Integration of Physiological and Comparative Transcriptomic Analyses Reveal the Toxicity Mechanism of p-Coumaric Acid on Morchella importuna
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain, Growth Conditions and Quantitative Assessment of Strain Ageing
2.2. Physiological and Biochemical Assays
2.3. RNA Extraction, Library Construction, and Sequencing
2.4. Data Processing and Bioinformatic Analysis
2.5. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Detection of Differentially Expressed Genes
2.6. Statistical Analysis
3. Results
3.1. Physiological and Biochemical Responses to p-CA Treatment
3.2. Overall Analysis of mRNA Sequencing
3.3. Identification of DEGs
3.4. GO and KEGG Analysis of DEGs
3.5. DEGs Associated with Oxidative Stress
3.6. DEGs Related to Ageing
3.7. DEGs Related to Metabolism
3.8. RT-qPCR Validation of Candidate Genes
4. Discussion
4.1. Sclerotial Metamorphosis and Ageing
4.2. Metabolic Adjustment in Response to p-CA Stress
4.3. Mechanisms Underlying the Toxicity of p-Coumaric Acid on M. importuna
4.4. Structure–Activity Relationships of Hydroxycinnamic Acid Derivatives: Implications for Antifungal Activity and Toxicology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, X.H.; Zhao, Q.; Yang, Z.L. A review on research advances, issues, and perspectives of morels. Mycology 2015, 6, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Tietel, Z.; Masaphy, S. True morels (Morchella)—Nutritional and phytochemical composition, health benefits and flavor: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 1888–1901. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Z.; Ma, H.S.; Zhang, Y.; Dong, C.H. Artificial cultivation of true morels: Current state, issues and perspectives. Crit. Rev. Biotechnol. 2018, 38, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; He, P.X.; Shi, X.F.; Zhang, Y.; Perez-Moreno, J.; Yu, F.Q. Large-Scale Field cultivation of Morchella and relevance of basic knowledge for its steady production. J. Fungi 2023, 9, 855. [Google Scholar] [CrossRef]
- Tan, H.; Liu, T.H.; Yu, Y.; Tang, J.; Jiang, L.; Martin, F.M.; Peng, W.H. Morel production related to soil microbial diversity and evenness. Microbiol. Spectr. 2021, 9, e0022921. [Google Scholar] [CrossRef]
- Ma, Z.M.; Guan, Z.J.; Liu, Q.C.; Hu, Y.Y.; Liu, L.F.; Wang, B.Q.; Huang, L.F.; Li, H.F.; Yang, Y.F.; Han, M.K.; et al. Chapter Four-Obstacles in continuous cropping: Mechanisms and control measures. Adv. Agron. 2023, 179, 205–256. [Google Scholar] [CrossRef]
- He, P.X.; Yu, M.; Cai, Y.L.; Liu, W.; Wang, W.S.; Wang, S.H.; Li, J. Effect of aging on culture and cultivation of the culinary-medicinal mushrooms Morchella importuna and M. sextelata (Ascomycetes). Int. J. Med. Mushrooms 2019, 21, 1089–1098. [Google Scholar] [CrossRef]
- Yin, Q.; Chen, Z.; He, P.X.; Liu, W.; Zhang, W.Y.; Cao, X.M. Allelopathic effects of phenolic acid extracts on Morchella mushrooms, pathogenic fungus, and soil dominant fungus uncover the mechanism of morel continuous cropping obstacle. Arch. Microbiol. 2024, 206, 55. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, W.C.; Shi, H.F.; He, P.X.; Zhang, F.M.; Zhang, J.; Li, B.; Shi, X.F.; Liu, W.; Yu, F.Q. Identification of allelochemicals under continuous cropping of Morchella mushrooms. Sci. Rep. 2024, 14, 31207. [Google Scholar] [CrossRef]
- He, P.X.; Wang, K.; Cai, Y.L.; Hu, X.L.; Zheng, Y.; Zhang, J.L.; Liu, W. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna. Micron 2018, 109, 34–40. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 1999, 18, 757–772. [Google Scholar] [CrossRef]
- Shen, W.Q.; Zeng, C.F.; Zhang, H.; Zhu, K.J.; He, H.; Zhu, W.; He, H.Z.; Li, G.H.; Liu, J.W. Integrative physiological, transcriptional, and metabolic analyses provide insights into response mechanisms of Prunus Persica to autotoxicity stress. Front. Plant Sci. 2021, 12, 794881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zhang, Z.D.; Han, X.Y.; Wu, J.H.; Zhang, L.Z.; Wang, J.R.; Wang-Pruski, G. Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling. Ecotoxicol. Environ. Saf. 2020, 200, 110779. [Google Scholar] [CrossRef]
- Yang, M.; Chuan, Y.C.; Guo, C.W.; Liao, J.J.; Xu, Y.G.; Mei, X.Y.; Liu, Y.X.; Huang, H.C.; He, X.H.; Zhu, S.S. Panax notoginseng root cell death caused by the autotoxic ginsenoside Rg1 is due to over-accumulation of ROS, as revealed by transcriptomic and cellular approaches. Front. Plant Sci. 2018, 9, 264. [Google Scholar] [CrossRef]
- Xie, X.G.; Chen, Y.; Bu, Y.Q.; Dai, C.C. A review of allelopathic researches on phenolic acids. Acta Ecol. Sin. 2014, 34, 6417–6428. [Google Scholar] [CrossRef]
- Kaur, H.; Bhardwaj, R.D.; Grewal, S.K. Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol. Plant. 2017, 39, 221. [Google Scholar] [CrossRef]
- Liu, S.F.; Jiang, J.C.; Ma, Z.H.; Xiao, M.Y.; Yang, L.; Tian, B.N.; Yu, Y.; Bi, C.W.; Fang, A.F.; Yang, Y.H. The role of hydroxycinnamic acid amide pathway in plant immunity. Front. Plant Sci. 2022, 13, 922119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.G.; Wu, F.Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS ONE 2012, 7, e48288. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, Y.Z.; Liu, Q.Z.; Zhang, Y.T.; Li, X.Y.; Li, H.Q.; Li, W.H. Phase changes of continuous cropping obstacles in strawberry (Fragaria × ananassa Duch.) production. Appl. Soil Ecol. 2020, 155, 103626. [Google Scholar] [CrossRef]
- Wang, R.T.; Liu, J.X.; Jiang, W.Y.; Ji, P.S.; Li, Y.G. Metabolomics and microbiomics reveal impacts of rhizosphere metabolites on alfalfa continuous cropping. Front. Microbiol. 2022, 13, 833968. [Google Scholar] [CrossRef]
- Boukhibar, H.; Laouani, A.; Touzout, S.N.; Alenazy, R.; Alqasmi, M.; Bokhari, Y.; Saguem, K.; Ben-Attia, M.; El-Bok, S.; Merghni, A. Chemical composition of Ailanthus altissima (Mill.) swingle methanolic leaf extracts and assessment of their antibacterial activity through oxidative stress induction. Antibiotics 2023, 12, 1253. [Google Scholar] [CrossRef]
- Yan, W.P.; Cao, S.J.; Liu, X.F.; Yao, G.L.; Yu, J.; Zhang, J.F.; Bian, T.F.; Yu, W.G.; Wu, Y.G. Combined physiological and transcriptome analysis revealed the response mechanism of Pogostemon cablin roots to p-hydroxybenzoic acid. Front. Plant Sci. 2022, 13, 980745. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.T.; Luo, Y.; Li, J.J.; Zhao, Y.L.; Bai, Y.; Zhang, C.; Chen, J.; Lin, W.X.; Wu, Z.Y. The variation of rhizosphere microorganisms of replanted Casuarina equisetifolia planta tions mediated by phenolic acids. Chin. J. Ecol. 2021, 40, 1021–1028. [Google Scholar] [CrossRef]
- Wu, H.W.; Haig, T.; Pratley, J.; Lemerle, D.; An, M. Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in root tissues. J. Chem. Ecol. 2001, 48, 5321–5325. [Google Scholar] [CrossRef]
- He, P.X.; Chen, Z.; Men, Y.; Wang, M.M.; Wang, W.S.; Liu, W. Activity Assay of Amylase and Xylanase Is Available for Quantitative Assessment of Strain Aging in Cultivated Culinary-Medicinal Morchella Mushrooms (Ascomycotina). Int. J. Med. Mushrooms 2023, 25, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.H.; Xie, W.Y.; Zhang, H.; Li, S.H.; Li, T.P. Molecular mechanisms of browning process encountered in morels (Morchella sextelata) during storage. Food Bioprocess Technol. 2022, 15, 1997–2008. [Google Scholar] [CrossRef]
- Havir, E.A.; Mchale, N.A. Biochemical and Developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 1987, 84, 450–455. [Google Scholar] [CrossRef]
- Li, L.H.; Yi, H.L. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol. Biochem. 2012, 58, 46–53. [Google Scholar] [CrossRef]
- Rady, M.M.; Hemida, K.A. Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings. Ecotoxicol. Environ. Saf. 2016, 133, 252–259. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.F.; Cai, Y.L.; Zhang, Q.Q.; Bian, Y.B. Opposite polarity monospore genome de novo sequencing and comparative analysis reveal the possible heterothallic life cycle of Morchella importuna. Int. J. Mol. Sci. 2018, 19, 2525. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.H.; Song, S.J.; Kim, W.H.; Song, E.S.; Lee, J.C.; Lee, S.J.; Han, D.W.; Lee, J.H. Protective effects of melon extracts on bone strength, mineralization, and metabolism in rats with ovariectomy-induced osteoporosis. Antioxidants 2019, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Liu, W.; Cai, Y.L.; Lan, A.F.; Bian, Y.B. Validation of internal control genes for quantitative real-time PCR gene expression analysis in Morchella. Molecules 2018, 23, 2331. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 2015, 16, 13561–13578. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2023, 12, 675–693. [Google Scholar] [CrossRef]
- Breitenbach, M.; Weber, M.; Rinnerthale, M.; Karl, T.; Breitenbach-Koller, L. Oxidative Stress in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose Degradation. Biomolecules 2015, 5, 318–342. [Google Scholar] [CrossRef]
- Király, I.; Czövek, P. Oxidative burst induced pseudosclerotium formation of Morchella steppicola zerova on different malt agar media. Can. J. Microbiol. 2007, 53, 975–982. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Zhao, Z.H.; Dong, H.; Dong, C.H. Reactive oxygen species induce sclerotial formation in Morchella importuna. Appl. Microbiol. Biotechnol. 2018, 102, 7997–8009. [Google Scholar] [CrossRef]
- Liu, Q.Z.; He, G.Q.; Wei, J.K.; Dong, C.H. Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna. Sci. Rep. 2021, 11, 9418. [Google Scholar] [CrossRef] [PubMed]
- Papapostolou, I.; Georgiou, C.D. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. J. Appl. Microbiol. 2010, 109, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Sharon, A.; Finkelstein, A.; Shlezinger, N.; Hatam, I. Fungal apoptosis: Function, genes and gene function. FEMS Microbiol. Rev. 2009, 33, 833–854. [Google Scholar] [CrossRef] [PubMed]
- He, P.X.; Cai, Y.L.; Liu, S.M.; Han, L.; Huang, L.N.; Liu, W. Morphological and ultrastructural examination of senescence in Morchella elata. Micron 2015, 78, 79–84. [Google Scholar] [CrossRef]
- McAdam, E.; Brem, R.; Karran, P. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. Mol. Cancer Res. 2016, 14, 612–622. [Google Scholar] [CrossRef]
- Kumar, N.; Moreno, N.C.; Feltes, B.C.; Menck, C.F.; Houten, B.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet. Mol. Biol. 2020, 43 (Suppl. 1), e20190104. [Google Scholar] [CrossRef]
- Shang, F.; Taylor, A. Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 2011, 51, 5–16. [Google Scholar] [CrossRef]
- Lorin, S.; Dufour, E.; Sainsard-Chanet, A. Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 2006, 1757, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Osiewacz, H.D.; Scheckhuber, C.Q. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic. Res. 2006, 40, 1350–1358. [Google Scholar] [CrossRef]
- Soerensen, M.; Gredilla, R.; Müller-Ohldach, M.; Werner, A.; Bohr, V.A.; Osiewacz, H.D.; Stevnsner, T. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: Decrease in mitochondrial DNA repair activity during ageing. Mech. Ageing Dev. 2009, 130, 487–496. [Google Scholar] [CrossRef]
- Birch-Machin, M.A.; Bowman, A. Oxidative stress and ageing. Br. J. Dermatol. 2016, 175 (Suppl. 2), 26–29. [Google Scholar] [CrossRef] [PubMed]
- Osiewacz, H.D.; Borghouts, C. Mitochondrial oxidative stress and aging in the filamentous fungus Podospora anserina. Ann. N. Y. Acad. Sci. 2000, 908, 31–39. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.X.; Lv, Y.Y.; Wei, S.; Hu, Y.S. Synergistic antifungal mechanism of cinnamaldehyde and nonanal against Aspergillus flavus and its application in food preservation. Food Microbiol. 2024, 121, 104524. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, H.; Liu, T.H.; Liu, L.X.; Tang, J.; Peng, W.H. Dual RNA-Seq Analysis of the Interaction Between Edible Fungus Morchella sextelata and Its Pathogenic Fungus Paecilomyces penicillatus Uncovers the Candidate Defense and Pathogenic Factors. Front. Microbiol. 2021, 12, 760444. [Google Scholar] [CrossRef]
- Dolivo, D.; Hernandez, S.; Dominko, T. Cellular lifespan and senescence: A complex balance between multiple cellular pathways. Bioessays 2016, 1, S33–S44. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.X.; Li, N.N.; Liu, L.; He, B.H.; Igarashi, Y.; Luo, F. Label-free differentially proteomic analysis of interspecific interaction between white-rot fungi highlights oxidative stress response and high metabolic activity. Fungal Biol. 2018, 122, 774–784. [Google Scholar] [CrossRef]
- Curto, M.; Camafeita, E.; Lopez, J.A.; Maldonado, A.M.; Rubiales, D.; Jorrin, J.V. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 2006, 6 (Suppl. 1), S163–S174. [Google Scholar] [CrossRef]
- Song, X.; Rampitsch, C.; Soltani, B.; Mauthe, W.; Linning, R.; Banks, T.; McCallum, B.; Bakkeren, G. Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. Proteomics 2011, 11, 944–963. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Carbohydrate metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef]
- Perl, A.; Hanczko, R.; Telarico, T.; Oaks, Z.; Landas, S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol. Med. 2011, 17, 395–403. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.M.; Krüger, A.; Alam, M.T.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.Y.; Li, H.R.; Li, L.W.; Wei, W.L.; Huang, Y.H.; Xiong, F.Q.; Wei, M.G. Genome-wide characterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genom. 2023, 24, 190. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Ko, K.S.; Vu, B.N.; Lee, Y.E.; Yoon, S.H.; Pham, T.T.; Kim, J.Y.; Lim, J.M.; Kang, Y.J.; Hong, J.C.; et al. N-acetylglucosaminyltransferase II is involved in plant growth and development under stress conditions. Front. Plant Sci. 2021, 12, 761064. [Google Scholar] [CrossRef]
- Lannoo, N.; Damme, E.V. Review/N-glycans: The making of a varied toolbox. Plant Sci. 2015, 239, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Wang, J.Y.; Wang, T.Y.; Li, T.L.; Xu, L.J.; Cheng, Y.F.; Chang, M.C.; Meng, J.L.; Hou, L.D. Integrated Transcriptomics–Proteomics Analysis Reveals the Response Mechanism of Morchella sextelata to Pseudodiploöspora longispora Infection. J. Fungi 2024, 10, 604. [Google Scholar] [CrossRef]
- Singh, A.; Poeta, M.D. Lipid signalling in pathogenic fungi. Cell. Microbiol. 2011, 13, 177–185. [Google Scholar] [CrossRef]
- Du, Y.L.; Fu, X.Z.; Chu, Y.Y.; Wu, P.W.; Liu, Y.N.; Ma, L.L.; Tian, H.Q.; Zhu, B.Z. Biosynthesis and the roles of plant sterols in development and stress responses. Int. J. Mol. Sci. 2022, 23, 2332. [Google Scholar] [CrossRef]
- Moazzen, A.; Öztinen, N.; Ak-Sakalli, E.; Koşar, M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef]
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Zheng, L.F.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure–activity relationship. Food Chem. Toxicol. 2018, 46, 149–156. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Q.; Zhang, W.; Cai, Y.; Shi, X.; Yu, F.; Guo, J.; He, X.; He, P.; Liu, W. Integration of Physiological and Comparative Transcriptomic Analyses Reveal the Toxicity Mechanism of p-Coumaric Acid on Morchella importuna. Horticulturae 2025, 11, 755. https://doi.org/10.3390/horticulturae11070755
Yin Q, Zhang W, Cai Y, Shi X, Yu F, Guo J, He X, He P, Liu W. Integration of Physiological and Comparative Transcriptomic Analyses Reveal the Toxicity Mechanism of p-Coumaric Acid on Morchella importuna. Horticulturae. 2025; 11(7):755. https://doi.org/10.3390/horticulturae11070755
Chicago/Turabian StyleYin, Qi, Wenchang Zhang, Yingli Cai, Xiaofei Shi, Fuqiang Yu, Jianzhuang Guo, Xinhua He, Peixin He, and Wei Liu. 2025. "Integration of Physiological and Comparative Transcriptomic Analyses Reveal the Toxicity Mechanism of p-Coumaric Acid on Morchella importuna" Horticulturae 11, no. 7: 755. https://doi.org/10.3390/horticulturae11070755
APA StyleYin, Q., Zhang, W., Cai, Y., Shi, X., Yu, F., Guo, J., He, X., He, P., & Liu, W. (2025). Integration of Physiological and Comparative Transcriptomic Analyses Reveal the Toxicity Mechanism of p-Coumaric Acid on Morchella importuna. Horticulturae, 11(7), 755. https://doi.org/10.3390/horticulturae11070755