Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemical Reagents
2.2. Fresh-Cut Lotus Root Pretreatment
2.3. Surface Color Test
2.4. Browning Degree Test
2.5. Hardness Test
2.6. Weight Loss Test
2.7. Total Soluble Solid (TSS) Test
2.8. Vit. C Content Test
2.9. Polyphenol Content Test
2.10. Polyphenol Oxidase (PPO), Peroxidase (POD), L-Phenylalanin Ammonia Lyase (PAL), and Malondialdehyde (MDA) Activity Tests
2.11. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.12. Data Analysis
3. Results and Discussion
3.1. Effect of SMF on Surface Color, Browning Degree, Hardness, and Weight Loss of Fresh-Cut Lotus Root
3.2. Effect of SMF on TSS Content, Vit. C Content, and Polyphenol Content of Fresh-Cut Lotus Root
3.3. Effect of SMF on Oxidase Activity (PPO, POD, PAL, and MDA Activity) of Fresh-Cut Lotus Root
3.4. Effect of SMF on Flavor Compounds of Fresh-Cut Lotus Root
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, C.L.; Jiang, Y.Y.; Sun, Y.; Yin, X.D.; Zhang, M.; Kan, J.; Liu, J.; Xiao, L.X.; Jin, C.H.; Qi, X.H.; et al. Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods. Foods 2023, 10, 2012. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Wang, Q.; Sun, L.H.; Zhang, X.F. Extraction, preparation, and carboxymethyl of polysaccharide from Lotus root. Food Sci. Technol. 2022, 42, 17822. [Google Scholar] [CrossRef]
- Li, S.Y.; He, X.; Li, J.S.; Sun, Y.W.; Yi, Y.; Lamikanra, O. Effect of ultraviolet treatment on shelf life of fresh lotus root. J. Food Biochem. 2020, 44, 13223. [Google Scholar] [CrossRef]
- Peng, K.D.; Li, Y.; Sun, Y.; Xu, W.; Wang, H.X.; Zhang, R.; Yi, Y. Lotus Root Polysaccharide-Phenol Complexes: Interaction, Structure, Antioxidant, and Anti-Inflammatory Activities. Foods 2023, 12, 577. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Gao, W.; Wei, J.; Pu, L.; Yang, J.; Guo, C. In vivo antioxidant properties of lotus root and cucumber: A pilot comparative study in aged subjects. J. Nutr. Health Aging 2015, 19, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.C.; Jiang, Y.Y.; Xue, Q.; Sun, F.T.; Zhang, J.M.; Zhou, J.; Niu, Z.Q.; Li, Q.T.; Li, F.; Shen, T. Structural characterisation and immunomodulatory activity of a polysaccharide isolated from lotus (Nelumbo nucifera Gaertn.) root residues. J. Funct. Foods. 2019, 60, 103457. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, X.Y.; Zhong, Z.T.; Huang, F.; Li, S.Y.; Wang, L.M.; Min, T.; Wang, H.X. Structural and biological properties of polysaccharides from lotus root. Int. J. Biol. Macromol. 2019, 130, 454–461. [Google Scholar] [CrossRef]
- Yi, Y.; Lamikanra, O.; Sun, J.; Wang, L.M.; Min, T.; Wang, H.X. Activity diversity structure-activity relationship of polysaccharides from lotus root varieties. Carbohydr. Polym. 2018, 190, 67–76. [Google Scholar] [CrossRef]
- Yi, Y.; Tang, H.S.; Sun, Y.; Xu, W.; Min, T.; Wang, H.X. Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chem. 2022, 366, 130693. [Google Scholar] [CrossRef]
- Xu, Y.H.; Bao, Y.Q.; Chen, J.H.; Yi, Y.; Ai, Y.W.; Hou, W.F.; Wang, L.M.; Wang, H.X.; Min, T. Mechanisms of ethanol treatment on controlling browning in fresh-cut lotus roots. Sci. Hortic. 2023, 310, 111708. [Google Scholar] [CrossRef]
- Chen, J.H.; Xu, Y.H.; Yi, Y.; Hou, W.F.; Wang, L.M.; Ai, Y.W.; Wang, H.X.; Min, T. Regulations and mechanisms of 1-methylcyclopropene treatment on browning and quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root slices. Postharvest Biol. Technol. 2022, 185, 111782. [Google Scholar] [CrossRef]
- Liu, X.S.; Lai, H.; Yan, Z.L.; Zhang, Y.; Feng, Y.L.; Yu, X. Effect of chitosan-based compound natural preservative on preserving quality of fresh-cut lotus root slices during refrigeration. J. Hubei Norm. Univ. Nat. Sci. 2022, 10, 27–34. [Google Scholar]
- Li, J.S.; Bai, J.; Li, S.Y.; Zhu, Z.Z.; Yi, Y.; Wang, H.X.; Lamikanra, O. Effect of lactic acid bacteria on the postharvest properties of fresh lotus root. Postharvest Biol. Technol. 2020, 160, 110983. [Google Scholar] [CrossRef]
- Gao, H.; Sun, J.L.; Gao, Y.J.; Nan, H.J.; Liu, Q. Effect of modified atmosphere packaging on preservation of fresh-cut lotus roots. Food Sci. 2008, 10, 612–614. [Google Scholar]
- Zheng, H.; Miao, T.; Shi, J.; Tian, M.; Wang, L.; Geng, X.; Zhang, Q. Effect of Cold Plasma Treatment on the Quality of Fresh-Cut Hami Melons during Chilling Storage. Horticulturae 2024, 10, 735. [Google Scholar] [CrossRef]
- Li, J.H.; Shi, J.Y.; Huang, X.W.; Wang, T.T.; Zou, X.B.; Li, Z.H.; Zhang, D.; Zhang, W.; Xu, Y.W. Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. LWT 2020, 132, 109873. [Google Scholar] [CrossRef]
- Miñano, H.L.A.; Silva, A.C.D.S.; Souto, S.; Costa, E.J.X. Magnetic fields in food processing perspectives, applications and action models. Processes 2020, 8, 814. [Google Scholar] [CrossRef]
- Guo, L.N.; Azam, S.M.R.; Guo, Y.T.; Liu, D.D.; Ma, H.L. Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control. 2022, 136, 108496. [Google Scholar] [CrossRef]
- Navone, L.; Moffitt, K.; Hansen, K.; Blinco, J.; Payne, A.; Speight, R. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Manag. 2020, 102, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Xanthakis, E.; Jury, V.; Le-Bail, A. An overview on magnetic field and electric field interactions with ice crystallisation; application in the case of frozen food. Crystals 2017, 7, 229. [Google Scholar] [CrossRef]
- Jin, J.T.; Zheng, B.S.; Xiao, K.J. Effect of high-intensity pulsed magnetic field on in activation of srawberry peroxydase and sterilization of strawberry juice. Sci. Technol. Food Ind. 2010, 31, 99–101. [Google Scholar] [CrossRef]
- Filipic, J.; Kraigher, B.; Tepus, B.; Kokol, V.; Mandic-Mulec, I. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour. Technol. 2012, 120, 225–232. [Google Scholar] [CrossRef] [PubMed]
- EI May, A.; Snoussi, S.; Ben Miloud, N.; Maatouk, I.; Abdelmelek, H.; Ben Aïssa, R.; Landoulsi, A. Effects of static magnetic field on cell growth, viability, and differential gene expression in Salmonella. Foodborne Pathog. Dis. 2009, 6, 547–552. [Google Scholar] [CrossRef]
- Du, M.T.; Hu, B.; Chen, B.; Li, J.G.; Li, K.; Bai, Y.H. Effect of Static Magnetic Field Assisted Superchilling on Quality of Pork. Mod. Food Sci. Technol. 2025, 2, 1–11. [Google Scholar] [CrossRef]
- Shahab, S.; Jun, T.K.; Eun, H.L.; Anil, K.; Gye, H.S. Fully transparent and flexible antibacterial packaging films based on regenerated cellulose extracted from ginger pulp. Ind. Crops Prod. 2023, 197, 116554. [Google Scholar] [CrossRef]
- Liu, L.; Sun, W.D.; Huang, L.H.; Zhang, Y.S.; Chen, S.; Zhang, Y.H. Physicochemical Properties and Structural Characteristics of a Chitosan/Pullulan/Polyvinyl Alcohol/Collagen Food Film. Mod. Food Sci. Technol. 2023, 39, 81–88. [Google Scholar] [CrossRef]
- Wu, P.; Yang, L.Q.; Sun, Y.; Wang, W.; Zhong, J.; Zhu, L.Q. Study on Compound Regent on Browning of Fresh-cut Lotus Roots. Food Res. Dev. 2015, 12, 114–116. [Google Scholar] [CrossRef]
- Luo, L.; Wang, S.M.; Xu, W.W.; Pan, W.J. Study on the quality change of fresh-cut lotus root during storage with ultrasound-heat treatment. Food Ferment. Ind. 2022, 48, 203–210. [Google Scholar] [CrossRef]
- Wang, X.H.; Qiao, Y.; Tie, J.Z.; Zhang, W.B.; Wei, B.H.; Liu, Z.C.; Yu, J.H.; Hu, L.L. Sheep Manure-Tail Vegetable-Corn Straw Co-Composting Improved the Yield and Quality of Mini Chinese Cabbage. Foods 2025, 14, 163. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Ou, J.Q.; Huang, W.; Wang, Y.; Liu, Y. Optimization of Liquid Fermentation Medium of Morchella and Studies on Antioxidant Activity of Fermentation Products. J. Chin. Inst. Food Sci. Technol. 2023, 23, 41–50. [Google Scholar] [CrossRef]
- Ibrahim, H.; Uttu, A.J.; Sallau, M.S.; Iyun, O.R. Gas chromatography-mass spectrometry (GC-MS) analysis of ethyl acetate root bark extract of Strychnos innocua (Delile). Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 65. [Google Scholar] [CrossRef]
- Jian, Y.B.; Xiao, X.X.; Qian, X.F.; Liang, M.; Chen, H.; Song, W. Preservative effects and mechanism of condensed tannins from Cercis chinensis Bunge leaves on fresh-cut lotus root. J. Food Sci. 2024, 90, 17638. [Google Scholar] [CrossRef]
- Li, C.A.; Li, Y.Q.; Shi, J.Z.; Yang, D.; Zhang, Y.B.; Fu, Y.B. Effect of Plasma Activated Water on Fresh-cut Lotus Root Freshness Preservation during Cold Storage. Packag. Eng. 2024, 45, 42–49. [Google Scholar] [CrossRef]
- You, K.Y.; Zhang, X.Y.; Wang, Y.; Nian, R.; Xiong, X.F.; Zhu, D.S.; Cao, X.H. Effect of ultrasound immersion pretreatment combined magnetic field assisted freezing on the quality of frozen blueberries. LWT 2024, 211, 116921. [Google Scholar] [CrossRef]
- Abie, S.M.; Münch, D.; Egelandsdal, B.; Bjerke, F.; Wergeland, I.; Martinsen, Ø.G. Combined 0.2 T static magnetic field and 20 kHz, 2 V/cm square wave electric field do not affect supercooling and freezing time of saline solution and meat samples. J. Food Eng. 2021, 311, 110710. [Google Scholar] [CrossRef]
- Li, W.Q.; Wang, Y.F.; Yu, Y.; Liu, J. Establishment and Optimization of the Hyperspectral Detection Model for Soluble Solids Content in Fortunella Margarita. Spectrosc. Spectr. Anal. 2025, 2, 492–500. [Google Scholar]
- Lei, Y.; Liu, Y.Z.; Zeng, W.F.; Deng, X.X. Physicochemical and molecular analysis of cell wall metabolism between two navel oranges (Citrus sinensis) with different mastication traits. J. Sci. Food Agric. 2010, 90, 1479–1484. [Google Scholar] [CrossRef]
- Sarmento, J.D.; de Morais, P.L.; Melo, N.J.D.A.; Pontes, F.M.; da Silva, A.R.; Amâncio, A.V.; de Brito, F.A.; da Costa Lucas, R.; Dias, N.d.S.; Brito, F.A.L.d. Postharvest behavior and bioactive compounds of red pitaya (Hylocereus polyrhizus) under room storage. Braz. J. Agric. Environ. Eng. 2025, 7, 289648. [Google Scholar]
- Zhang, X.Y.; Wang, J.H.; Sun, W.W.; Zhang, X.H.; Li, X.A.; Li, F.J. Optimization of Ultrasonic-Microwave Synergistic Extraction of Polyphenols from Apple Residue and Its Property Evaluation. Food Sci. Technol. 2022, 47, 185–191. [Google Scholar] [CrossRef]
- Rong, H.Z.; Tu, C.; Xie, D.Q.; Xu, Y.J.; Yu, Y.S.; Xiao, G.S.; Wen, J.; Zou, B.; Cheng, L.N. Effect of electrostatic field synergetic modified atmosphere packaging treatment on the quality of two varieties of litchi during cold storage. Sci. Technol. Food Ind. 2025, 2, 1–15. [Google Scholar] [CrossRef]
- Sulaiman, A.; Soo, M.J.; Farid, M.; Silva, F.V.M. Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. J. Food Eng. 2015, 165, 133–140. [Google Scholar] [CrossRef]
- Li, Y.L.; Cui, K.B.; Shi, L.; Zhu, Z.S.; Li, L.; Liu, Y.; Zhu, X. Effect of near freezing temperature storage on chilling injury and active oxygen metabolism of apricot fruit. Food Sci. 2020, 41, 177–183. [Google Scholar] [CrossRef]
Storage Time | Treatment Condition | L* | a* | b* | ΔE |
---|---|---|---|---|---|
0 d | control | 78.18 ± 0.56 | 1.57 ± 0.18 | 9.57 ± 0.33 | 18.88 |
SMF | 78.52 ± 0.71 | 1.59 ± 0.15 | 9.67 ± 0.51 | 18.64 | |
2 d | control | 74.80 ± 0.72 | 1.65 ± 0.14 | 10.35 ± 0.59 | 22.22 |
SMF | 75.45 ± 0.53 | 1.95 ± 0.22 * | 9.15 ± 0.71 | 21.17 | |
4 d | control | 66.42 ± 0.65 | 1.41 ± 0.13 | 9.62 ± 0.66 | 29.68 |
SMF | 74.55 ± 0.43 * | 1.45 ± 0.31 | 9.58 ± 0.74 | 22.10 * | |
6 d | control | 65.84 ± 0.71 | 1.45 ± 0.12 | 11.83 ± 0.88 | 30.97 |
SMF | 74.45 ± 0.58 * | 2.13 ± 0.24 * | 9.45 ± 0.57 * | 22.22 * | |
8 d | control | 63.44 ± 0.66 | 5.12 ± 0.21 | 17.00 ± 1.35 | 35.73 |
SMF | 73.85 ± 0.48 * | 1.61 ± 0.09 * | 9.42 ± 0.74 * | 22.69 * | |
10 d | control | 61.11 ± 0.39 | 2.42 ± 0.15 | 14.55 ± 0.85 | 36.44 |
SMF | 73.43 ± 0.49 * | 1.85 ± 0.11 * | 10.22 ± 0.77 * | 23.42 * | |
12 d | control | 61.68 ± 0.82 | 5.96 ± 0.32 | 16.81 ± 1.14 | 37.34 |
SMF | 70.59 ± 0.73 * | 1.66 ± 0.17 * | 9.14 ± 0.49 * | 25.61 * | |
14 d | control | 60.23 ± 0.64 | 5.60 ± 0.36 | 17.35 ± 1.35 | 38.79 |
SMF | 70.35 ± 0.57 * | 3.10 ± 0.16 * | 11.84 ± 0.74 * | 27.03 * |
Classification | Aroma Components | Area/% | |
---|---|---|---|
Control | SMF | ||
Esters | Ethyltrichloroacetate | 0.24 ± 0.05 | 0.73 ± 0.10 * |
1-Hydroxy-1-cyclopropanecarboxylic acid (2,6-di-tert-butyl-4-methylphenyl) ester | 1.78 ± 0.12 | 2.03 ± 0.22 | |
3-Phenylpropyl acetate | - | 2.35 ± 0.31 | |
Octyl 4-methoxycinnamate | 3.79 ± 0.36 | 1.22 ± 0.06 * | |
1,2-Butyl-n-decyl phthalate | 4.13 ± 0.33 | - | |
Isoamyl butyrate | - | 0.11 ± 0.02 | |
Oxybis(propane-1,2-diyl)dibenzoate | - | 0.21 ± 0.04 | |
3-(4-Methoxyphenyl)-2-propanoic acid 2-ethylhexyl ester | 3.05 ± 0.17 | 1.55 ± 0.22 * | |
Octadecyl 2-propyl sulfite | 2.13 ± 0.15 | 3.32 ± 0.32 * | |
2,2,4-Trimethyl-1,3-pentanedioldiisobutyrate | 0.58 ± 0.07 | 0.68 ± 0.11 | |
Methyl naphthalene-1-acetate | - | 1.09 ± 0.04 | |
2-Ethylhexyl salicylate | 0.13 ± 0.02 | 0.43 ± 0.06 * | |
Diisobutyl phthalate | 0.87 ± 0.08 | 4.73 ± 0.32 * | |
Linalyl butyrate | 0.15 ± 0.03 | 1.38 ± 0.07 * | |
Resorcinol monobenzoate | - | 0.13 ± 0.02 | |
Hexylnonyl sulphite | 2.38 ± 0.18 | - | |
Alkanes | Nonane | 3.25 ± 0.25 | 2.89 ± 0.17 |
Octane | 3.98 ± 0.35 | 2.75 ± 0.26 * | |
Decane | 3.58 ± 0.43 | 1.95 ± 0.21 * | |
Undecane | 0.79 ± 0.05 | - | |
Dodecane | 6.51 ± 0.71 | 4.34 ± 0.39 * | |
Tridecane | 1.88 ± 0.09 | 1.53 ± 0.12 * | |
Tetradecane | 0.97 ± 0.08 | 0.78 ± 0.05 * | |
Heptadecane | 1.95 ± 0.21 | 3.53 ± 0.51 * | |
Eicosane | 5.78 ± 0.95 | 8.93 ± 1.13 * | |
Ethyl-cyclohexane | 6.33 ± 0.37 | 2.06 ± 0.57 * | |
3-Methyl heptane | 1.78 ± 0.17 | 1.96 ± 0.21 | |
9-Methylnonadecane | 2.62 ± 0.15 | 1.04 ± 0.15 | |
1,3-Dimethylcyclohexane | 0.89 ± 0.16 | 0.78 ± 0.13 | |
Aldehydes | Benzaldehyde | 0.17 ± 0.03 | 0.73 ± 0.12 * |
Phenylacetaldehyde | 0.92 ± 0.17 | 1.88 ± 0.18 * | |
Lauraldehyde | 4.66 ± 0.35 | 5.87 ± 0.72 | |
Nonanal | 0.73 ± 0.08 | 0.82 ± 0.06 | |
Decanal | 1.75 ± 0.12 | - | |
3,4-Dimethylbenzaldehyde | - | 0.79 ± 0.21 | |
3,5-di-tert-butyl-4-hydroxybenzaldehyde | - | 1.54 ± 0.40 | |
Aromatic hydrocarbons | Methylbenzene | 3.32 ± 0.57 | 2.37 ± 0.66 |
1-Methylnaphthalene | 2.32 ± 0.15 | 3.15 ± 0.63 * | |
Naphathalene | 1.78 ± 0.07 | 1.82 ± 0.16 | |
Paraxylene | 2.35 ± 0.11 | 1.17 ± 0.21 * | |
Ethylbenzene | 1.33 ± 0.06 | 1.75 ± 0.12 * | |
4-(2-Butyl)phenol | - | 1.23 ± 0.08 | |
Pentamethylbenzene | 0.23 ± 0.04 | 0.27 ± 0.06 | |
2-Methylnaphthalene | 2.09 ± 0.16 | 1.05 ± 0.02 * | |
1,2,3-Trimethylbenzene | 0.79 ± 0.05 | - | |
1-Ethyl-2-methylbenzene | 0.53 ± 0.02 | 0.17 ± 0.02 * | |
1,2,3,4-Tetramethylbenzene | 0.22 ± 0.05 | 0.25 ± 0.07 | |
2,7-Dimethylnaphthalene | 0.35 ± 0.02 | - | |
2,4-Di-tert-butylphenol | 3.66 ± 0.56 | 3.53 ± 0.42 | |
Ketones | 2-Hydroxycyclopent-2-en-1-one | 2.65 ± 0.62 | - |
Cyclobutanone | 0.58 ± 0.03 | 1.24 ± 0.13 * | |
4-Methyl-3,5-decanedione | - | 3.58 ± 0.35 | |
Ethers | Ethoxyethyne | 0.92 ± 0.04 | - |
Decyl isopropyl ether | - | 2.78 ± 0.51 | |
Dodecyl vinyl ether | 1.32 ± 0.08 | 4.86 ± 0.37 | |
Esters | 19.23 | 19.96 | |
Alkanes | 40.31 | 32.54 | |
Aldehydes | 8.23 | 11.63 | |
Aromatic hydrocarbons | 18.97 | 16.76 | |
Ketones | 3.23 | 4.82 | |
Ethers | 2.24 | 7.64 | |
Others | 7.79 | 6.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, D.; Ma, Z.; Zheng, R.; Liu, X.; Wang, J.; Yue, S. Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage. Horticulturae 2025, 11, 379. https://doi.org/10.3390/horticulturae11040379
Xu X, Zhang D, Ma Z, Zheng R, Liu X, Wang J, Yue S. Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage. Horticulturae. 2025; 11(4):379. https://doi.org/10.3390/horticulturae11040379
Chicago/Turabian StyleXu, Xianmeng, Dandan Zhang, Zhanqian Ma, Rong Zheng, Xiaohua Liu, Jungang Wang, and Shuai Yue. 2025. "Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage" Horticulturae 11, no. 4: 379. https://doi.org/10.3390/horticulturae11040379
APA StyleXu, X., Zhang, D., Ma, Z., Zheng, R., Liu, X., Wang, J., & Yue, S. (2025). Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage. Horticulturae, 11(4), 379. https://doi.org/10.3390/horticulturae11040379