Seed Priming with PEG 6000 and Silicic Acid Enhances Drought Tolerance in Cowpea by Modulating Physiological Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Conduct of the Experiment
2.2. Application of Seed Priming (Step I)
2.3. Growing in a Fitotron-Type Growth Chamber (Step II)
2.4. Variables Analyzed
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Photosynthetic Rate
3.2. Transpiration Rate
3.3. Stomatal Conductance
3.4. Intercellular Carbon Concentration
3.5. Instantaneous Efficiency of Water Use
3.6. Instantaneous Carboxylation Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferguson, J.N. Climate change and abiotic stress mechanisms in plants. Emerg. Top. Life Sci. 2019, 3, 165–181. [Google Scholar] [CrossRef]
- Sousa, L.I.S.; Brito, A.E.A.; Souza, L.C.; Teixeira, K.B.S.; Nascimento, V.R.; Albuquerque, G.D.P.; Oliveira Neto, C.F.; Okumura, R.S.; Nogueira, G.A.S.; Freitas, J.M.N.; et al. Does silicon attenuate PEG 6000-induced water deficit in germination and growth initial the seedlings corn. Braz. J. Biol. 2023, 83, e265991. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants 2022, 12, e1583. [Google Scholar] [CrossRef]
- Brooker, R.; Brown, L.K.; George, T.S.; Pakeman, R.J.; Palmer, S.; Ramsay, L.; Schöb, C.; Schurch, N.; Wilkinson, M.J. Active and adaptive plasticity in a changing climate. Trends Plant Sci. 2022, 27, 717–728. [Google Scholar] [CrossRef]
- Martey, E.; Etwire, P.M.; Adogoba, D.S.; Tengey, T.K. Farmers’ preferences for climate-smart cowpea varieties: Implications for crop breeding programmes. Clim. Dev. 2021, 14, 105–120. [Google Scholar] [CrossRef]
- Collado, E.; Klug, T.V.; Artés-Hernández, F.; Aguayo, E.; Artés, F.; Fernández, J.A.; Gómez, P.A. Quality changes in nutritional traits of fresh-cut and then microwaved cowpea seeds and pods. Food Bioprocess. Technol. 2019, 12, 338–346. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Chukwu, C.T.; Uchegbu, N.N.; Olagunju, T.M.; Asadu, K.C.; Nwachukwu, M.C. Effects of pre-harvest synthetic chemicals on post-harvest bioactive profile and phytoconstituents of white cultivar of Vigna unguiculata grains. J. Food Process. Preserv. 2022, 46, e16187. [Google Scholar] [CrossRef]
- Guimarães, D.G.; Oliveira, L.M.; Guedes, M.O.; Ferreira, G.F.P.; Prado, T.R.; Amaral, C.L.F. Desempenho da cultivar de feijão-caupi BRS Novaera sob níveis de irrigação e adubação em ambiente protegido. Rev. Cult. Agron. 2020, 29, 61. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Charmarthi, S.; Togola, S.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed. 2019, 138, 415–424. [Google Scholar] [CrossRef]
- Saka, J.O.; Agbeleye, O.A.; Ayoola, O.T.; Lawal, B.O.; Adetumbi, J.A.; Oloyede-Kamiyo, Q.O. Assessment of varietal diversity and production systems of cowpea [Vigna unguiculata (L.) Walp.] in Southwest Nigeria. J. Agric. Rural Dev. Trop. Subtrop. 2019, 119, 43–52. [Google Scholar] [CrossRef]
- Jatana, B.S.; Grover, S.; Ram, H.; Baath, G.S. Seed priming: Molecular and physiological mechanisms underlying biotic and abiotic stress tolerance. Agronomy 2024, 14, 2901. [Google Scholar] [CrossRef]
- Diya, A.; Beena, R.; Jayalekshmy, V.G. Physiological, Biochemical and Molecular Mechanisms of Seed Priming: A Review. Legume Res. 2024, 47, 159–166. [Google Scholar] [CrossRef]
- Kakar, H.A.; Ullah, S.; Shah, W.; Ali, B.; Satti, S.Z.; Ullah, R.; Muhammad, Z.; Eldin, S.M.; Ali, I.; Alwahibi, M.S.; et al. Seed priming modulates physiological and agronomic attributes of maize (Zea mays L.) under induced polyethylene glycol osmotic stress. ACS Omega 2023, 8, 22788–22808. [Google Scholar] [CrossRef]
- Alzoubi, O. Silicon Seed priming as a strategy for enhancing salt tolerance in wheat (Triticum aestivum L.): Insights Into Physiol. Biochem. adaptations. Egypt. J. Bot. 2025, 65, 151–166. [Google Scholar] [CrossRef]
- Vanitha, C.; Kathiravan, M.; Umarani, R.; Sathiya, K.; Menaka, C.; Yuvaraj, M.; Cyriac, J. Seed priming with nano silica alleviates drought stress through regulating antioxidant defense system and osmotic adjustment in soybean (Glycine max L.). Silicon 2024, 16, 2157–2170. [Google Scholar] [CrossRef]
- Aboellail, G.; Mahdy, A.; Badr Eldin, R.M. Use of silicon nanoparticles as a seed-priming solution for increasing the germination and growth parameters of faba bean (Vicia faba L.) seedling under salinity stress. Alex. J. Agric. Sci. 2023, 68, 273–287. [Google Scholar] [CrossRef]
- Boucelha, L.; Djebbar, R.; Abrous-Belbachir, O. Vigna unguiculata seed priming is related to redox status of plumule, radicle and cotyledons. Funct. Plant Biol. 2019, 46, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Nabi, F.; Chaker-Haddadj, A.; Chebaani, M.; Ghalem, A.; Mebdoua, S.; Ounane, S.M. Influence of seed priming on early stages growth of cowpea [Vigna unguiculata (L.) Walp.] grown under salt stress conditions. Legume Res. Int. J. 2020, 43, 665–671. [Google Scholar] [CrossRef]
- Costa, A.A.; Paiva, E.P.; Torres, S.B.; Souza-Neta, M.L.; Pereira, K.T.O.; Leite, M.S.; Sá, F.V.S.; Benedito, C.P. Osmoprotection in Salvia hispanica L. seeds under water stress attenuators. Braz. J. Biol. 2022, 82, e233547. [Google Scholar] [CrossRef]
- Costa, P.S.; Ferraz, R.L.S.; Dantas-Neto, J.; Martins, V.D.; Viégas, P.R.A.; Meira, K.S.; Ndhlala, A.R.; Azevedo, C.A.V.; Melo, A.S. Seed priming with light quality and Cyperus rotundus L. extract modulate the germination and initial growth of Moringa oleifera Lam. seedlings. Braz. J. Biol. 2024, 84, e255836. [Google Scholar] [CrossRef]
- Vidak, M.; Lazarević, B.; Nekić, M.; Šatović, Z.; Carović-Stanko, K. effect of hormonal priming and osmopriming on germination of winter savory (Satureja montana L.) natural population under drought stress. Agronomy 2022, 12, 1288. [Google Scholar] [CrossRef]
- Alencar, R.S.; Dias, G.F.; Araujo, Y.M.L.; Oliveira-Viana, P.M.; Borborema, D.A.; Bonou, S.I.; Sales, J.R.S.; Cavalcante, I.E.; Barroso, V.S.F.; Schneider, R.; et al. Seed priming with residual silicon-glass microparticles mitigates water stress in cowpea. Sci. Hortic. 2024, 328, 112933. [Google Scholar] [CrossRef]
- Araújo, E.D.; Melo, A.S.; Rocha, M.D.S.; Carneiro, R.F.; Rocha, M.M. Germination and initial growth of cowpea cultivars under osmotic stress and salicylic acid. Rev. Caatinga 2018, 31, 80–89. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–609. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Braz. J. Biometr. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Ferreira, D.P.; Sousa, D.P.; Nunes, H.G.G.C.; Pinto, J.V.N.; Farias, V.D.S.; Costa, D.L.P.; Moura, V.B.; Teixeira, E.; Sousa, A.M.L.; Pinheiro, H.A.; et al. Cowpea ecophysiological responses to accumulated water deficiency during the reproductive phase in northeastern Pará, Brazil. Horticulturae 2021, 7, 116. [Google Scholar] [CrossRef]
- Oliveira, A.P.S.; Melo, Y.L.; Alencar, R.S.; Viégas, P.R.A.; Dias, G.F.; Ferraz, R.L.S.; Sá, F.V.S.; Dantas Neto, J.; Magalhães, I.D.; Gheyi, H.R.; et al. Osmoregulatory and antioxidants modulation by salicylic acid and methionine in cowpea plants under the water restriction. Plants 2023, 12, 1341. [Google Scholar] [CrossRef]
- Costa, D.L.P.; Takaki, A.Y.; Silva Farias, V.D.; Oliveira Teixeira, E.; Nunes, H.G.G.C.; Souza, P.J.O.P. Stomatal conductance of cowpea submitted to different hydric regimes in Castanhal, Pará, Brazil. J. Agric. Stud. 2019, 8, 138–149. [Google Scholar] [CrossRef]
- Mndela, M.; Tjelele, J.T.; Madakadze, I.C.; Mangwane, M.; Samuels, I.M.; Muller, F.; Pule, H.T. A global meta-analysis of woody plant responses to elevated CO2: Implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecol. Process. 2022, 11, 52. [Google Scholar] [CrossRef]
- Parveen, A.; Ashraf, M.A.; Hussain, I.; Parveen, S.; Rasheed, R.; Mahmood, Q. Promotion of growth and physiological characteristics in water-stressed Triticum aestivum in relation to foliar-application of salicylic acid. Water 2021, 13, 1316. [Google Scholar] [CrossRef]
- Costa, P.S.; Ferraz, R.L.S.; Dantas Neto, J.; Bonou, S.I.; Cavalcante, I.E.; Alencar, R.S.; Melo, Y.L.; Magalhães, I.D.; Ndhlala, A.R.; Schneider, R.; et al. Seed priming with glass waste microparticles and red light irradiation mitigates thermal and water stresses in seedlings of Moringa oleifera. Plants 2022, 11, 2510. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Ksiaa, M.; Zorrig, W.; Cabassa, C.; Abdelly, C.; Farissi, M.; Savoure, A. How Silicon Alleviates the Effect of Abiotic Stresses During Seed Germination: A Review. J. Plant Growth Regul. 2023, 42, 3323–3341. [Google Scholar] [CrossRef]
- Merwad, A.R.M.A.; Desoky, E.S.; Rady, M.M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 2018, 228, 132–144. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Zulfiqar, B.; Iqbal, R.; Muzamil, M.N.; Aslam, M.U.; Muhammad, F.; Amin, J.; Aslam, H.M.U.; Ibrahim, M.A.; Uzair, M.; et al. Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Sci. Rep. 2023, 13, 2700. [Google Scholar] [CrossRef]
- Lawson, T.; Milliken, A.L. Photosynthesis–beyond the leaf. New Phytol. 2023, 238, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.H.C.; Sousa, G.G.; Ceita, E.D.A.R.; Barbosa, A.S.; Goes, G.F.; Lacerda, C.F. Gas exchange of fava bean varieties under salinity conditions of irrigation water. Agrarian 2021, 14, 61–70. [Google Scholar] [CrossRef]
- Jacinto Júnior, S.G.; Moraes, J.G.L.; Silva, F.B.; Silva, B.N.; Sousa, G.G.; Oliveira, L.L.B.; Mesquita, R.O. Respostas fisiológicas de genótipos de fava (Phaseolus lunatus L.) submetidas ao estresse hídrico cultivadas no Estado do Ceará. Rev. Bras. Meteorol. 2019, 34, 413–422. [Google Scholar] [CrossRef]
- Jayawardhane, J.; Goyali, J.C.; Zafari, S.; Igamberdiev, A.U. The response of cowpea (Vigna unguiculata) plants to three abiotic stresses applied with increasing intensity: Hypoxia, salinity, and water deficit. Metabolites 2022, 12, 38. [Google Scholar] [CrossRef]
- Uddin, S.; Ullah, S.; Nafees, M. Effect of seed priming on growth and performance of Vigna radiata L. under induced drought stress. J. Agric. Food Res. 2021, 4, e100140. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.L.; Muneer, S.; Kim, Y.H.; Al-Rawahi, A.; Al-Harrasi, A. Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Front. Plant Sci. 2019, 10, 1429. [Google Scholar] [CrossRef]
- Özdemir, E. Silicon stimulated bioactive and physiological metabolisms of purple corn (Zea mays indentata L.) under deficit and well-watered conditions. 3 Biotech 2021, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Bourioug, M.; Ezzaza, K.; Bouabid, R.; Alaoui-Mhamdi, M.; Bungau, S.; Bougead, P.; Alaoui-Sossé, L.; Alaoui-Sossé, B.; Aleya, L. Influence of hydro-and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environ. Sci. Pollut. Res. 2020, 27, 13215–13226. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Choyal, P.; Mishra, U.N.; Dey, P.; Bose, B.; Gupta, N.K.; Mehta, B.K.; Kumar, P.; Pandey, S.; Chauhan, J.; et al. Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress 2022, 4, 100066. [Google Scholar] [CrossRef]
Identification | Seed Priming Combinations |
---|---|
Control | Ψw 0 MPa + 0 mg L−1 of Si + RL |
Seed priming 2 | Ψw 0 MPa + 200 mg L−1 of Si + RL |
Seed priming 3 | Ψw −0.4 MPa + 0 mg L−1 of Si + RL |
Seed priming 4 | Ψw −0.4 MPa + 200 mg L−1 of Si + RL |
Seed priming 5 | Ψw −0.8 MPa + 0 mg L−1 of Si + RL |
Seed priming 6 | Ψw −0.8 MPa + 200 mg L−1 of Si + RL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, G.F.; Alencar, R.S.d.; Viana, P.M.d.O.; Cavalcante, I.E.; Farias, E.S.D.d.; Bonou, S.I.; Sales, J.R.d.S.; Almeida, H.A.d.; Ferraz, R.L.d.S.; Lacerda, C.F.d.; et al. Seed Priming with PEG 6000 and Silicic Acid Enhances Drought Tolerance in Cowpea by Modulating Physiological Responses. Horticulturae 2025, 11, 438. https://doi.org/10.3390/horticulturae11040438
Dias GF, Alencar RSd, Viana PMdO, Cavalcante IE, Farias ESDd, Bonou SI, Sales JRdS, Almeida HAd, Ferraz RLdS, Lacerda CFd, et al. Seed Priming with PEG 6000 and Silicic Acid Enhances Drought Tolerance in Cowpea by Modulating Physiological Responses. Horticulturae. 2025; 11(4):438. https://doi.org/10.3390/horticulturae11040438
Chicago/Turabian StyleDias, Guilherme Félix, Rayanne Silva de Alencar, Priscylla Marques de Oliveira Viana, Igor Eneas Cavalcante, Emmanuelly Silva Dias de Farias, Semako Ibrahim Bonou, Jonnathan Richeds da Silva Sales, Hermes Alves de Almeida, Rener Luciano de Souza Ferraz, Claudivan Feitosa de Lacerda, and et al. 2025. "Seed Priming with PEG 6000 and Silicic Acid Enhances Drought Tolerance in Cowpea by Modulating Physiological Responses" Horticulturae 11, no. 4: 438. https://doi.org/10.3390/horticulturae11040438
APA StyleDias, G. F., Alencar, R. S. d., Viana, P. M. d. O., Cavalcante, I. E., Farias, E. S. D. d., Bonou, S. I., Sales, J. R. d. S., Almeida, H. A. d., Ferraz, R. L. d. S., Lacerda, C. F. d., Lopes, S. d. F., & Melo, A. S. d. (2025). Seed Priming with PEG 6000 and Silicic Acid Enhances Drought Tolerance in Cowpea by Modulating Physiological Responses. Horticulturae, 11(4), 438. https://doi.org/10.3390/horticulturae11040438