Understanding the Role of Calcium in Kiwifruit: Ion Transport, Signaling, and Fruit Quality
Abstract
:1. Introduction
2. Calcium and Plant Physiology
2.1. Signaling Activity
2.2. How Calcium Helps Organize the Plasma Membrane
2.2.1. Ion Channels
2.2.2. Aquaporins
2.3. Cell Wall Structure
3. Mechanisms and Challenges of Calcium Transport in Fruit Trees
4. Calcium Accumulation in Kiwifruit Fruit
5. Methodologies for the Study of Calcium in Plants
5.1. Microscope Technique
5.2. X-Ray Fluorescence Microscopy (XFM)
5.3. Calcium Imaging Techniques
5.4. Stain Technology
5.5. Size-Exclusion Chromatography
5.6. Nuclear Magnetic Resonance
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Demarty, M.; Morvan, C.; Thellier, M. Calcium and cell wall. Plant Cell Environ. 2006, 7, 441–448. [Google Scholar] [CrossRef]
- Balantič, K.; Weiss, U.; Allmaier, G.; Kramar, P. Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 2022, 143, 107988. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, S.T.; Handa, A.K.; Wu, Q.; Park, S.; Mitcham, E.J. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J. 2012, 71, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, I.B.; Watkins, C.B. Bitter pit in apple fruit. Hort. Rev. 1989, 11, 289–355. [Google Scholar]
- Bramlage, W.J.; Drake, M.; Lord, W.J. The influence of mineral nutrition on the quality and storage performance of pome fruits grown in North America. In Proceedings of the Symposium on Mineral Nutrition and Fruit Quality of Temperate Zone Fruit Trees, Canterbury, UK, 1–7 April 1979; Volume 92, pp. 29–40. [Google Scholar]
- Kirkby, E.A.; Pilbeam, D.J. Calcium as a plant nutrient. Plant Cell Environ. 1984, 7, 397–405. [Google Scholar] [CrossRef]
- Retamales, J.; Valdes, C.; Dilley, D.; León, L.; Lepe, V.P. Bitter pit prediction in apples through Mg infiltration. Acta Hort. 2000, 512, 169–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, Q.; Niu, B.; Liu, R.; Chen, H.; Xiao, S.; Wu, W.; Zhang, W.; Gao, H. The dual function of calcium ion in fruit edible coating: Regulating polymer internal crosslinking state and improving fruit postharvest quality. Food Chem. 2024, 447, 138952. [Google Scholar] [CrossRef]
- Shiri, M.A.; Ghasemnezhad, M.; Moghadam, J.F.; Ebrahimi, R. Efficiency of CaCl2 spray at different fruit development stages on the fruit mineral nutrient accumulation in cv. hayward kiwifruit. J. Elem. 2016, 21, 195–209. [Google Scholar] [CrossRef]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit calcium: Transport and physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef]
- Gao, Q.; Xiong, T.; Li, X.; Chen, W.; Zhu, X. Calcium and calcium sensors in fruit development and ripening. Sci. Hort. 2019, 253, 412–421. [Google Scholar] [CrossRef]
- Sorce, C.; Lombardi, L.; Montanaro, G. Occurrence of natural auxin and accumulation of calcium during early fruit development in kiwifruit. Aust. J. Crop Sci. 2011, 5, 895–898. [Google Scholar]
- Bregoli, A.M.; Fabbroni, C.; Costa, F.; Raimondi, V.; Costa, G. Auxin and ethylene interaction during fruit growth and ripening of Actinidia deliciosa. Adv. Plant Ethyl. Res. 2007, 2, 105–107. [Google Scholar]
- Poovaiah, B.W.; Glenn, G.M.; Reddy, A.S.N. Calcium and fruit softening: Physiology and biochemistry. Hortic. Rev. 1988, 10, 107–152. [Google Scholar]
- Sharma, R.R.; Pal, R.K.; Singh, D.; Singh, J.; Dhiman, M.R.; Rana, M.R. Relationships between storage disorders and fruit calcium contents, lipoxygenase activity, and rates of ethylene evolution and respiration in ‘Royal Delicious’ apple (Malus × domestica Borkh.). J. Pomol. Hortic. Sci. 2012, 87, 367–373. [Google Scholar] [CrossRef]
- Ferguson, I.B. Calcium in plant senescence and fruit ripening. Plant Cell Environ. 1984, 7, 477–489. [Google Scholar] [CrossRef]
- De Freitas, S.T.; Jiang, C.Z.; Mitcham, E.J. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J. Plant Growth Regul. 2012, 31, 221–234. [Google Scholar] [CrossRef]
- Saure, M.C. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Sci. Hort. 2005, 105, 65–89. [Google Scholar] [CrossRef]
- Falchi, R.; D’Agostin, E.; Mattiello, A.; Coronica, L.; Spinelli, F.; Costa, G.; Vizzotto, G. ABA regulation of calcium-related genes and bitter pit in apple. Postharvest Biol. Technol. 2017, 132, 1–6. [Google Scholar] [CrossRef]
- Xiong, T.; Tan, Q.; Li, S.; Mazars, C.; Galaud, J.P.; Zhu, X. Interactions between calcium and ABA signaling pathways in the regulation of fruit ripening. J. Plant Physiol. 2021, 256, 153309. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.; Davydov, O.; Knight, H.; Galon, Y.; Knight, M.R.; Fluhr, R.; Fromm, H. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+- responsive cis elements in Arabidopsis. Plant Cell 2006, 18, 2733–2748. [Google Scholar] [CrossRef]
- Edel, K.H.; Kudla, J. Integration of calcium and ABA signaling. Curr. Opin. Plant Biol. 2016, 33, 83–91. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Ho, C.H.; Lin, S.H.; Hu, H.C.; Tsay, Y.F. CHL1 functions as a nitrate sensor in plants. Cell 2009, 138, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lv, S.; Han, X.; Guan, X.; Shi, X.; Kang, J.; Zhang, L.; Cao, B.; Li, C.; Zhang, W.; et al. The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Frachisse, J.M.; Thomine, S.; Allain, J.M. Calcium and plasma membrane force-gated ion channels behind development. Curr. Opin. Plant Biol. 2020, 53, 57–64. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Thuleau, P. Ca2+ Channels in Higher Plant Cells. Plant Cell. 1991, 3, 555–559. [Google Scholar] [CrossRef]
- MacRobbie, E. Control of Volume and Turgor in Stomatal Guard Cells. J. Membr. Biol. 2006, 210, 131–142. [Google Scholar] [CrossRef]
- White, P.J. Calcium channels in higher plants. Biochim. Biophys Acta 2000, 1465, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Németh-Cahalan, K.L.; Hall, J.E. pH and calcium regulate the water permeability of aquaporin. J Biol. Chem. 2000, 275, 6777–6782. [Google Scholar] [CrossRef]
- Alleva, K.; Niemietz, C.M.; Sutka, M.; Maurel, C.; Parisi, M.; Tyerman, S.D.; Amodeo, G. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J. Exp. Bot. 2006, 57, 609–621. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, X.Y.; Tang, Q.L.; Wang, G.X. Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean. Plant Growth Regul. 2006, 50, 79–83. [Google Scholar] [CrossRef]
- Gerbeau, P.; Amodeo, G.; Henzler, T.; Santoni, V.; Ripoche, P.; Maurel, C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J. 2002, 30, 71–81. [Google Scholar] [CrossRef]
- Cabañero, F.J.; Martínez-Ballesta, M.C.; Teruel, J.A.; Carvajal, M. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. Plant Cell Physiol. 2006, 47, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.C.; Cabañero, F.; Olmos, E.; Periago, P.M.; Maurel, C.; Carvajal, M. Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta 2008, 228, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit ripening phenomena-an overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Kirtil, E.; Oztop, M.-H.; Sirijariyawat, A.; Ngamchuachit, P.; Barrett, D.M.; McCarthy, M.J. Effect of pectin methyl esterase (PME) and CaCl2 infusion on the cell integrity of fresh-cut and frozen-thawed mangoes: An NMR relaxometry study. Food Res. Inter. 2014, 66, 409–416. [Google Scholar] [CrossRef]
- Bascom, C.S.; Hepler, P.K.; Bezanilla, M. Interplay between ions, the cytoskeleton, and cell wall properties during tip growth. Plant Physiol. 2018, 176, 28–40. [Google Scholar] [CrossRef]
- Conn, S.J.; Gilliham, M.; Athman, A.; Schreiber, A.W.; Baumann, U.; Moller, I.; Cheng, N.H.; Stancombe, M.A.; Hirschi, K.D.; Webb, A.A.R.; et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 2011, 23, 240–257. [Google Scholar] [CrossRef]
- Kohli, P.; Kalia, M.; Gupta, R. Pectin Methylesterases: A Review. J. Bioprocess. Biotech. 2015, 5, 1000227. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Melton, L.D.; Bkasch, D.J. Cell-wall polysaccharides of kiwifruit (Actinidia deliciosa): Chemical features in different tissue zones of the fruit at harvest. Carbohydr. Res. 1988, 2, 241–258. [Google Scholar] [CrossRef]
- Yuliarti, O.; Matia-Merino, L.; Goh, K.K.T.; Mawson, J.; Williams, M.A.K.; Brennan, C. Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chem. 2015, 166, 479–485. [Google Scholar] [CrossRef]
- Dodd, A.N.; Kudla, J.; Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Taheri, A.; Kennedy, J.F. Pectin-associated immune responses in plant-microbe interactions: A review. Inter. J. Biol. Macromol. 2024, 273, 132790. [Google Scholar]
- Chardonnet, C.O.; Sams, C.E.; Trigiano, R.N.; Conway, W.S. Variability of three isolates of Botrytis cinerea affects the inhibitory effects o fcalcium on this fungus. Phytopathology 2000, 90, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Chardonnet, C.; Doneche, B. Relation between calcium content and resistance to enzymatic digestion of the skin during grape ripening. Vitis 1995, 34, 95–98. [Google Scholar]
- Gao, Z.; Zhang, R.; Xiong, B. Management of postharvest diseases of kiwifruit with a combination of the biocontrol yeast Candida oleophila and an oligogalacturonide. Biol. Control 2021, 156, 104549. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Khan, M.N.; Corpas, F.J.; Al-Amri, A.A.; Alsubaie, Q.D.; Alia, H.M.; Kalajid, H.M.; Ahmad, P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J. Hazard. Mater. 2020, 398, 122882. [Google Scholar] [CrossRef]
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N.; Leigh, R.A.; Tyerman, S.D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef]
- Greenspan, M.D.; Shackel, K.A.; Matthews, M.A. Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ. 1994, 17, 811–820. [Google Scholar] [CrossRef]
- Montanaro, G.; Treutter, D.; Xiloyannis, C. Phenolic compounds in young developing kiwifruit in relation to light exposure: Implications for fruit calcium accumulation. J. Plant Interact. 2007, 2, 63–69. [Google Scholar] [CrossRef]
- Mazzeo, M.; Dichio, B.; Clearwater, M.J.; Montanaro, G.; Xiloyannis, C. Hydraulic resistance of developing Actinidia fruit. Ann. Bot. 2013, 112, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Dichio, B.; Remorini, D.; Lang, S. Developmental changes in xylem functionality in kiwifruit fruit: Implications for fruit calcium accumulation. Acta Hortic. 2003, 610, 191–195. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Celano, G.; Montanaro, G.; Dichio, B.; Sebastiani, L.; Minnocci, A. Water relations, calcium and potassium concentration in fruits and leaves during annual growth in mature kiwifruit plants. Acta Hort. 2000, 564, 129–134. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Celano, G.; Montanaro, G.; Dichio, B. Calcium absorption and distribution in mature kiwifruit. Acta Hort. 2003, 610, 331–334. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Celano, G. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 2006, 170, 520–527. [Google Scholar] [CrossRef]
- Baldi, E.; Toselli, M.; Bonora, A.; Boini, A.; Quartieri, M.; Germani, M.; Polidori, G.; Corelli Grappadelli, L. Agronomic strategies to manipulate kiwifruit calcium content to understand its role in fruit physiology. Horticulturae 2025, 11, 237. [Google Scholar] [CrossRef]
- Biasi, R.; Altamura, M.M. Light enhances differentiation of the vascular system in the fruit of Actinidia deliciosa. Physiol. Plantarum 1996, 98, 28–35. [Google Scholar] [CrossRef]
- Polychroniadou, C.; Michailidis, M.; Samiotaki, M.; Adamakis, I.D.S.; Giannoutsou, E.; Skodra, C.; Karagiannis, E.; Bazakos, C.; Molassiotis, A.; Tanou, G. Understanding the effect of calcium in kiwifruit ripening and establishment of early and late response mechanisms through a cross-omics approach. Postharvest Biol. Technol. 2024, 211, 112803. [Google Scholar] [CrossRef]
- Mostafa, M.A.E.; Ulrich, A. Absorption, distribution, and form of Ca in relation to Ca deficiency (Tip Burn) of sugarbeets. Crop Sci. 1976, 16, 27–30. [Google Scholar] [CrossRef]
- Hepler, P.K.; Winship, L.J. Calcium at the cell wall-cytoplast interface. J. Integr. Plant Biol. 2010, 52, 147–160. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Horner, H.T. Calcium oxalate crystals in plants. Bot. Rev. 1980, 46, 361–427. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. Calcium oxalate in plants: Formation and function. Annual Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef]
- Nguyễn, H.V.; Savage, G.P. The effects of temperature and pH on the extraction of oxalate and pectin from green kiwifruit (Actinidia deliciosa L.), golden kiwifruit (Actinidia chinensis L.), kiwiberry (Actinidia arguta) and persimmon (Diospyros kaki). Int. J. Food Sci. Technol. 2013, 48, 794–800. [Google Scholar] [CrossRef]
- Rassam, M.; Bulley, S.M.; Laing, W.A. Oxalate and Ascorbate in Actinidia Fruit and Leaves. Acta Hort. 2007, 753, 479–485. [Google Scholar] [CrossRef]
- Perera, C.O.; Halett, I.; Nguyen, T.T.; Charles, J.C. Calcium Oxalate Crystals: The Irritant Factor in Kiwifruit. J. Food Sci. 1990, 55, 1066–1069. [Google Scholar] [CrossRef]
- Nguyễn, H.V.H.; Savage, G.P. Total, soluble and insoluble oxalate contents of ripe green and golden kiwifruit. Foods 2013, 2, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Takahashi, B. Determination of soluble and insoluble oxalate contents in kiwifruit (Actinidia deliciosa) and related species. J. Jpn. Soc. Hortic. Sci. 1998, 67, 299–305. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Lombi, E.; van der Ent, A.; Wang, P.; Laird, J.S.; Moore, K.L.; Persson, D.P.; Husted, S. Methods to visualize elements in plants. Plant Physiol. 2020, 182, 1869–1882. [Google Scholar] [CrossRef]
- Kalcsits, L.A. Non-destructive measurement of calcium and potassium in apple and pear using handheld X-ray fluorescence. Front. Plant Sci. 2016, 7, 442. [Google Scholar] [CrossRef]
- Kanchiswamy, C.N.; Malnoy, M.; Occhipinti, A.; Maffei, M.E. Calcium imaging perspectives in plants. Inter. J. Mol. Sci. 2014, 15, 3842–3859. [Google Scholar] [CrossRef]
- Otulak, K.; Garbaczewska, G. Cellular localisation of calcium ions during potato hypersensitive response to Potato virus Y. Micron 2011, 42, 381–391. [Google Scholar] [CrossRef] [PubMed]
- McGee-Russell, S.M. Histochemical methods for calcium. J. Histochem. Cytochem. 1958, 6, 22–42. [Google Scholar] [CrossRef] [PubMed]
- Belton, P.; Capozzi, F. Magnetic resonance in food science—Meeting the challenge. Magn. Reson. Chem. 2011, 49, S1. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Kotenko, J.L. The use of alizarin red S to detect and localize calcium in gametophyte cells of ferns. Stain Technol. 1987, 62, 237–245. [Google Scholar] [CrossRef] [PubMed]
Application Rate (g Ca vine−1) | Photosynthesis (μmol CO2 m−2 s−1) |
---|---|
0 | 5.9 b |
30 | 14.3 a |
90 | 6.4 b |
Significance | ** |
Day | ||||
---|---|---|---|---|
23 June | 13 July | 4 August | 25 October | |
Bagged fruits | 9.1 | 14.9 | 19.8 | 29.1 |
NOT bagged fruits | 10.1 | 23.0 | 26.5 | 29.6 |
Significance | ns | *** | * | ns |
Parameter | May | June | July | August | September |
---|---|---|---|---|---|
(mg L−1) | |||||
Calcium in soil | 68 | 32 | 73 | 67 | 61 |
Potassium in soil | 69 | 32 | 107 | 85 | 69 |
Calcium in irrigation water | - | 25 | 47 | 10 | 31 |
Potassium irrigation water | - | 7 | 7 | 43 | 4 |
Method | Principle | Application | Advantages | Limitations | Example | Reference |
---|---|---|---|---|---|---|
ICP-MS (inductively coupled plasma–mass spectrometry) | Emission photometry | All tissue | Low cost, high reliability | Provides the total Ca in the sample indiscriminately | Ca concentration in fruit | [56] |
Microscope technique | Visual analysis | All tissue | Easy to run | Low precision | Fresh cut slice fruit | [59] |
X-ray fluorescence microscopy (XFM) | Electromagnetic emissions | All tissue, whole organs (fruits) | Precise, non-destructive, suitable for in-vivo analysis | High cost, use of potentially hazardous ionizing radiation | Apple | [69,70] |
Calcium imaging techniques | Microscopy | All tissue | Precise, suitable for studying Ca signaling in living cells | Results affected by external conditions (light), corrections are necessary for accuracy | Symplastic Ca | [71] |
Stain technology | Visual analysis | All tissue | Precise, low cost, adapted to study Ca at cellular level, study of real-time Ca | Critical sample preparation, dye can be bound with other cations, low precision | Plant cells (i.e., ferns) | [72,73] |
Size exclusion chromatography | Chromatography | All tissue | Low cost | Indirect determination of Ca | Ca-pectate | [10] |
Nuclear magnetic resonance | Magnetic resonance | Fresh samples of fruit and vegetables | High cost, requires expertise | Indirect determination of Ca | Ca in fruit | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larocca, G.N.; Baldi, E.; Toselli, M. Understanding the Role of Calcium in Kiwifruit: Ion Transport, Signaling, and Fruit Quality. Horticulturae 2025, 11, 335. https://doi.org/10.3390/horticulturae11030335
Larocca GN, Baldi E, Toselli M. Understanding the Role of Calcium in Kiwifruit: Ion Transport, Signaling, and Fruit Quality. Horticulturae. 2025; 11(3):335. https://doi.org/10.3390/horticulturae11030335
Chicago/Turabian StyleLarocca, Greta Nicla, Elena Baldi, and Moreno Toselli. 2025. "Understanding the Role of Calcium in Kiwifruit: Ion Transport, Signaling, and Fruit Quality" Horticulturae 11, no. 3: 335. https://doi.org/10.3390/horticulturae11030335
APA StyleLarocca, G. N., Baldi, E., & Toselli, M. (2025). Understanding the Role of Calcium in Kiwifruit: Ion Transport, Signaling, and Fruit Quality. Horticulturae, 11(3), 335. https://doi.org/10.3390/horticulturae11030335