Effects of Protein Hydrolysate Derived from Hempseed By-Products on Growth, Mineral Contents, and Quality of Greenhouse Grown Red Oak Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tested Protein Hydrolysate
2.2. Growing Conditions and Plant Materials
2.3. Treatment Description and Experimental Design
2.4. Sampling and Growth Measurements
2.5. Plant Mineral Contents Analysis
2.6. Determination of Chlorophyll Contents
2.7. Sample Extraction and Bioactive Compound Analysis
2.7.1. Sample Extraction
2.7.2. Determination of Total Phenolic Content, Total Flavonoid Content, and Antioxidant Activities
2.7.3. Determination of Phenolic Acids and Flavonoids
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Mineral Nutrient Contents
3.3. Chlorophyll Contents
3.4. Bioactive Compounds and Their Activities
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer use, soil health and agricultural sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Ciriello, M.; Campana, E.; De Pascale, S.; Rouphael, Y. Implications of vegetal protein hydrolysates for improving nitrogen use efficiency in leafy vegetables. Horticulturae 2024, 10, 132. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Lucini, L.; Canaguier, R.; Stefanoni, W.; Fiorillo, A.; Cardarelli, M. Protein hydrolysate-based biostimulants: Origin, biological activity and application methods. In Proceedings of the II World Congress on the Use of Biostimulants in Agriculture, Florence, Italy, 16–19 November 2015; p. 1148. [Google Scholar] [CrossRef]
- Petropoulos, S.A. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Czelej, M.; Garbacz, K.; Czernecki, T.; Wawrzykowski, J.; Waśko, A. Protein hydrolysates derived from animals and plants—A review of production methods and antioxidant activity. Foods 2022, 11, 1953. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Cozzolino, E.; Ottaiano, L.; Petropoulos, S.A.; Nocerino, S.; Pelosi, M.E.; Rouphael, Y.; Mori, M.; Di Mola, I. Effect of biostimulant application on plant growth, chlorophylls and hydrophilic antioxidant activity of spinach (Spinacia oleracea L.) grown under saline stress. Horticulturae 2022, 8, 971. [Google Scholar] [CrossRef]
- Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Tejada, M. Use of a biostimulant obtained from slaughterhouse sludge in a greenhouse tomato crop. Horticulturae 2022, 8, 622. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Rouphael, Y. Biostimulatory action of a plant-derived protein hydrolysate on morphological traits, photosynthetic parameters, and mineral composition of two basil cultivars grown hydroponically under variable electrical conductivity. Horticulturae 2022, 8, 409. [Google Scholar] [CrossRef]
- Cirillo, A.; Izzo, L.; Ciervo, A.; Ledenko, I.; Cepparulo, M.; Piscitelli, A.; Di Vaio, C. Optimizing apricot yield and quality with biostimulant interventions: A comprehensive analysis. Horticulturae 2024, 10, 447. [Google Scholar] [CrossRef]
- Helstad, A.; Forsén, E.; Ahlström, C.; Labba, I.C.M.; Sandberg, A.S.; Rayner, M.; Purhagen, J.K. Protein extraction from cold-pressed hempseed press cake: From laboratory to pilot scale. J. Food Sci. 2022, 87, 312–325. [Google Scholar] [CrossRef] [PubMed]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. Available online: https://pubs.acs.org/doi/10.1021/jf102636b (accessed on 10 March 2024). [PubMed]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive compound in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food. Sci. Food. Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef]
- Yaseen, A.A.; Hajos, M.T. The effect of plant biostimulants on the macronutrient content and ion ratio of several lettuce (Lactuca sativa L.) cultivars grown in a plastic house. S. Afr. J. Bot. 2022, 147, 223–230. [Google Scholar] [CrossRef]
- Al-Karakia, G.N.; Othman, Y. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. S. Afr. J. Bot. 2023, 154, 225–231. [Google Scholar] [CrossRef]
- Solano Porras, R.C.; Ghoreishi, G.; Sanchez, A.; Barrena, R.; Font, X.; Ballardo, C.; Artola, A. Solid-state fermentation of green waste for the production of biostimulants to enhance lettuce (Lactuca sativa L.) cultivation under water stress: Closing the organic waste cycle. Chemosphere 2025, 370, 143919. [Google Scholar] [CrossRef]
- Feyzi, S.; Varidi, M.; Zare, F.; Varidi, M.J. A comparison of chemical, structural and functional properties of fenugreek (Trigonella foenum graecum) protein isolates produced using different defatting solvents. Int. J. Biol. Macromol. 2017, 105, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kumsong, N.; Thepsilvisut, O.; Imorachorn, P.; Chutimanukul, P.; Pimpha, N.; Toojinda, T.; Trithaveesak, O.; Ratanaudomphisut, E.; Poyai, A.; Hruanun, C.; et al. Comparison of different temperature control systems in tropical-adapted greenhouses for green romaine lettuce production. Horticulturae 2023, 9, 1255. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Dmytryk, A.; Wilk, R.; Gramza, M.; Rój, E. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front. Plant Sci. 2016, 7, 1591. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Charalambous, S.; Xylia, P.; Litskas, V.; Stavrinides, M.; Tzortzakis, N. Assessing the biostimulant effects of a novel plant-based formulation on tomato crop. Sustainability 2020, 12, 8432. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis. In AOAC Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Kalra, Y. Handbook of Reference Methods for Plant. Analysis; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determinations of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 1, 591–592. [Google Scholar] [CrossRef]
- Jirakiattikul, Y.; Ruangnoo, S.; Sangmukdee, K.; Chamchusri, K.; Rithichai, P. Enhancement of plumbagin production through elicitation in in vitro-regenerated shoots of Plumbago indica L. Plants 2024, 13, 1450. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S.; Meeso, N. Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chem. 2011, 126, 972–981. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Leb. Wiss Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mizzi, L.; Chatzitzika, C.; Gatt, R.; Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 2020, 58, 12–19. [Google Scholar] [CrossRef]
- Motulsky, H.J. GraphPad Statistics Guide. 2016. Available online: http://www.graphpad.com/guides/prism/10/statistics/index.htm (accessed on 15 June 2024).
- Sabatino, L.; Consentino, B.B.; Rouphael, Y.; De Pasquale, C.; Iapichino, G.; D’Anna, F.; La Bella, S. Protein hydrolysates and mo-biofortification interactively modulate plant performance and quality of ‘Canasta’ lettuce grown in a protected environment. Agronomy 2021, 11, 1023. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar application of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Tadros, M.J.; Omari, H.J.; Turk, M.A. The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Aust. J. Crop Sci. 2019, 13, 412–417. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Cristofano, F.; Colla, G.; Pii, Y.; Lucini, L.; Rouphael, Y.A. Graminaceae-derived protein hydrolysate and its fractions provide differential growth and modulate qualitative traits of lettuce grown under non-saline and mild salinity conditions. Sci. Hortric. 2023, 319, 112130. [Google Scholar] [CrossRef]
- Dass, S.M.; Chai, T.-T.; Cao, H.; Ooi, A.L.; Wong, F.C. Application of enzyme-digested soy protein hydrolysate on hydroponic-planted lettuce: Effects on phytochemical contents, biochemical profiles and physical properties. Food Chem. 2021, 12, 100132. [Google Scholar] [CrossRef]
- Tütüncü, M. Effects of protein hydrolysate derived from anchovy by-product on plant growth of primrose and root system architecture analysis with machine learning. Horticulturae 2024, 10, 400. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Nardi, S. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Front. Plant Sci. 2017, 8, 1159. [Google Scholar] [CrossRef] [PubMed]
- Parađiković, N.; Vinković, T.; Vrček, I.V.; Žuntr, I.; Bojić, M.; Medić-Šaric, M. Effect of natural biostimulant on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A novel protein hydrolysate-based biostimulant improves tomato performances under drought stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolyzates produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef]
- Liu, X.Q.; Lee, K.S. Effect of mixed amino acids on crop growth. In Agricultural Science; Aflakpui, G., Ed.; InTech Europe Publisher: Rijeka, Croatia, 2021; pp. 119–158. [Google Scholar] [CrossRef]
- Tsouvaltzis, P.; Koukounaras, A.; Siomos, A.S. Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. Int. J. Agric. Biol. 2014, 16, 951–955. [Google Scholar]
- Ertani, A.; Schiavon, M.; Trentin, A.; Malagoli, M.; Nardi, S. Effect of an alfalfa plant-derived biostimulant on sulfur nutrition in tomato plants. In Molecular Physiology and Ecophysiology of Sulfur, Proceedings of the 9th International Workshop on Sulfur Metabolism in Plants, Freiburg-Munzigen, Germany, 14–17 April 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 215–220. [Google Scholar] [CrossRef]
- Osman, A.; Merwad, A.-R.M.; Mohamed, A.H.; Sitohy, M. Foliar spray with pepsin-and papain-whey protein hydrolysates promotes the productivity of pea plants cultivated in clay loam soil. Molecules 2021, 26, 2805. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacon, M.C.; De Pasacale, S. Foliar applications of a legume-derived protein-hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, W.; Lv, H.; Wang, Q.; Liang, B.; Li, J. Foliar application of pig blood-derived protein hydrolysates improves antioxidant activities in lettuce by regulating phenolic biosynthesis without compromising yield production. Sci. Hortic. 2022, 291, 110602. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef]
- Vasantharaja, R.; Abraham, L.S.; Inbakandan, D.; Thirugnanasambandam, R.; Senthilvelan, T.; Jabeen, S.K.A.; Prakash, P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatal. Agric. Biotechnol. 2019, 17, 589–594. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Colla, G.; Cardarelli, M.; Pii, Y.; Lucini, L.; Rouphael, Y. Tracking the biostimulatory effect of fractions from a commercial plant protein hydrolysate in greenhouse-grown lettuce. Antioxidants 2023, 12, 107. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Hyun, M.W.; Yun, Y.H.; Kim, J.Y.; Kim, S.H. Fungal and plant phenylalanine ammonia-lyase. Mycobiology 2011, 39, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Di-Vaio, C.; Cirillo, A.; Cice, D.; El-Nakhel, C.; Rouphael, Y. Biostimulant application improves yield parameters and accentuates fruit color of Annurca apples. Agronomy 2021, 11, 715. [Google Scholar] [CrossRef]
- Distefano, M.; Steingass, C.B.; Leonardi, C.; Giuffrida, F.; Schweiggert, R.; Mauro, R.P. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars. Food Res. Int. 2022, 157, 111218. [Google Scholar] [CrossRef]
Treatments | Shoot (g/Plant) | Root (g/Plant) | ||
---|---|---|---|---|
Fresh Weight | Dry Weight | Fresh Weight | Dry Weight | |
Water (control) | 119.53 ± 1.22 e 2/ | 4.68 ± 0.12 c | 10.61 ± 0.34 | 0.21 ± 0.04 b |
Commercial product | 125.07 ± 0.95 d | 5.01 ± 0.28 c | 10.20 ± 0.59 | 0.21 ± 0.01 b |
PH0 1/ | 124.27 ± 1.85 d | 5.08 ± 0.21 bc | 10.49 ± 0.31 | 0.21 ± 0.01 b |
PH2.5 | 132.80 ± 0.87 c | 4.90 ± 0.33 c | 10.15 ± 0.69 | 0.21 ± 0.01 b |
PH5.0 | 139.73 ± 0.31 b | 5.45 ± 0.19 ab | 10.23 ± 0.45 | 0.22 ± 0.02 b |
PH7.5 | 148.00 ± 3.89 a | 5.70 ± 0.22 a | 10.22 ± 0.24 | 0.26 ± 0.01 a |
F-test | ** | ** | ns | * |
C.V. (%) | 1.45 | 4.52 | 4.50 | 1.37 |
Treatments | N | P | K | Ca | Mg | S | Na |
---|---|---|---|---|---|---|---|
Water (control) | 3.78 ± 0.02 d 2/ | 0.77 ± 0.01 ab 3/ | 5.63 ± 0.63 ab 3/ | 1.35 ± 0.01 b 2/ | 0.09 ± 0.01 c 2/ | 0.24 ± 0.03 bc 2/ | 0.34 ± 0.03 a 2/ |
Commercial product | 4.07 ± 0.03 b | 0.77 ± 0.01 ab | 6.27 ± 0.54 ab | 1.41 ± 0.02 a | 0.11 ± 0.01 abc | 0.21 ± 0.01 c | 0.26 ± 0.02 b |
PH0 1/ | 3.72 ± 0.03 e | 0.75 ± 0.01 b | 4.37 ± 0.71 b | 1.35 ± 0.02 b | 0.10 ± 0.02 bc | 0.20 ± 0.01 c | 0.15 ± 0.01 c |
PH2.5 | 3.92 ± 0.02 c | 0.78 ± 0.01 ab | 5.99 ± 0.52 ab | 1.27 ± 0.02 c | 0.13 ± 0.00 a | 0.25 ± 0.01 b | 0.16 ± 0.03 c |
PH5.0 | 4.13 ± 0.00 a | 0.84 ± 0.02 a | 6.03 ± 0.37 ab | 1.25 ± 0.04 c | 0.11 ± 0.01 abc | 0.32 ± 0.02 a | 0.23 ± 0.03 b |
PH7.5 | 3.92 ± 0.03 c | 0.78 ± 0.01 ab | 6.63 ± 0.26 a | 1.34 ± 0.03 b | 0.12 ± 0.01 ab | 0.31 ± 0.01 b | 0.26 ± 0.00 b |
F-test | ** | ** | ** | ** | * | ** | ** |
C.V. (%) | 0.80 | 4.07 | 4.56 | 2.37 | 8.91 | 3.88 | 13.35 |
Treatments | Chlorophyll a | Chlorophyll b | Total chlorophyll |
---|---|---|---|
Water (control) | 16.81 ± 0.48 c 2/ | 37.92 ± 0.30 a | 54.74 ± 0.73 b |
Commercial product | 18.02 ± 0.20 b | 37.19 ± 0.20 bc | 55.22 ± 0.22 b |
PH0 1/ | 16.87 ± 0.46 c | 37.32 ± 0.10 bc | 54.20 ± 0.40 b |
PH2.5 | 17.19 ± 0.45 bc | 37.35 ± 0.24 bc | 54.55 ± 0.22 b |
PH5.0 | 19.35 ± 0.70 a | 36.93 ± 0.23 c | 56.29 ± 0.89 a |
PH7.5 | 17.25 ± 0.33 bc | 37.47 ± 0.21 b | 54.73 ± 0.35 b |
F-test | ** | ** | ** |
C.V. (%) | 2.65 | 0.59 | 0.97 |
Treatments | TPC | TFC | Antioxidant Activities (mg TE/g DW) 3/ | |
---|---|---|---|---|
(mg GAE/g DW) | (mg QE/g DW) | DPPH | ABTS | |
Water (control) | 27.33 ± 1.05 e 2/ | 77.85 ± 10.50 b 3/ | 6.53 ± 0.08 ab 3/ | 27.20 ± 2.40 b 3/ |
Commercial product | 30.36 ± 0.56 d | 166.85 ± 7.50 a | 6.10 ± 1.01 b | 29.30 ± 1.40 ab |
PH0 1/ | 29.19 ± 0.79 de | 87.35 ± 2.50 ab | 8.02 ± 1.49 ab | 41.40 ± 4.40 ab |
PH2.5 | 37.79 ± 1.26 b | 98.35 ± 8.50 ab | 11.38 ± 0.55 ab | 49.90 ± 3.00 a |
PH5.0 | 35.03 ± 1.40 c | 151.60 ± 9.50 ab | 17.04 ± 1.72 ab | 47.80 ± 2.40 ab |
PH7.5 | 42.04 ± 1.87 a | 106.35 ± 6.50 ab | 18.37 ± 1.87 a | 45.30 ± 5.00 ab |
F-test | ** | ** | ** | ** |
C.V. (%) | 1.44 | 2.33 | 2.38 | 1.68 |
Treatments | Hydroxybenzoic Acids | Hydroxycinnamic Acids | Flavonoids | |||||
---|---|---|---|---|---|---|---|---|
CGA 2/ | PHBA | CFA | FA | p-CA | CA | RT | QE | |
Water (control) | 41.26 ± 1.23 e 3/ | 1.85 ± 0.13 e | 4.93 ± 0.13 c | 11.52 ± 0.46 d | 3.86 ± 0.35 b | 1.80 ± 0.18 c | 23.63 ± 0.73 d | 2.55 ± 0.24 d |
Commercial product | 67.24 ± 9.64 d | 3.08 ± 1.00 d | 9.19 ± 0.84 b | 11.05 ± 0.92 d | 4.84 ± 0.38 a | 2.78 ± 0.54 ab | 27.18 ± 1.73 d | 2.77 ± 0.22 d |
PH0 1/ | 19.81 ± 0.60 f | 7.32 ± 0.30 c | 3.52 ± 0.19 c | 2.55 ± 0.18 e | 1.55 ± 0.06 c | 2.40 ± 0.09 b | 33.92 ± 0.15 c | 3.81 ± 0.12 b |
PH2.5 | 129.97 ± 1.96 c | 7.75 ± 0.75 c | 15.09 ± 0.59 a | 16.76 ± 0.12 c | 5.10 ± 0.07 a | 2.47 ± 0.04 b | 33.46 ± 0.93 c | 2.88 ± 0.01 d |
PH5.0 | 140.37 ± 3.90 b | 12.55 ± 0.42 a | 13.91 ± 3.47 a | 18.87 ± 0.49 b | 5.35 ± 0.06 a | 2.97 ± 0.05 a | 45.36 ± 0.34 a | 3.34 ± 0.13 c |
PH7.5 | 155.54 ± 6.31 a | 9.67 ± 0.49 b | 15.99 ± 0.29 a | 22.13 ± 0.55 a | 4.20 ± 0.56 b | 3.28 ±0.31 a | 42.37 ± 1.21 b | 4.35 ± 0.27 a |
F-test | ** | ** | ** | ** | ** | ** | ** | ** |
C.V. (%) | 5.48 | 8.44 | 14.25 | 3.80 | 7.68 | 10.30 | 2.91 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harakotr, B.; Trisiri, T.; Charoensup, L.; Thepsilvisut, O.; Rithichai, P.; Suwor, P.; Jirakiattikul, Y. Effects of Protein Hydrolysate Derived from Hempseed By-Products on Growth, Mineral Contents, and Quality of Greenhouse Grown Red Oak Lettuce. Horticulturae 2025, 11, 357. https://doi.org/10.3390/horticulturae11040357
Harakotr B, Trisiri T, Charoensup L, Thepsilvisut O, Rithichai P, Suwor P, Jirakiattikul Y. Effects of Protein Hydrolysate Derived from Hempseed By-Products on Growth, Mineral Contents, and Quality of Greenhouse Grown Red Oak Lettuce. Horticulturae. 2025; 11(4):357. https://doi.org/10.3390/horticulturae11040357
Chicago/Turabian StyleHarakotr, Bhornchai, Thamonwan Trisiri, Lalita Charoensup, Ornprapa Thepsilvisut, Panumart Rithichai, Patcharaporn Suwor, and Yaowapha Jirakiattikul. 2025. "Effects of Protein Hydrolysate Derived from Hempseed By-Products on Growth, Mineral Contents, and Quality of Greenhouse Grown Red Oak Lettuce" Horticulturae 11, no. 4: 357. https://doi.org/10.3390/horticulturae11040357
APA StyleHarakotr, B., Trisiri, T., Charoensup, L., Thepsilvisut, O., Rithichai, P., Suwor, P., & Jirakiattikul, Y. (2025). Effects of Protein Hydrolysate Derived from Hempseed By-Products on Growth, Mineral Contents, and Quality of Greenhouse Grown Red Oak Lettuce. Horticulturae, 11(4), 357. https://doi.org/10.3390/horticulturae11040357