.; Liu, W.; He, P. Response of Morchella Growth and Development to Different Sawdust-Based External Nutrient Sources. North. Hortic. 2024, 24, 90–97. (In Chinese) [Google Scholar]
- Shen, T.; Du, J.; Li, M.L.; Ma, J.; Zhao, S.W.; Qin, W.L. Effects of Different Culture Substrates on the Yield and Nutritional Components of Morchella (Morel Mushroom). Bull. Soil Water Conserv. 2021, 41, 187–192. (In Chinese) [Google Scholar]
- Ye, L.; Yang, X.; Zhang, B.; Zhou, J.; Tian, H.; Zhang, X.; Li, X. Seasonal Succession of Fungal Communities in Native Truffle (Tuber indicum) Ecosystems. Appl. Environ. Microbiol. 2023, 89, e00195-23. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. NY/T 4211-2022: Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability—Morchella spp.; China Agriculture Press: Beijing, China, 2022. [Google Scholar]
- Prasad, R. Determination of potentially available nitrogen in soils—A rapid procedure. Plant Soil 1965, 23, 261–264. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Leaf, A.L. Determination of available potassium in soils of forest plantations. Soil Sci. Soc. Am. J. 1958, 22, 458–459. [Google Scholar] [CrossRef]
- Borin, S.; Ventura, S.; Tambone, F.; Mapelli, F.; Schubotz, F.; Brusetti, L.; Scaglia, B.; D’Acqui, L.P.; Solheim, B.; Turicchia, S. Rock weathering creates oases of life in a High Arctic desert. Environ. Microbiol. 2010, 12, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Strosser, E. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 2010, 27, 49. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Chen, Y.W.; Duan, D.; Chen, S.J.; Zhang, Y. Effects of the Amount of Exogenous Nutrient Bags on the Yield of Morchella. Edible Fungi 2022, 44, 50–51. (In Chinese) [Google Scholar]
- Zhu, J.X.; Kong, D.J.; Feng, R.; Zheng, G.B. Effects of Different Formulas of Exogenous Nutrient Bags on the Yield and Economic Benefits of Morchella. Chin. Edible Fungi 2023, 42, 120–124+130. (In Chinese) [Google Scholar]
- Wei, Z.H.; Wei, J.; Kong, F.J.; Cao, B.S. Effects of Different Formulas and Placement Numbers of Exogenous Nutrient Bags on the Nutritional Quality of Morchella sextelata. Mycosystema 2024, 43, 134–145. (In Chinese) [Google Scholar]
- Cai, Y.; Ma, X.; Zhang, Q.; Yu, F.; Zhao, Q.; Huang, W.; Song, J.; Liu, W. Physiological Characteristics and Comparative Secretome Analysis of Morchella importuna Grown on Wheat Grain and Lignocellulosic Substrates. Front. Microbiol. 2021, 12, 636344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Z.; Qu, S.; Tan, F.H.; Dong, C.H. Influencing Factors of Exogenous Nutrient Effects on Morchella importuna. Mycosystema 2021, 40, 3157–3168. (In Chinese) [Google Scholar] [CrossRef]
- Xiang, G.; Ma, Y.H.; Liu, P.; Li, Z.M.; Chai, H.M.; Zhao, Y.C. Relationship between the Yield of Morchella and Nutrient Changes in the Spawn Bags. Acta Edulis Fungi 2022, 29, 39–47. (In Chinese) [Google Scholar]
- Ren, Z.M.; Wang, Y.; Yu, Y.S.; Liu, Z.Q. Experimental Study on the Effects of Factors Related to Nutrient Bags on the Growth of Morchella. South China Agric. 2021, 15, 65–66+69. (In Chinese) [Google Scholar]
- Xu, Y.; Tang, J.; Wang, Y.; He, X.; Tan, H.; Yu, Y.; Chen, Y.; Peng, W. Large-scale commercial cultivation of morels: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 4401–4412. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.Y.; Cui, X.; You, P.; Chang, Y. Effects of Wheat Grain Content in the Formula of Nutrient Bags on the Yield of Morchella. Chin. Edible Fungi 2024, 43, 35–38. (In Chinese) [Google Scholar]
Substrates | Formula % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | KY1 | KY2 | KY3 | DY1 | DY2 | DY3 | MY1 | MY2 | MY3 | FY1 | FY2 | FY3 | |
wheat grains | 40 | 30 | 15 | - | 30 | 15 | - | 30 | 15 | - | 30 | 15 | - |
rice husk | - | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
rice bran (K) | - | 5 | 20 | 35 | - | - | - | - | - | - | - | - | - |
soybean meal (D) | - | - | - | - | 5 | 20 | 35 | - | - | - | - | - | - |
cottonseed hulls (M) | - | - | - | - | - | - | - | 5 | 20 | 35 | - | - | - |
fermented maize stover (F) | - | - | - | - | - | - | - | - | - | - | 5 | 20 | 35 |
corncob | 50 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
lime | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
gypsum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
wheat bran | 8 | - | - | - | - | - | - | - | - | - | - | - | - |
Formula | Stipe Length (mm) | Stipe Diameter (mm) | Pileus Thickness (mm) | Pileus Width (mm) | Pileus Length (mm) | Weight of a Single Fruiting Body (g) |
---|---|---|---|---|---|---|
CK | 47.44 ± 0.52 ab | 20.00 ± 2.28 ab | 6.50 ± 0.73 b | 30.26 ± 3.04 ab | 78.90 ± 5.97 a | 21.87 ± 2.26 e |
KY1 | 47.22 ± 1.90 ab | 19.39 ± 2.41 ab | 8.62 ± 0.79 a | 28.72 ± 2.73 b | 79.01 ± 9.89 a | 31.42 ± 3.95 bcd |
KY2 | 46.62 ± 1.15 b | 16.69 ± 2.27 ab | 8.23 ± 0.67 a | 28.93 ± 3.58 ab | 82.84 ± 13.42 a | 28.89 ± 2.33 cd |
KY3 | 47.00 ± 0.83 ab | 19.28 ± 2.83 ab | 8.68 ± 1.11 a | 27.94 ± 2.08 b | 86.11 ± 3.73 a | 30.50 ± 2.72 cd |
DY1 | 46.86 ± 1.56 ab | 18.04 ± 3.91 ab | 7.70 ± 1.33 ab | 32.01 ± 3.48 ab | 82.53 ± 4.88 a | 31.46 ± 3.65 bcd |
DY2 | 48.12 ± 1.21 ab | 21.29 ± 2.43 ab | 7.65 ± 0.29 ab | 33.51 ± 2.03 ab | 86.32 ± 3.48 a | 31.70 ± 4.75 bcd |
DY3 | 48.01 ± 1.14 ab | 20.39 ± 3.46 ab | 8.57 ± 0.62 a | 33.31 ± 3.65 ab | 82.42 ± 11.58 a | 27.90 ± 6.04 d |
MY1 | 47.23 ± 1.96 ab | 22.55 ± 4.86 a | 8.27 ± 0.66 a | 29.17 ± 7.15 ab | 82.45 ± 8.33 a | 35.00 ± 2.03 abc |
MY2 | 47.58 ± 1.58 ab | 17.81 ± 0.96 ab | 8.41 ± 0.73 a | 34.72 ± 5.01 a | 88.98 ± 11.26 a | 38.46 ± 5.45 a |
MY3 | 46.54 ± 0.95 b | 18.90 ± 1.28 ab | 8.37 ± 0.84 a | 32.47 ± 3.84 ab | 82.06 ± 8.34 a | 36.74 ± 6.74 ab |
FY1 | 46.97 ± 1.00 ab | 21.08 ± 3.35 ab | 8.12 ± 1.08 a | 30.02 ± 4.64 ab | 76.17 ± 5.09 a | 30.97 ± 4.89 bcd |
FY2 | 47.75 ± 1.46 ab | 19.15 ± 2.73 b | 8.49 ± 0.77 a | 29.55 ± 2.33 ab | 88.63 ± 3.65 a | 30.76 ± 2.95 bcd |
FY3 | 48.73 ± 1.36 a | 20.50 ± 6.11 ab | 9.05 ± 1.93 a | 32.46 ± 4.50 ab | 84.11 ± 16.34 a | 38.53 ± 4.02 a |
Formula | Cost per ENB (CNY) | Number of ENB (667 m2) | Other Costs (CNY/667 m2) | Yield (kg/667 m2) | Total Output Values (CNY/667 m2) | Total Input Cost (CNY/667 m2) | Profit (CNY/667 m2) | Input–Output Ratio |
---|---|---|---|---|---|---|---|---|
CK | 0.76 | 1980 | 15,000 | 788.39 | 78,839 | 16,499.10 | 62,339.90 | 4.78 |
KY1 | 0.62 | 1980 | 15,000 | 915.13 | 91,513 | 16,230.85 | 75,282.15 | 5.64 |
KY2 | 0.43 | 1980 | 15,000 | 732.37 | 73,237 | 15,850.69 | 57,386.31 | 4.62 |
KY3 | 0.24 | 1980 | 15,000 | 468.23 | 46,823 | 15,470.53 | 31,352.47 | 3.03 |
DY1 | 0.68 | 1980 | 15,000 | 629.65 | 62,965 | 16,349.65 | 46,615.35 | 3.85 |
DY2 | 0.67 | 1980 | 15,000 | 449.56 | 44,956 | 16,325.89 | 28,630.11 | 2.75 |
DY3 | 0.66 | 1980 | 15,000 | 230.78 | 23,078 | 16,302.13 | 6775.87 | 1.42 |
MY1 | 0.62 | 1980 | 15,000 | 837.75 | 83,775 | 16,222.93 | 67,552.07 | 5.16 |
MY2 | 0.41 | 1980 | 15,000 | 761.71 | 76,171 | 15,819.01 | 60,351.99 | 4.82 |
MY3 | 0.21 | 1980 | 15,000 | 393.53 | 39,353 | 15,415.09 | 23,937.91 | 2.55 |
FY1 | 0.60 | 1980 | 15,000 | 668.33 | 66,833 | 16,183.33 | 50,649.67 | 4.13 |
FY2 | 0.41 | 1980 | 15,000 | 414.88 | 41,488 | 15,803.17 | 25,684.83 | 2.63 |
FY3 | 0.20 | 1980 | 15,000 | 160.08 | 16,008 | 15,387.37 | 620.63 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Zhang, W.; Wang, Q.; Yang, T.; Wang, P.; Yu, Y.; Tan, X.; Kang, X.; Wen, J. Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel). Horticulturae 2025, 11, 863. https://doi.org/10.3390/horticulturae11070863
Yan Q, Zhang W, Wang Q, Yang T, Wang P, Yu Y, Tan X, Kang X, Wen J. Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel). Horticulturae. 2025; 11(7):863. https://doi.org/10.3390/horticulturae11070863
Chicago/Turabian StyleYan, Qi, Weidong Zhang, Qi Wang, Tonghui Yang, Peng Wang, Ya Yu, Xiao Tan, Xueping Kang, and Jiawei Wen. 2025. "Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel)" Horticulturae 11, no. 7: 863. https://doi.org/10.3390/horticulturae11070863
APA StyleYan, Q., Zhang, W., Wang, Q., Yang, T., Wang, P., Yu, Y., Tan, X., Kang, X., & Wen, J. (2025). Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel). Horticulturae, 11(7), 863. https://doi.org/10.3390/horticulturae11070863