Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of the Physical Properties of Loquats
2.2. Establishment of a Finite Element Model for Loquats
2.2.1. Reverse Engineering Modeling
2.2.2. Model Processing
2.2.3. Mesh Division
2.3. Drop Test Experiment
2.3.1. Finite Element Simulation
2.3.2. Bench Validation Experiment
2.4. Data Processing
3. Results and Discussion
3.1. Physical Properties of Loquats and Contact Materials
3.2. Contact Force
3.3. Equivalent Stress
3.4. Energy
3.5. Bruise Volume
3.6. Bruising Susceptibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, M.; Fawole, O.A.; Saeys, W.; Wu, D.; Wang, J.; Opara, U.L.; Nicolai, B.; Chen, K. Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10283–10302. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, N.; Nkazi, D.; Tumba, K. A review of thermodynamic and kinetic studies relevant to gas hydrate-based fruit juice concentration. J. Food Eng. 2023, 341, 111323. [Google Scholar] [CrossRef]
- Fan, P.; Yan, B.; Wang, M.; Lei, X.; Liu, Z.; Yang, F. Three-finger grasp planning and experimental analysis of picking patterns for robotic apple harvesting. Comput. Electron. Agric. 2021, 188, 106353. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, S.; Zhao, Y.; Huo, Y.; Liu, L.; Cui, Y. Lightweight force-sensing tomato picking robotic arm with a “global-local” visual servo. Comput. Electron. Agric. 2023, 204, 107549. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Zhang, A.; Hang, X. Finite element explicit dynamics simulation of motion and shedding of jujube fruits under forced vibration. Comput. Electron. Agric. 2022, 198, 107009. [Google Scholar] [CrossRef]
- Hoshyarmanesh, H.; Dastgerdi, H.R.; Ghodsi, M.; Khandan, R.; Zareinia, K. Numerical and experimental vibration analysis of olive tree for optimal mechanized harvesting efficiency and productivity. Comput. Electron. Agric. 2017, 132, 34–48. [Google Scholar] [CrossRef]
- Hu, G.; Zhou, J.; Chen, Q.; Luo, T.; Li, P.; Chen, Y.; Zhang, S.; Chen, J. Effects of different picking patterns and sequences on the vibration of apples on the same branch. Biosyst. Eng. 2024, 237, 26–37. [Google Scholar] [CrossRef]
- Yu, P.; Li, C.; Takeda, F.; Krewer, G.; Rains, G.; Hamrita, T. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere. Comput. Electron. Agric. 2012, 88, 25–31. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Bruise damage susceptibility of pomegranates (Punica granatum, L.) and impact on fruit physiological response during short term storage. Sci. Hortic. 2019, 246, 664–674. [Google Scholar] [CrossRef]
- Kafashan, J.; Wiacek, J.; Ramon, H.; Mouazen, A.M. Modelling and simulation of fruit drop tests by discrete element method. Biosyst. Eng. 2021, 212, 228–240. [Google Scholar] [CrossRef]
- Celik, H.K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biol. Technol. 2017, 128, 83–97. [Google Scholar] [CrossRef]
- Mei, M.; Li, J. An overview on optical non-destructive detection of bruises in fruit: Technology, method, application, challenge and trend. Comput. Electron. Agric. 2023, 213, 108195. [Google Scholar] [CrossRef]
- Zhu, Q.; Guan, J.; Huang, M.; Lu, R.; Mendoza, F. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique. Postharvest Biol. Technol. 2016, 114, 86–94. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Ishwarya, S.P.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Stopa, R.; Szyjewicz, D.; Komarnicki, P.; Kuta, Ł. Limit values of impact energy determined from contours and surface pressure distribution of apples under impact loads. Comput. Electron. Agric. 2018, 154, 1–9. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R.; Zhang, Z. Detection of subsurface bruising in fresh pickling cucumbers using structured-illumination reflectance imaging. Postharvest Biol. Technol. 2021, 180, 111624. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.; Zhang, S.; Cheng, Q.; Tan, Z. An effective method to inspect and classify the bruising degree of apples based on the optical properties. Postharvest Biol. Technol. 2017, 127, 44–52. [Google Scholar] [CrossRef]
- Yu, S.; Hu, D.; Qiu, D.; Jia, T.; Zhou, T.; Sun, X.; Sun, Z.; Yan, X. Profile-based diffuse reflectance corrections for improved optical property measurement of spherical fruit with spatial frequency domain imaging. Postharvest Biol. Technol. 2023, 204, 112453. [Google Scholar] [CrossRef]
- Munera, S.; Gómez-Sanchís, J.; Aleixos, N.; Vila-Francés, J.; Colelli, G.; Cubero, S.; Soler, E.; Blasco, J. Discrimination of common defects in loquat fruit cv. ‘Algerie’ using hyperspectral imaging and machine learning techniques. Postharvest Biol. Technol. 2021, 171, 111356. [Google Scholar] [CrossRef]
- Du, Z.; Zeng, X.; Li, X.; Ding, X.; Cao, J.; Jiang, W. Recent advances in imaging techniques for bruise detection in fruits and vegetables. Trends Food Sci. Technol. 2020, 99, 133–141. [Google Scholar] [CrossRef]
- Fu, H.; Du, W.; Yang, J.; Wang, W.; Wu, Z.; Yang, Z. Bruise measurement of fresh market apples caused by repeated impacts using a pendulum method. Postharvest Biol. Technol. 2023, 195, 112143. [Google Scholar] [CrossRef]
- Chavoshi, E.; Ahmadi, E.; Nia, A.A.; Seifi, R. Determination of dynamic deformation behavior of Golden Delicious apple using finite element method and its validation by scanning electron microscopy. Sci. Hortic. 2023, 307, 111531. [Google Scholar] [CrossRef]
- Rashvand, M.; Altieri, G.; Genovese, F.; Li, Z.; Di Renzo, G.C. Numerical simulation as a tool for predicting mechanical damage in fresh fruit. Postharvest Biol. Technol. 2022, 187, 111875. [Google Scholar] [CrossRef]
- Opara, U.L.; Pathare, P.B. Bruise damage measurement and analysis of fresh horticultural produce—A review. Postharvest Biol. Technol. 2014, 91, 9–24. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B.; Chen, G.; Zhao, D. Apple viscoelastic complex model for bruise damage analysis in constant velocity grasping by gripper. Comput. Electron. Agric. 2019, 162, 907–920. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Tchuenbou-Magaia, F.; Li, Z.; Khojastehpour, M.; Li, B. Analysis of the collision-damage susceptibility of sweet cherry related to environment temperature: A numerical simulating method. J. Food Eng. 2022, 333, 111140. [Google Scholar] [CrossRef]
- Hou, J.; Park, B.; Li, C.; Wang, X. A multiscale computation study on bruise susceptibility of blueberries from mechanical impact. Postharvest Biol. Technol. 2024, 208, 112660. [Google Scholar] [CrossRef]
- Yousefi, S.; Farsi, H.; Kheiralipour, K. Drop test of pear fruit: Experimental measurement and finite element modelling. Biosyst. Eng. 2016, 147, 17–25. [Google Scholar] [CrossRef]
- Caglayan, N.; Oral, O.; Celik, H.K.; Cinar, R.; Rodrigues, L.C.D.A.; Rennie, A.E.W.; Akinci, I. Determination of time dependent stress distribution on a potato tuber during drop case. J. Food Process. Eng. 2018, 41, e12869. [Google Scholar] [CrossRef]
- Xu, C.; Wang, D.; Xu, F.; Tang, H.; Zhao, J.; Wang, J. Prediction of bruising susceptibility in white radish (Raphanus sativus L.) using FEA-RSM technique. Postharvest Biol. Technol. 2023, 206, 112565. [Google Scholar] [CrossRef]
- Du, D.; Wang, B.; Wang, J.; Yao, F.; Hong, X. Prediction of bruise susceptibility of harvested kiwifruit (Actinidia chinensis) using finite element method. Postharvest Biol. Technol. 2019, 152, 36–44. [Google Scholar] [CrossRef]
- Li, Z.; Andrews, J.; Wang, Y. Mathematical modelling of mechanical damage to tomato fruits. Postharvest Biol. Technol. 2017, 126, 50–56. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Yang, H.; Liu, J. Internal mechanical damage prediction in tomato compression using multiscale finite element models. J. Food Eng. 2013, 116, 639–647. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yan, Y.; Wang, G. Detection of Early Bruises in Honey Peaches Using Shortwave Infrared Hyperspectral Imaging. Spectroscopy 2022, 37, 33–41, 48. [Google Scholar] [CrossRef]
- Huang, X.; Meng, Q.; Wu, Z.; He, F.; Tian, P.; Lin, J.; Zhu, H.; Zhou, X.; Huang, Y. Detection of early bruises in Gongcheng persimmon using hyperspectral imaging. Infrared Phys. Technol. 2022, 125, 104316. [Google Scholar] [CrossRef]
- Guan, X.; Li, T.; Zhou, F. Determination of bruise susceptibility of fresh corn to impact load by means of finite element method simulation. Postharvest Biol. Technol. 2023, 198, 112227. [Google Scholar] [CrossRef]
- Sun, H.; Wan, F.; Huang, Y.; Xu, Z.; Huang, X. Evaluation of a new method to assess blueberry bruising based on intracellular and extracellular water ratios. Sci. Hortic. 2024, 328, 112896. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, J.; Chen, L.; Chao, Y.; Zhu, W.; Liu, Z. A review of adsorption materials and their application of 3D printing technology in the separation process. Chem. Eng. J. 2023, 475, 146247. [Google Scholar] [CrossRef]
- Yadav, A.; Prakash, B.P.; Dileep, K.S.; Rao, S.A.; Kumar, G.V. An experimental examination on surface finish of FDM 3D printed parts. Mater. Today Proc. 2023, 115, 148–155. [Google Scholar] [CrossRef]
Material | Density (kg m−3) | Poisson Ratio | Elastic Modulus (MPa) | Yield Strength (MPa) | Tangent Modulus (MPa) |
---|---|---|---|---|---|
Peel | 1060 ± 14 | 0.32 ± 0.01 | 5.25 ± 0.47 | / | / |
Flesh | 980 ± 6 | 0.36 ± 0.02 | 1.93 ± 0.04 | 0.28 ± 0.01 | 1.64 ± 0.01 |
Kernel | 1250 ± 10 | 0.30 ± 0.01 | 26.45 ± 2.33 | / | / |
Steel (Q235) | 7850 | 0.30 | 200,000 | / | / |
Wood (oak) | 700 | 0.38 | / | / | / |
Rubber (SBR) | 1000 | 0.47 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, B.; Xu, C. Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats. Horticulturae 2025, 11, 440. https://doi.org/10.3390/horticulturae11040440
Liu C, Li B, Xu C. Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats. Horticulturae. 2025; 11(4):440. https://doi.org/10.3390/horticulturae11040440
Chicago/Turabian StyleLiu, Chunxiang, Baiqiu Li, and Changsu Xu. 2025. "Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats" Horticulturae 11, no. 4: 440. https://doi.org/10.3390/horticulturae11040440
APA StyleLiu, C., Li, B., & Xu, C. (2025). Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats. Horticulturae, 11(4), 440. https://doi.org/10.3390/horticulturae11040440