Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Review
2.2. Paper Selection
2.3. Data Extraction
2.4. Synthesis and Data Analysis
3. Mechanism of Action of VIUSID® Agro Constituent Amino Acids
4. Bibliography and Distribution Characterization by Year and Crop Group
5. Effects of the Application of an Amino Acid–Based Growth Promoter on Horticultural Crops
Crops | Mode or Interval of Application | Dose or Concentration | Morphophysiological and Production Responses | References |
---|---|---|---|---|
Solanum lycopersicum (L). | Foliar spraying at 7, 14, and 21 days. | 0.10, 0.20, and 0.30 L ha−1 | Productivity increased (fruits per plant, fruit mass and yield) | [52] |
L. sativa; B. vulgaris; R. sativus | Foliar spraying every 7 days. | 0.20, 0.50, 0.70, and 1.00 L ha−1 | Plant growth as leaf number, diameter and mass of commercial root and stem, and significantly increased yield. | [47] |
R. sativus | Foliar spraying every 7 days. | 0.20, 0.50, 0.70, and 1.00 L ha−1 | Improved morphological variables, growth rates, and performance. | [53] |
R. sativus | Foliar spraying every 7 days. | 0.20, 0.50, 0.70, and 1.00 L ha−1 | Improved morphological variables, growth rates, and performance. | [54] |
A. sativum | Foliar spraying every 7 days. | 0.25, 0.50, and 0.75 L ha−1 | Improved plant height, number of leaves, bulb diameter, and yield. | [45] |
A. sativum | Culture medium. | 0.5, 1.0, 1.5, 2.0, and 2.5 mL L−1 | Beneficial effects on in vitro propagation. | [46] |
Cucumis sativus (L.) | Foliar spraying every 7 days. | 1.0, 2.0, and 3.0 mL L−1 | Improved fruit per plant and mass, increased seed yield per area. | [55] |
Allium cepa (L.) | Foliar spraying every 7 days. | 30 mL ha−1 | Increased yield and post-harvest life. | [56] |
L. sativa | Foliar spraying every 7 days (starting 16 days after sowing). | 0.20, 0.40, 0.60-, and 0.80-mL L−1 | Under hydroponic conditions, plant growth, plant length, number of leaves, leaf area, and the fresh and dry mass of plants were benefited. | [48] |
A. sativum | Culture medium enrichment. | 1.0, 1.5, 2.0, and 2.5 mL L−1 | Under in vitro conditions it stimulated the development and formation of bulbs. | [51] |
Daucus carota (L.) | Foliar spraying every 7 days. | 0.10, 0.20, and 0.30 L ha−1 | Increased number of leaves, root diameter and length, greater mass accumulation (dry biomass), and yield. | [57] |
A. sativum | Foliar spraying after sprouting every 7 days. | 200 mL ha−1 | Increased yields and post-harvest life. | [58] |
B. vulgaris var. Cicla | Foliar spraying every 7 days. | 0.9, 1.2, and 1.5 mL L−1 | Beneficial effects on growth (number of leaves, stem diameter, fresh and dry mass of leaves) and yield. | [59] |
L. sativa | Foliar spraying every 7 days (three applications). | 0.15, 0.20, and 0.25 mL L−1 | The number of commercial leaves, root length, plant mass, and yield were improved. | [49] |
A. sativum | Foliar spraying every 15 days. | 0.25 L ha−1 | Net assimilation rate, relative growth rate, and leaf area ratio were enhanced. | [60] |
A. sativum | Culture medium enrichment. | 2.00 and 2.50 mL L−1 | Beneficial effects on induced mutagenesis in garlic (prebasic seed can be started directly in the acclimatization phase). | [61] |
B. vulgaris var. Cicla | Foliar spraying every 7 days. | 0.90, 1.20, and 1.50 mL L−1 | Improved growth (i.e., number of leaves, stem diameter, fresh and dry mass of leaves) and yields. | [62] |
D. carota | Foliar spraying every 7 days. | 0.10, 0.20, and 0.30 L ha−1 | Greater number of leaves, greater root diameter and length, greater accumulation of dry biomass, and greater yield. | [63] |
B. vulgaris | Foliar spraying every 7 days. | 0.30, 0.60, 0.90, and 1.20 mL L−1 | Improvement of morphological variables, growth rates, total chlorophyll, and yield. | [50] |
6. Effects of Applying an Amino Acid–Based Growth Promoter on Grain Production
Crops | Mode or Interval of Application | Dose or Concentration | Morphophysiological and Production Responses | References |
---|---|---|---|---|
P. vulgaris | Foliar spraying every 7, 14, and 21 days after sowing. | 0.10 L ha−1 | Increased growth, grains per pods, and grains per plants, as well as agricultural yield. | [72] |
Z. mays | Foliar spraying at 5, 7, and 10 days after sowing. | 0.96, 1.44, and 2.0 L ha−1 | Improved agronomic characteristics and the relationship between grain yield and different doses. | [66] |
P. vulgaris | Foliar spraying every 7 days during three physiological phases: growth, flowering, and fruiting. | 0.50, 0.80, and 1.0 L ha−1 | Favored plant growth and production through an increase in legumes per plant, increased the mass of grains, and favored production per plant and yield. | [73] |
P. vulgaris | Foliar spraying every 7 days | 0.50, 0.80, and 1.00 L ha−1 | Favored the growth of plants and production through an increase un legumes per plant and increased mass of grains, production per plant, and yield. | [74] |
Z. mays | Foliar spraying at 7, 10, and 14 days. | 0.96, 1.44, and 2.00 L ha−1 | The percentage of protein, fat, and carbohydrates and grain yield benefited. | [68] |
P. vulgaris | Foliar spraying every 7 days. | 0.5, 0.8, and 1.0 L ha−1 | Increased plant growth, increased pods per plant, and increased production. | [64] |
Oryza sativa (L.) | Foliar spraying at maximum tillering and rearing. | 150 mL every 0.42 ha−1 | Growth and production benefited. | [69] |
Z. mays | Foliar spraying at 15, 30, and 45 days after germination. | 0.10, 0.30, and 0.50 L ha−1 | Stimulated growth by 24.55% and increased yield by 45.06%. | [67] |
Glycine max (L.) | Foliar spraying weekly. | 0.40, 0.80, and 1.20 mL L−1 | Enhanced photosynthesis, transpiration, stomatal conductance, quantum and photochemical efficiency, relative water and proline content, Na+/K+ ratio, and dry mass accumulation and decreased lipid peroxidation. | [23] |
Triticum aestivum L. | Foliar spraying combined with compost and N fertilizer. | 0.75, 1.13, and 1.50 L ha−1 | Increased grain yield and quality. Increased grain content of proteins, carbohydrates, total sugars, phosphorous, K, calcium, copper, and zinc and reduced the need for chemical fertilizers. | [71] |
Z. mays (forage) | Foliar spraying combined with N levels. | 0.90 L ha−1 | Improved fresh biomass and yield. | [75] |
O. sativa | Foliar spraying at maximum tillering, panicle initiation, and grain formation. | 0.70, 1.40, and 2.10 mL L−1 | Benefited chlorophyll content, plant height, and grain yield per hectare. Higher relative efficiency of the area. | [76] |
P. vulgaris | Foliar spraying every 7, 14, and 21 days after planting. | 0.10 L ha−1 | Improved number of legumes per plant, production per plant, and agricultural yield. | [77] |
P. vulgaris | Foliar spraying every 10 days after germination. | 0.25, 0.50, and 0.75 L ha−1 | More legumes per plant, grains per plant, grains per legume, and agricultural yield. | [78] |
P. vulgaris | Foliar spraying at phenological phases V4, R5, and R7. | 0.50, 0.75, and 1.00 L ha−1 | Plant height and stem diameter were favored, as well as legumes per plant, grains per legume, seed mass, and yield. | [79] |
P. vulgaris | Foliar spraying weekly, starting at 10 days after germination. | 0.25, 0.50, and 0.75 L ha−1 | Improved the number of legumes per plant, grains per plant, and agricultural yield. | [65] |
S. indicum | Foliar spraying in vegetative stages V2–V6 and reproductive stages R6–R8. | 0.25 and 0.50 L ha−1 | Enhanced plant height, number of leaves per plant, leaf area index, flowering onset, capsules per plant, seed mass, and yield. | [22] |
A. hypogaea | Foliar spraying weekly at phenological phases V1, V2, V3, V4, V5, and R1. | 0.25 L ha−1 | Better plant length, number of stems per plant, chlorophyll content, fruit per plant, grains per plant, and yield. | [70] |
A. hypogaea | Foliar spraying in physiological phases demanding nutrition. | 0.25 L ha−1 | Enhanced plant growth, yield, and components. | [80] |
7. Effects of the Application of a Growth Promoter on Other Crops of Economic Interest
Crops | Mode or Interval of Application | Dose or Concentration | Morphophysiological and Production Responses | References |
---|---|---|---|---|
Colocasia esculenta (L.) Schott | Foliar spraying during the acclimatization phase. | 0.50, 0.70, and 1.00 L ha−1 | Increased growth, plant height, and root length, and provided better conditions in the acclimatization phase. | [88] |
N. tabacum | Foliar spraying every 7 days. | 0.2, 0.5, 0.7, and 1.0 L ha−1 | Seedling growth and quality increased, and growth rates benefited. | [86] |
Saccharum spp. | Daily for the first 3 days and then weekly. | 0.50 and 0.80 mL L−1 | Increased plant survival multiplication coefficient ex vitro regardless of the planting season and improved morphophysiological variables. In the rainy season, 0.50 mL L−1 had a greater effect on plant variables in vitro. | [82] |
Saccharum spp. | Immersion before planting the buds. | 0.80 mL L−1 | It benefited from the establishment of the sugarcane mother plant bank under semi-controlled conditions. | [89] |
Saccharum spp. | Two foliar sprays daily the first 3 days and then once a week (ex vitro acclimatization). | 0.80 mL L−1 | The survival percentage of seedlings, height, leaf length, total chlorophyll, and dry mass of the aerial part increased. | [90] |
Gossypium hirsutum (L.) cv. BRS 286 | Independent fertigation and in mixtures with biofertilizers. | 1 mL L−1 | Improved plant height, leaf area, number of flower buds, and bud mass. Also enhanced soil characteristics, macronutrients, cation exchange capacity, and saturation percentage. | [91] |
Coffea arabica L. cv. Caturra rojo-884 | Foliar spraying twice daily for the first 3 days and then once daily application from day 7 to day 90 after transplantation. | 0.50 and 0.80 mL L−1 | High survival rate in the in vitro propagation protocol via somatic embryogenesis compared to control. Morphophysiological variables were significantly improved with use of the product. | [84] |
Morus alba (L.); Cratylia argentea (Desv) O. Kuntze Tithonia diversifolia (Hemsl.) A. Gray | Immersion of the seed for 12 h. | 0.80 mL L−1 | Benefited bud sprouting and favored rooting. | [92] |
Cucumis melo (L.) | Seed immersion and foliar applications, fertigation. | 100, 150, and 200 mL ha−1 | Increased number of leaves, stem diameter, and fresh and dry mass of the aerial part, and the rate of CO2 assimilation and fruiting increased. | [93] |
Musa spp. | Foliar application during the first, third, and fifth weeks after transplantation. Ex vitro acclimatization. | 0.20 mL L−1 | Basal diameter (mm), height (cm), number of leaves, leaf area (cm2), radial length of roots emerging directly from the corm (cm), biomass of the leaf, and underground area improved with respect to the control treatment. | [94] |
C. arabica | Foliar spraying monthly from the appearance of the second to the fifth pair of leaves. A total fourth applications were performed. | 0, 0.20, 0.40, 0.60, 0.80, and 1.00 mL L−1 | Increase in stem length and diameter, dry mass, quality index, and leaf area of coffee seedlings. | [85] |
C. arabica | Seed immersion and foliar applications when seedlings grew the second and fourth pair of leaves. | 0.50 mL L−1 | Improved seed germination, seedling length, stem diameter, leaf area, total dry mass, and efficiency index. | [83] |
Zingiber officinale Roscoe | Two foliar applications were performed daily the first 3 days and then once a week. Acclimatization ex vitro up to 45 days. | 0.5- and 0.8-mL L−1 | Significantly increased survival. In addition, after 90 days of cultivation, the highest growth and quality of the plants was achieved. | [95] |
Saccharum spp. | Foliar spraying twice a day (9:00 am and 4:00 pm) for the first 3 days and, from 7 days, weekly application up to 45 days. | 0.50 and 0.80 mL L−1 | Increased plant height, stem diameter, total chlorophyll content, and fresh and dry mass of the plants. After 60 days of cultivation, acclimatized in vitro plants were obtained with a height of more than 15 cm. Also increased the survival of sugarcane plants by more than 20%. Tillering increased in vitro under ex vitro acclimatization conditions in both planting seasons. | [81] |
C. arabica | Foliar spraying once a month from the appearance of the second pair of levels to the fifth pair of leaves. Two applications to the second, fourth, and sixth pair of leaves and three applications to the third and fifth pairs of leaves. | 0.60 mL L−1 | Favored morpho-agronomic characteristics and efficiency. | [96] |
Moringa oleifera L. | Inoculation of the seeds with single and mixed bioproducts. | 1.00 mL L−1 | Increased germination speed and uniformity of seed vigor. | [97] |
Acacia mangium Willd. | Weekly foliar spraying of seedlings (nurseries). | 1.20, 1.50, and 1.80 mL L−1 | Increased plant length and stem diameter, improved the Dickson Quality Index (DCI), improved growth rates, and reduced time in nursery. | [87] |
8. Effects of Biostimulant Application on Crops Subjected to Salinity Stress
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
N | Nitrogen |
K+ | Potassium |
Na+ | Sodium |
References
- Filho, W.L.; Setti, A.F.F.; Azeiteiro, U.M.; Lokupitiya, E.; Donkor, F.K.; Etim, N.A.N.A.; Matandirotya, N.; Olooto, F.M.; Sharifi, A.; Nagy, G.J.; et al. An overview of the interactions between food production and climate change. Sci. Total Environ. 2022, 838, 156438. [Google Scholar] [CrossRef] [PubMed]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Muhammad, Z. Salinity: A major agricultural problem-causes, impacts on crop productivity and management strategies. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 83–99. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef]
- Wani, S.H.; Mohan, A.; Singh, G.P. Physiological, Molecular, and Genetic Perspectives of Wheat Improvement; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Ayyildiz, M.; Erdal, G. The relationship between carbon dioxide emission and crop and livestock production indexes: A dynamic common correlated effects approach. Environ. Sci. Pollut. Res. 2021, 28, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef]
- Peña-Calzada, K.; Toledo, C.; Garciga, J.P.; Barrera-Cardoso, E.L.; Iriondo-Pérez, M.E.; Sotolongo-Hernández, E.; Scognamiglio, A. Advances and challenges of agrivoltaic in the americas: A look at its current situation. Agrofor. Syst. 2025, 99, 8. [Google Scholar] [CrossRef]
- Ajila-Celi, G.E.; Lata-Tenesaca, L.F.; Peña-Calzada, K.; de Cassia Alves, R.; da Cruz, M.C.P.; Junior, J.S.P.; Carrega, W.C.; Gratão, P.L. Exogenous ascorbic acid mitigates salt-induced damage in soybean by modulating photosynthesis, antioxidant defense, and ionic homeostasis. Acta Physiol. Plant. 2025, 47, 26. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Zhang, Y.; Mu, Y.; Li, Y.; Nie, L. Regulation of 2-Acetyl-1-Pyrroline (2-AP) biosynthesis and grain quality in fragrant rice under salt stress. Field Crop Res. 2025, 322, 109747. [Google Scholar] [CrossRef]
- Olivera Viciedo, D.; de Mello Prado, R.; Martinez, C.A.; Habermann, E.; Branco, R.B.F.; de Cássia Piccolo, M.; Calero Hurtado, A.; Peña Calzada, K.; Lata Tenesaca, L.F. Water stress and warming impact nutrient use efficiency of mombasa grass (Megathyrsus Maximus) in tropical conditions. J. Agron. Crop Sci. 2021, 207, 128–138. [Google Scholar] [CrossRef]
- Hurtado, A.C.; Chiconato, D.A.; Prado, R.d.M.; Sousa, G.d.S.S., Jr.; Gratão, P.L.; Felisberto, G.; Viciedo, D.O.; dos Santos, D.M.M. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol. Environ. Saf. 2020, 203, 110964. [Google Scholar] [CrossRef]
- Olivera-Viciedo, D.; Salas Aguilar, D.; de Mello Prado, R.; Peña Calzada, K.; Calero Hurtado, A.; de Cássia Piccolo, M.; Bomfim Soares, M.; Lizcano Toledo, R.; Alves, G.R.; Ferreira, D.; et al. Silicon-mediated adjustments in C:N:P ratios for improved beetroot yield under ammonium-induced stress. Agronomy 2024, 14, 1104. [Google Scholar] [CrossRef]
- Funes Aguilar, F. Reseña sobre el estado actual de la agroecología en Cuba. Agroecología 2017, 12, 7–18. [Google Scholar]
- Al-Karaki, G.N.; Othman, Y. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South Afr. J. Bot. 2023, 154, 225–231. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Mandal, S.; Anand, U.; López-Bucio, J.; Radha; Kumar, M.; Lal, M.K.; Tiwari, R.K.; Dey, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environ. Res. 2023, 233, 116357. [Google Scholar] [CrossRef] [PubMed]
- Zamljen, T.; Medic, A.; Veberic, R.; Hudina, M.; Grohar, M.C.; Slatnar, A. Influence of hydrolyzed animal protein-based biostimulant on primary, soluble and volatile secondary metabolism of genovese and greek-type basil grown under salt stress. Sci. Hortic. 2023, 319, 112178. [Google Scholar] [CrossRef]
- Li, G.; Wei, J.; Li, C.; Fu, K.; Li, C.; Li, C. Amino acid metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. Environ. Exp. Bot. 2024, 218, 105577. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Priyanka, B.; Ramesh, T.; Rathika, S.; Balasubramaniam, P. Foliar application of fish amino acid and egg amino acid to improve the physiological parameters of rice. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3005–3009. [Google Scholar] [CrossRef]
- Pérez Díaz, Y.; Calero Hurtado, A.; Peña Calzada, K.; Gutiérrez Díaz, J.L.; Rodríguez González, V. Densidades de plantas y aplicación foliar de aminoácidos incrementan el rendimiento del ajonjolí. Temas Agrar. 2024, 29, 100–112. [Google Scholar] [CrossRef]
- Peña Calzada, K.; Olivera Viciedo, D.; Habermann, E.; Calero Hurtado, A.; Lupino Gratão, P.; De Mello Prado, R.; Lata-Tenesaca, L.F.; Martinez, C.A.; Ajila Celi, G.E.; Rodríguez, J.C. Exogenous application of amino acids mitigates the deleterious effects of salt stress on soybean plants. Agronomy 2022, 12, 2014. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liu, W.; Ji, J.; Zhang, K.; Li, H.; Feng, Y.; Xue, J.; Ji, C.; Zhang, L.; et al. Mechanisms of branched chain amino acids promoting growth and lipid accumulation in camelina sativa seedlings under drought and salt stress. Sustain. Energy Technol. Assess. 2025, 75, 104201. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- Pickering, C.; Grignon, J.; Steven, R.; Guitart, D.; Byrne, J. Publishing not perishing: How research students transition from novice to knowledgeable using systematic quantitative literature reviews. Stud. High. Educ. 2014, 40, 1756–1769. [Google Scholar] [CrossRef]
- Sanabria, A.J.; Rigau, D.; Rotaeche, R.; Selva, A.; Marzo-Castillejo, M.; Alonso-Coello, P. Sistema GRADE: Metodología para la realización de recomendaciones para la práctica clínica. Aten. Primaria 2015, 47, 48–55. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Sadak, M.S.; Sekara, A.; Al-ashkar, I.; Habib-ur-Rahman, M.; Skalicky, M.; Brestic, M.; Kumar, A.; Sabagh, A.E.; Abdelhamid, M.T. Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat. Front. Plant Sci. 2022, 13, 987641. [Google Scholar] [CrossRef]
- Sohail, M.; Wills, R.B.H.; Bowyer, M.C.; Pristijono, P. Multiple amino acids inhibit postharvest senescence of broccoli. Horticulturae 2021, 7, 71. [Google Scholar] [CrossRef]
- Utgés-Minguell, L.; Sierras-Serra, N.; Marín, C.; Pintó-Marijuan, M. Enhanced production by terra-sorb® symbiotic biostimulant in two model species under nitrogen stress. Plants 2025, 14, 1087. [Google Scholar] [CrossRef]
- El Sayed, S.; Bakry, A.B.; Nofal, O.A.; Horish, M.A.A. Effectiveness of biofertilizers foliar application on yield and quality traits of flax (Linum usitatissimum L.). Oil Crop Sci. 2024, 9, 91–101. [Google Scholar] [CrossRef]
- Han, M.; Zhang, C.; Suglo, P.; Sun, S.; Wang, M.; Su, T. L-aspartate: An essential metabolite for plant growth and stress acclimation. Molecules 2021, 26, 1887. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Saleh, A.A.; Ali, M.M.; Sas-Paszt, L.; Abada, H.S.; Mosa, W.F.A. Growth performance of guava trees after the exogenous application of amino acids glutamic acid, arginine, and glycine. Horticulturae 2022, 8, 1110. [Google Scholar] [CrossRef]
- Acheampong, A.; Wang, R.; Elsherbiny, S.M.; Bondzie-Quaye, P.; Huang, Q. Exogenous arginine promotes the coproduction of biomass and astaxanthin under high-light conditions in Haematococcus pluvialis. Bioresour. Technol. 2024, 393, 130001. [Google Scholar] [CrossRef] [PubMed]
- Malekzadeh, P.; Hatamnia, A.A.; Tiznado-Hernández, M.E. Arginine catabolism induced by exogenous arginine treatment reduces the loss of green color rate in broccoli florets. Physiol. Mol. Plant Pathol. 2023, 124, 101973. [Google Scholar] [CrossRef]
- Zargar Shooshtari, F.; Souri, M.K.; Hasandokht, M.R.; Jari, S.K. Glycine mitigates fertilizer requirements of agricultural crops: Case study with cucumber as a high fertilizer demanding crop. Chem. Biol. Technol. Agric. 2020, 7, 19. [Google Scholar] [CrossRef]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agric. 2019, 4, 164–172. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Y.; Yi, W.; Zhang, S.; Zhang, Q.; Xing, P.; Tang, X. Foliar application of phenylalanine, tryptophan, and tyrosine in fragrant rice production: Aroma, yield, grain quality, and economic return. Eur. J. Agron. 2024, 155, 127117. [Google Scholar] [CrossRef]
- Mustafa, A.; Imran, M.; Ashraf, M.; Mahmood, K. Perspectives of using L-tryptophan for Improving productivity of agricultural crops: A review. Pedosphere 2018, 28, 16–34. [Google Scholar] [CrossRef]
- Sanada, A.; Agehara, S. Characterizing root morphological responses to exogenous tryptophan in soybean (Glycine max) seedlings using a scanner-based rhizotron system. Plants 2023, 12, 186. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.; Kong, X.; Chen, Y.; Li, J. Exogenous tryptophan application improves cadmium tolerance and inhibits cadmium upward transport in broccoli (Brassica oleracea Var. Italica). Front. Plant Sci. 2022, 13, 969675. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Zahra, N.; Tahir, H.; Hafeez, M.B.; Abbas, W.; Raza, A. Modulation of growth and biochemical responses in spinach (Spinacia Oleracea L.) through foliar application of some amino acids under drought conditions. South Afr. J. Bot. 2023, 158, 243–253. [Google Scholar] [CrossRef]
- Carmona, L.M.; Melendrez, J.F. Efecto de dosis de VIUSID agro en el cultivo del ajo (Allium sativum L.) en el municipio Taguasco. InfoCiencia 2019, 23, 60–70. [Google Scholar]
- Guerra, D.G.; Juan, S.; Morales, R.; Dominguez, K. VIUSID Agro®en la propagación in vitro del ajo (Allium satium L.). Rev. Agric. Trop. 2019, 5, 34–44. [Google Scholar]
- Peña Calzada, K.; Rodríguez, J.C.; Olivera, D.; Meléndrez, J.; Rodríguez, L.; García, R.; Rodríguez, L. Effects of a growth promoter on different vegetable crops. Int. J. Dev. Res. 2017, 7, 11737–11743. [Google Scholar]
- Pordeus, A.V.; Moraes, L.D.A.; Medeiros, D.D.O.; Benitez, L.C. Growth response of hydroponic Lactuca sativa L. to application of fertilizer organic VIUSID Agro®. J. Agric. Sci. 2020, 12, 268. [Google Scholar] [CrossRef]
- Pérez-Fernández, N.; Gutiérrez-Gevara, O.; Fonseca-Pérez, M. Efecto de VIUSID® agro en el cultivo de lechuga (Lactuca sativa, L.) en condiciones de organoponía. Cultiv. Trop. 2022, 43, 819–4087. [Google Scholar]
- Peña Calzada, K.; Calero Hurtado, A.; Peistrup, V.; Mühlmann, I.; Rodríguez Miranda, D.; Rodríguez Coca, L.I.; Rodríguez González, M.; Rodríguez Fernández, J.C. Respuestas fisiológicas y productivas de plantas de remolacha tratadas con una solución de aminoácidos. Temas Agrar. 2024, 29, 113–125. [Google Scholar] [CrossRef]
- Galvez-Guerra, D.; Juan, S.; Morales, R.; Vázquez, D.; Medina, A.J.; Kosky, R.G.; Pérez, P.; Calzada, K.P.; Kukurtcu, B. Somatic embryogenesis and regeneration of plants in blanco criollo garlic (Allium sativum L.) cultivar. IOSR J. Biotechnol. Biochem. 2021, 7, 14–23. [Google Scholar]
- Peña, K.; Rodríguez, J.C.; Meléndrez, J.F. El VIUSID agro una alternativa en el incremento de la producción de tomate (Solanum lycopersicum L.). Rev. Caribeña Cienc. Soc. 2016, 15, 1–10. [Google Scholar]
- Peña-Calzada, K.; Rodríguez, J.C.; Viciedo, D.O.; Hurtado, A.C.; Meléndrez, J.F.; Valdez, R.G. Efecto de dosis de VIUSID Agro® en el comportamiento morfo-fisiológico y productivo del rábano (Raphanus sativus L.). Rev. La Fac. Agrononomia 2018, 35, 293–317. [Google Scholar]
- Peña Calzada, K.; Carlos Rodríguez, J.; León, N.; Valle, C.D.; Cristo, M. Efecto de un promotor del crecimiento en características morfofisiológicas y productivas del rábano (Raphanus sativus L.). Av. Investig. Agropecu. 2018, 22, 29–45. [Google Scholar]
- Maza, N.E.; Álvarez, M.W.C.; Alvarado, C.M.R.; Hernández, G.T.; Instituto, A.B.A. Influencia de VIUSID agro en la producción de semillas de pepino (Cucumis sativus L.). Agric. Trop. 2019, 5, 1–11. [Google Scholar]
- Vazquez, D.; Galvez; Morales; Gómez. Robaina efecto del viusid Agro® en la producción y conservación postcosecha en el cultivo de la cebolla (Allium cepa L.) agricultura tropical. Rev. Agric. Trop. 2020, 6, 48–53. [Google Scholar]
- Cabrera-Julien, N.; Peña-Calzada, K. Efecto de dosis de viusid agro en el cultivo de la zanahoria (Daucus carota L.). Rev. Infociencias 2021, 25, 48–58. [Google Scholar]
- Galvez Guerra, D.; Juan, S.; Morales, R.; Domínguez Vázquez, K.; Beovides García, Y.; Gómez Kosky, R.; Posada Pérez, L.; Peña Calzada, K.; Robaina Jiménez, A.; Daniels, D.; et al. Impact of the use of viusid Agro® on the production and post-harvest conservation of garlic (Allium sativum L.). J. Agric. Vet. Sci. 2021, 14, 9–12. [Google Scholar]
- Rodríguez Coca, L.I.; Peña-Calzada, K. Efecto del VIUSID agro en el comportamiento morfofisiológico de la remolacha (Beta Vulgaris L.). Rev. Infociencia 2021, 25, 23–35. [Google Scholar]
- Rodríguez-Coca, L.I.; García González, M.T.; Rodríguez, C.M.C. Comportamiento fisiológico del ajo (Allium sativum L.) bajo el efecto de bioestimulantes de usos agrícolas. Rev. Infociencia 2022, 26, 36–48. [Google Scholar]
- Galvez Guerra, D.; Juan, S.; Morales, R.; Domínguez Vázquez, K.; Medina, A.J.; Gómez Kosky, R.; Posada Pérez, L.; Calzada, K.P.; Kukurtcu, B. Induced mutagenesis in garlic cloves (Allium sativum l.) in the cultivar “blanco criollo”. J. Biotechnol. Immunol. 2022, 4. [Google Scholar] [CrossRef]
- Peña, K.; Rodríguez, L.; Olivera-Viciedo, D.; Martínez, N.; Estrada, Y. Aplicación foliar de solución de aminoácidos beneficia respuesta morfológica y productiva de la acelga. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible. Aportes Desde la Universidad de Sancti Spirítus José Martí Pérez; Valdivia, Y.C., Peña, C.K., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2023; pp. 164–175. ISBN 978-959-312-608-3. [Google Scholar]
- Julien, N.C.; Castro, M.L.; Jiménez, Y.A.; Pérez, B. Efecto de Diferentes Dosis de VIUSID Agro En La Respuesta Morfológica y Productiva de La Zanahoria. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible: Aportes desde la Universidad de Sancti Spíritus José Marí Pérez; Valdivia, Y.C., Peña, C.K., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2023; pp. 176–187. ISBN 978-959-312-608-3. [Google Scholar]
- Valle, C.D. Efecto Del Bioestimulante VIUSID Agro En El Comportamiento Productivo De Cuatro Variedades De Frijol (Phaseolus Vulgaris L.); Española, E.A., Ed.; Editorial Académica Española: London, UK, 2020; p. 56. ISBN 6202810955. [Google Scholar]
- Melendrez, J.F.; Peña, K.; Rdriguez Miranda, D. Efectos del VIUSID agro en la respuesta agroporductiva del frijol sin aplicación de fertilizantes. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible II; Valdivia, Y.C., Peña, K., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2024; pp. 145–157. ISBN 978-959-312-650-2. [Google Scholar]
- Mohamed, M.; Atta, M.; Abdel-lattif, H.M. Yield and agronomic traits. Biosci. Res. 2017, 14, 604–615. [Google Scholar]
- Peña, K.; Calero-Hurtado, A.; Olivera-Viciedo, D.; Rodríguez, J.C.; Fernandes, T.; García, R.; Ajila, G. Agroproductive response of Zea mayz L. with the foliar application of VIUSID Agro®. Rev. Fac. Agron. Univ. Zulia 2021, 38, 573–584. [Google Scholar] [CrossRef]
- Absy, R.; Abdel-Lattif, H.; Atta, M. Effect of growth promoter supplement on yield and grain quality of maize (Zea mays L.). Egypt. J. Agron. 2018, 40, 165–180. [Google Scholar] [CrossRef]
- Talha, I.A.; Gomma, M.A.; Nada, A.M.; Tabl, D.M. Enhancement the productivity of some rice varieties by using some growth promoter supplement. Alex. Sci. Exch. J. 2020, 41, 553–572. [Google Scholar] [CrossRef]
- González, Y.A.; Pérez Díaz, Y.; Calero Hurtado, A. Prácticas agrícolas sostenibles que benefician la productividad del maní. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible II; Valdivia, Y.C., Peña Calzada, K., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2024; pp. 97–114. ISBN 978-959-312-650-2. [Google Scholar]
- Abbas, M.; Abdel-Lattif, H.; Badawy, R.; El-Wahab, M.A.; Shahba, M. Compost and biostimulants versus mineral nitrogen on productivity and grain quality of two wheat cultivars. Agriculture 2022, 12, 699. [Google Scholar] [CrossRef]
- Peña Calzada, K.; Carlos Rodríguez Fernández, J.; Sotolongo, M.S. Comportamiento productivo del frijol (Phaseolus vulgaris L.) ante la aplicación de un promotor del crecimiento activado molecularmente. Avances 2015, 17, 327–337. [Google Scholar]
- Peña Calzada, K.; Rodríguez Fernández, J.C.; Santana Sotolongo, M.; Viciedo, D.O.; Valle Expósito, C.D.; Hernández, R.D. Effects of a growth promoter on bean (Phaseolus vulgaris L.) crops in Sancti Spíritus province, Cuba. Acta Agron. 2017, 66, 360–366. [Google Scholar] [CrossRef]
- Peña, K.; Olivera, D.; León, N.; Rodríguez, J.; Lugones, Y. Effect of a growth promoter in the production behavior of bean (Phaseolus vulgaris L.). Av. En Investig. Agropecu. 2017, 21, 35–45. [Google Scholar]
- Van Nguyen, L.; Nguyen, D.A.; Dinh, H.T.; Rumanzi, M.S.; Nguyen, V.L. Effect of growth promoter VIUSID® on performance of fodder maize under different levels of nitrogen. Vegetos 2022, 35, 558–563. [Google Scholar] [CrossRef]
- Hawash, A.; Abo-yousef, M. Improvement the productivity of some rice varieties (Oryza sativa L.) by using growth regulator foliar application. Al-Azhar J. Agric. Res. 2023, 48, 83–96. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; Cabrera, L.R.; Madrigal, Y.E. Respuesta productiva del frijol ante la aplicación de un promotor del crecimiento activado molecularmente. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible. Aportes Desde la Universidad de Sancti Spirítus José Martí Pérez; Valdivia, Y.C., Kolima, P., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2023; pp. 199–210. [Google Scholar]
- Melendrez, J.F.; Peña Calzada, K.; Gómez, L.M.C. Efecto del VIUSID agro en la respuesta agroproductiva del frijol. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible II; Valdivia, Y.C., Peña, K., Eds.; Editorial Feijóo: Sancti Spíritus Cuba, 2023; pp. 188–198. ISBN 978-959-312-608-3. [Google Scholar]
- Betancourt, V.M.H.; Hernández, O.H.; Chaviano, G.F. Efecto de tres dosis de VIUSID agro en el comportamiento productivo del frijol (Phasoelus vulgaris L.) variedad buenaventura. In Soberanía Alimentaria y Desarrollo Agropecuario y Forestal Sostenible II; Valdivia, Y.C., Peña Calzada, K., Eds.; Editorial Feijóo: Sancti Spíritus, Cuba, 2024; pp. 158–170. ISBN 978-959-312-650-2. [Google Scholar]
- Acevedo González, Y.; Pérez Díaz, Y.; Calero Hurtado, A.; Peña Calzada, K. Densidades de plantas y fertilizantes en la producción sostenible de maní. Rev. Fac. Cienc. Univ. Nac. Colomb. 2025, 14, 23–38. [Google Scholar] [CrossRef]
- Bernal-villegas, A.; Núñez-jaramillo, D.; Toledo-rodríguez, E.A.; Delgado-mora, I.; Gómez-kosky, R. Empleo de bioproductos en la aclimatización ex vitro de la caña de azúcar (Saccharum Spp.). Icidca Sobre Los Deriv. Caña Azúcar 2024, 58, 22–30. [Google Scholar]
- Gómez-Kosky, R.; Jaramillo, D.N.; Esquiro, C.R.; Villegas, A.B.; Calimano, M.B.; Armas, P.M.; Ferreiro, J.Á.; Pineda, E.; Kukurtcu, B.; Daniels, D.D. Effect of VIUSID Agro® and FitoMas-E® on the ex vitro acclimatization of sugarcane plants (Saccharum Spp.) cultivar C90-469. Sugar Tech 2020, 22, 42–51. [Google Scholar] [CrossRef]
- Díaz Medina, A.; Carrillo González, A.; Suárez Pérez, C. Efecto de bioproductos sobre el desarrollo de posturas de café en vivero. Rev. Mex. Cienc. Agrícolas 2023, 14, 495–505. [Google Scholar] [CrossRef]
- Posada-Pérez, L.; Barbón Rodríguez, R.; Capote Pérez, A.; Pérez Pérez, A.; Padrón Montesino, Y.; Kukurtcu, B.; Dion, D.D.; Guillermo, R.; Gómez-Kosky, R. Effect of VIUSID-agro on the conversion of somatic embryos of coffee (Coffea arabica L.) cv. red caturra rojo-884. Afr. J. Biotechnol. 2021, 20, 229–236. [Google Scholar] [CrossRef]
- Bustamante González, C.A.; Vázquez-Osorio, Y.; Fernández-Rosales, I.; Ferrás-Negrín, Y. Effects of different VIUSID Agro® concentrations on the growth of Coffea arabica L. seedlings. Agro Product. 2023, 7, 79–87. [Google Scholar] [CrossRef]
- Peña, K.; Rodríguez, J.C.; Olivera, D.; Calero, A.; Dorta, R.; Meléndrez, J.; Veloso, F.Y.; Kukurtcu, B. Effect of the growth promoter VIUSID agro on the morphophysiological and productive performance of tobacco growth (Nicotiana tabacum L.). J. Agric. Sci. Technol. B 2018, 8, 157–167. [Google Scholar] [CrossRef]
- Peña Calzada, K.; Trocones Boggiano, A.; Delgado Fernández, L.; Martínez Alonso, Y.; Martín Conesa, Y.; Calero Hurtado, A.; Carlos Rodríguez Fernández, J. Growth promoter in Acacia mangium willd. Improves quality and reduces permanence in nursery. Rev. Mex. Cienc. For. 2024, 15, 52–76. [Google Scholar] [CrossRef]
- Beovides García, Y.; Pérez, D.R.; Peña, K.C.; Diosdada Guerra, G. Efecto del VIUSID Agro® en plantas de malanga colocasia ‘INIVIT Mc-2012’ producidas in vitro durante la fase de aclimatización. Agric. Trop. 2017, 3, 57–61. [Google Scholar]
- Bernal Villegas, A.; Armas, P.M.; Jaramillo, D.N.; Rodríguez, E.A.T. Establecimiento de un banco de plantas madre de caña de azúcar en condiciones semicontroladas para la propagación in vitro. Biotecnol. Veg. 2021, 21, 53–61. [Google Scholar]
- Becerra, B.H.; Gómez-kosky, R.; Villegas, A.B.; Alejandro, E.; Rodríguez, T.; Ferreiro, J.A.; Calimano, M.B. Efecto del bioestimulante Enerplant® en la aclimatizaciónex vitro deplantas propagadasin vitro de caña de azúcar cv. C97-445. Biotecnol. Veg. 2021, 21, 119–127. [Google Scholar]
- Magna, M.; Nunes, M.; De Cassia, R.; Saboya, C.; Grande, C. Crescimento, produtividade e fertilidade do solo na cultura do algodoeiro sob o uso de biofertilizantes e adubação NPK. Rev. Agroecol. No Semiárido 2021, 5, 1–15. [Google Scholar]
- Gómez-Kosky, R.; Delgado-Mora, I.; del Carmen, H.L.M.; Toledo-Rodriguez, E.A. Desarrollo de estrategias para la propagación de especies de plantas proteicas y forrajeras. Icidca Sobre Deriv. Caña Azúcar 2022, 56, 22–29. [Google Scholar]
- Júnio, E.; Caetano, M.; Costa, C.C.; Batista, J.D.; Armando, E.; Arielly, C.; De Sousa, A.; De Medeiros, A.C.; Maracajá, P.B. Aplicação de bioestimulante e número de frutos sobre a alocação de fitomassa em meloeiro. Rev. Bras. Gestão Ambient. 2022, 16, 27–36. [Google Scholar]
- Romero, L.M.; Estrada, N.M.; Gálvez, J.R.; Concepción, O.M.; Chávez, E.; Kukurtcu, B. Effect of viusid Agro® on the growth of banana (Musa Spp.) seedlings under nursery conditions. Int. J. Agric. Res. Environ. Sci. 2023, 4, 4. [Google Scholar] [CrossRef]
- Posada-Pérez, L.; Padrón, Y.; La, M.; Gómez-Kosky, R.; Roque, B.; Rivero, L. Efecto de VIUSID-agro en la aclimatización ex vitro de zingiber officinale. Biotecnol. Veg. 2024, 24, 10–24. [Google Scholar]
- Bustamante González, C.A.; Vázquez-Osorio, Y.; Álvarez-Morales, R. Effect of the application timing of VIUSID Agro® on the growth of Coffea arabica L. seedlings. Agro Product. 2024, 12, 173–179. [Google Scholar] [CrossRef]
- Bequer, C.; Puertas, A. Germination of Moringa oleifera L. with the application of Ecomic® and two synthetic biostimulants under controlled conditions. Cuba. J. Agric. Sci. 2024, 58, 1–12. [Google Scholar]
- Sousa, C.A.; Armando, E.C.; Cavalcanti, C.C.; Caetano, E.J.; Sousa, A.T.; Sena, A.C. Acúmulo de Biomassa Em Plantas de Alface Em Funçao Da Salinidade Do Solo e Aplicação de Bioestimulante. Rev. Craibeira Agroecol. 2019, 4, 58. [Google Scholar]
- Sousa, C.A.A.; Caciana, C.; Santos, J.B.; Medeiros, A.C. Use of biostimulant in the initial development of watermelon in saline soil. Res. Soc. Dev. 2020, 9, e92996837. [Google Scholar] [CrossRef]
- Abbas, M.S.; Badawy, R.A.; Abdel-Lattif, H.M.; El-Shabrawi, H.M. Synergistic effect of organic amendments and biostimulants on faba bean grown under sandy soil conditions. Sci. Agric. 2022, 79, e20200300. [Google Scholar] [CrossRef]
- de Aquino Gomes, M.M.; Costa, C.C.; dos Santos Pereira, U.; de Sousa, M.E.; de Sousa, C.A.A.; Lopes, K.P.; Diniz, G.L.; da Silva, G.C. da Foliar biostimulant application on the growth and development of citrullus lanatus seedlings grown in salinized substrate. Cad. Pedagógico 2024, 21, e8350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Calzada, K.; Calero-Hurtado, A.; Meléndrez-Rodríguez, J.F.; Rodríguez-Fernández, J.C.; Gutiérrez-Cádenas, O.G.; García-González, M.T.; Madrigal-Carmona, L.; Jiménez-Medina, A. Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review. Horticulturae 2025, 11, 407. https://doi.org/10.3390/horticulturae11040407
Peña-Calzada K, Calero-Hurtado A, Meléndrez-Rodríguez JF, Rodríguez-Fernández JC, Gutiérrez-Cádenas OG, García-González MT, Madrigal-Carmona L, Jiménez-Medina A. Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review. Horticulturae. 2025; 11(4):407. https://doi.org/10.3390/horticulturae11040407
Chicago/Turabian StylePeña-Calzada, Kolima, Alexander Calero-Hurtado, Jorge Félix Meléndrez-Rodríguez, Juan Carlos Rodríguez-Fernández, Oscar Giovanni Gutiérrez-Cádenas, Marcos Tulio García-González, Lourdes Madrigal-Carmona, and Alay Jiménez-Medina. 2025. "Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review" Horticulturae 11, no. 4: 407. https://doi.org/10.3390/horticulturae11040407
APA StylePeña-Calzada, K., Calero-Hurtado, A., Meléndrez-Rodríguez, J. F., Rodríguez-Fernández, J. C., Gutiérrez-Cádenas, O. G., García-González, M. T., Madrigal-Carmona, L., & Jiménez-Medina, A. (2025). Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review. Horticulturae, 11(4), 407. https://doi.org/10.3390/horticulturae11040407