Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Fennel Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Setup, Experimental Design, Crop Production and Plant Material Determinations
2.2. Physicochemical Parameters
2.3. In Vitro Antioxidant Activity
2.3.1. Folin–Ciocalteu Reagent (FCR)
2.3.2. Oxygen Radical Absorbance Capacity (ORAC)
2.4. Total and Inorganic N on Fennel Bulb Samples
2.5. Stable Isotope Ratio Analysis
- For δ13C: fuel oil NBS-22 (δ13C = −30.03‰), sucrose IAEA-CH-6 (δ13C = −10.45‰), and L-glutamic acid USGS 40 (δ13C = −26.39‰ and δ15N = −4.52‰).
- For δ15N: L-glutamic acid USGS 40 and potassium nitrate IAEA-NO-3 (δ15N = +4.7‰).
- For δ34S: barium sulfate IAEA-SO-5 (δ34S = +0.5‰) and NBS 127 (δ34S = +20.3‰).
2.6. Statistical and Chemometric Multivariate Analysis
3. Results and Discussion
3.1. Physicochemical and Qualitative Fennel Parameters
3.2. In Vitro Antioxidant Activity
3.3. Total and Inorganic Nitrogen on Fennel Bulb Samples
3.4. Stable Isotope Ratios Analysis
3.4.1. Analyses of 15N/14N on Fertilizers
3.4.2. Analyses of 15N/14N 13C/12C and 34S/32S on Fennel Bulb Samples
3.4.3. Analyses of 15N/14N and 34S/32S on Soils
3.4.4. Analyses of 15N/14N 13C/12C, and 34S/32S on Leaves
3.5. Chemometric Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europeangreen-deal_en (accessed on 10 February 2025).
- United Nations. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 10 February 2025).
- COMMISSION IMPLEMENTING DECISION Approving the Amendment of the 2023–2027 CAP Strategic Plan of Italy for Union Support Financed by the European Agricultural Guarantee Fund and the European Agricultural Fund for Rural Development CCI: 2023IT06AFSP001. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=C(2023)6990&lang=en (accessed on 10 February 2025).
- ISMEA Database ‘Bio in Cifre’. Available online: https://www.sinab.it/sites/default/files/BIo%20in%20cifre%202024_0.pdf (accessed on 10 February 2025).
- Blackshaw, R.E.; Moyer, J.R.; Huang, H.C. Beneficial effects of cover crops on soil health and crop management. In Recent Research Developments in Soil Science; Pandalai, S.G., Ed.; Research Signpost: Trivandrum, India, 2005; pp. 15–35. [Google Scholar]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of agro-ecological practices in organic horticultural: Yield, energy-use and carbon footprint. Agroecol. Sustain. Food Syst. 2020, 44, 726–746. [Google Scholar] [CrossRef]
- Masiunas, J.B. Production of vegetables using cover crop and living mulches: A review. J. Veg. Crop Prod. 1998, 4, 11–31. [Google Scholar]
- Regulation (EU). 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; EU: Maastricht, The Netherlands, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R0848-20230221 (accessed on 10 February 2025).
- Regulation (EU). 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and Repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation); EU: Maastricht, The Netherlands, 2017; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02017R0625-20220128 (accessed on 10 February 2025).
- Bateman, A.S.; Kelly, S.D.; Jickells, T.D. Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime. J. Agric. Food Chem. 2005, 53, 5760–5765. [Google Scholar] [CrossRef]
- Rapisarda, P.; Calabretta, M.L.; Romano, G.; Intrigliolo, F. Nitrogen Metabolism Components as a Tool to Discriminate between Organic and Conventional Citrus Fruits. J. Agric. Food Chem. 2005, 53, 2664–2669. [Google Scholar] [CrossRef]
- Wassenaar, L.I.; Kelly, S.D.; Douence, C.; Islam, M.; Monteiro, L.; Abrahim, A.; Rinke, P. Assessment of rapid low-cost isotope (δ15N, δ18O) analyses of nitrate in fruit extracts by Ti(III) reduction to differentiate organic from conventional production. Rapid Commun. Mass. Spectrom. 2022, 36, e9259. [Google Scholar] [CrossRef]
- Inácio, C.T.; Chalk, P.M.; Magalhães, A.M.T. Principles and Limitations of Stable Isotopes in Differentiating Organic and Conventional Foodstuffs: 1. Plant Products. Crit. Rev. Food Sci. Nutr. 2015, 55, 1206–1218. [Google Scholar] [CrossRef]
- Bontempo, L.; van Leeuwen, K.A.; Paolini, M.; Holst Laursen, K.; Micheloni, C.; Prenzler, P.D.; Ryan, D.; Camin, F. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 2020, 318, 126426. [Google Scholar] [CrossRef]
- Gatzert, X.; Chun, K.P.; Boner, M.; Hermanowski, R.; Mäder, R.; Breuer, L.; Gattinger, A.; Orlowski, N. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany. Isot. Environ. Health Stud. 2021, 57, 281–300. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen Isotope Composition of Organically and Conventionally Grown Crops. J. Agric. Food Chem. 2007, 55, 2664–2670. [Google Scholar] [CrossRef]
- Laursen, K.H.; Mihailova, A.; Kelly, S.D.; Epov, V.N.; Bérail, S.; Schjoerring, J.K.; Donard, O.F.X.; Larsen, E.H.; Pedentchouk, N.; Marca-Bell, A.D.; et al. Is it really organic?—Multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chem. 2013, 141, 2812–2820. [Google Scholar] [CrossRef] [PubMed]
- Fabroni, S.; Bontempo, L.; Campanelli, G.; Canali, S.; Montemurro, F. Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products. Horticulturae 2023, 9, 723. [Google Scholar] [CrossRef]
- Campanelli, G.; Amenta, M.; Bontempo, L.; Leteo, F.; Montemurro, F.; Platani, C.; Timpanaro, N.; Torrisi, B.; Fabroni, S. Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study. Horticulturae 2024, 10, 94. [Google Scholar] [CrossRef]
- Persiani, A.; Diacono, M.; Montemurro, F. The impact of long-term organic horticultural systems on energy outputs and carbon storages in relation to extreme rainfall events. Eur. J. Agron. 2024, 161, 127398. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Torrisi, B.; Giuffrida, A.; Stagno, F.; Intrigliolo, F.; Canali, S.; Trinchera, A.; Pompili, L.; Nisini, L. Application of organic fertiliseres in a orange orchard in Southern italy: Efects on soil fertility trees nutritional status, yield and quality of fruits. Proc. Int. Soc. Citric. 2004, 2, 649–653. [Google Scholar]
- Nerdy, N.; De Lux Putra, E. Spectrophotometric method for determination of nitrite and nitrate levels in broccoli and cauliflower with different fertilization treatment. Orient. J. Chem. 2018, 34, 2983–2991. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results. Rapid Commun. Mass. Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Campanelli, G.; Canali, S. Crop Production and Environmental Effects in Conventional and Organic Vegetable Farming Systems: The Case of a Long-Term Experiment in Mediterranean Conditions (Central Italy). J. Sustain. Agric. 2012, 36, 599–619. [Google Scholar] [CrossRef]
- Atta-Aly, M.A. Fennel swollen base yield and quality as affected by variety and source of nitrogen fertilizer. Sci. Hortic. 2001, 88, 191–202. [Google Scholar] [CrossRef]
- Persiani, A.; Diacono, M.; Monteforte, A.; Montemurro, F. Agronomic performance, energy analysis and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. Environ. Sci. Pollut. Res. 2019, 26, 19250–19260. [Google Scholar] [CrossRef] [PubMed]
- Valentino, M.; Sequino, G.; De Filippis, F.; Di Monaco, R.; Cavella, S.; Torrieri, E. The effect of edible coating based on sodium caseinate and propyl gallate on the shelf life of minimally processed fennel during storage. Appl. Food Res. 2024, 4, 100462. [Google Scholar] [CrossRef]
- Artés, F.; Escalona, V.H.; Artés-Hdez, F. Modified Atmosphere Packaging of Fennel. J. Food Sci. 2002, 67, 1550–1554. [Google Scholar] [CrossRef]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef]
- Salama, Z.A.; El Baz, F.K.; Gaafar, A.A.; Zaki, M.F. Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill.) in responses to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 2015, 14, 91–99. [Google Scholar] [CrossRef]
- Prior, R.L.; Joseph, J.A.; Cao, G.; Shukitt-Hale, B. Can Foods Forestall Aging? February Issue; Agricultural Research, USDA Magazine: Washington, DC, USA, 1999; pp. 15–17. [Google Scholar]
- Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem Management and Nutritional Quality of Plant Foods: The Case of Organic Fruits and Vegetables. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Fabroni, S.; Amenta, M.; Rapisarda, S.; Torrisi, B.; Licciardello, C. Amino acid metabolism and expression of genes involved in nitrogen assimilation in common oranges cv. Valencia Late. Biol. Plant. 2022, 66, 155–162. [Google Scholar] [CrossRef]
- Karłowski, K. Azotany w warzywach--propozycje limitowania w polsce [Nitrates in vegetables--proposals for their limitation in Poland]. Rocz Panstw Zakl Hig. 1990, 41, 1–9. [Google Scholar]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Brennan, E.B.; Boyd, N.S. Winter Cover Crop Seeding Rate and Variety Affects during Eight Years of Organic Vegetables: II. Cover Crop Nitrogen Accumulation. Agron. J. 2012, 104, 799–806. [Google Scholar] [CrossRef]
- Hu, S.; Grunwald, N.J.; van Bruggen, A.H.C.; Gamble, G.R.; Drinkwater, L.E.; Shennan, C.; Demment, M.W. Short-Term Effects of Cover Crop Incorporation on Soil Carbon Pools and Nitrogen Availability. Soil Sci. Soc. Am. J. 1997, 61, 901–911. [Google Scholar] [CrossRef]
- Brennan, E.B.; Acosta-Martinez, V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem. 2017, 109, 188–204. [Google Scholar] [CrossRef]
- Dos Santos Cordeiro, C.F.; Rodrigues, D.R.; Rocha, C.H.; Araujo, F.F.; Echer, F.R. Glomalin and microbial activity affected by cover crops and nitrogen management in sandy soil with cotton cultivation. Appl. Soil Ecol. 2021, 167, 104026. [Google Scholar] [CrossRef]
- Högberg, P.; Johnnisson, C.; Högberg, M.; Högbom, L.; Näsholm, T.; Hällgren, J.E. Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: A discussion of preliminary results. Plant Soil 1995, 168, 125–133. [Google Scholar] [CrossRef]
- Diacono, M.; Trinchera, A.; Montemurro, F. An overview on agroecology and organic agriculture strategies for sustainable crop production. Agronomy 2021, 11, 223. [Google Scholar] [CrossRef]
- Georgi, M.; Voerkelius, S.; Rossmann, A.; Graßmann, J.; Schnitzler, W.H. Multielement Isotope Ratios of Vegetables from Integrated and Organic Production. Plant Soil 2005, 275, 93–100. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Chung, I.M.; Han, J.; Kong, W.; Kim, J.; An, M.; Lee, J.; An, Y.; Jung, M.Y.; Kim, S. Regional discrimination of Agaricus bisporusmushroom using the natural stable isotope ratios. Food Chem. 2018, 264, 92–100. [Google Scholar] [CrossRef]
- Leech, N.; Barrett, K.; Morgan, G.A. SPSS for Intermediate Statistics: Use and Interpretation, 3rd ed.; Routledge: London, UK, 2008. [Google Scholar] [CrossRef]
Treatment | Plant Fresh Weight (g FW) | pH | Total Acidity (% Oxalic Acid) | Total Soluble Solids (°Brix) | L* | a* | b* | Firmness (N) |
---|---|---|---|---|---|---|---|---|
organic | 979.51 ± 46.38 | 6.42 ± 0.20 | 0.36 ± 0.02 | 5.38 ± 0.32 | 76.91 ± 2.19 | −2.64 ± 0.14 | 13.33 ± 0.99 | 81.10 ± 1.53 |
mix-organic | 984.43 ± 36.91 | 6.69 ± 0.04 | 0.36 ± 0.03 | 5.68 ± 0.41 | 76.66 ± 2.38 | −2.52 ± 0.22 | 14.03 ± 1.15 | 80.38 ± 1.61 |
conventional | 1072.08 ± 71.30 | 6.69 ± 0.05 | 0.31 ± 0.01 | 5.32 ± 0.37 | 81.62 ± 0.35 | −2.79 ± 0.10 | 13.99 ± 0.98 | 74.59 ± 2.53 |
Mix-conventional-a | 936.67 ± 33.04 | 6.78 ± 0.06 | 0.34 ± 0.03 | 5.59 ± 0.38 | 79.74 ± 1.04 | −2.88 ± 0.20 | 13.72 ± 1.08 | 79.99 ± 1.76 |
Mix-conv.-b | 1020.77 ± 63.09 | 6.64 ± 0.03 | 0.28 ± 0.01 | 5.20 ± 0.34 | 80.26 ± 0.90 | −2.71 ± 0.12 | 13.71 ± 1.05 | 78.21 ± 3.17 |
organic + AEP | 1131.86 ± 63.51 | 6.48 ± 0.11 | 0.34 ± 0.02 | 5.07 ± 0.23 | 79.35 ± 0.74 | −3.00 ± 0.20 | 13.42 ± 0.81 | 79.34 ± 1.82 |
Treatment | Total Nitrogen (%) | Total Inorganic Nitrogen (mg∙kg−1 DW) | NO3− (mg∙kg−1 DW) | NH4 (mg∙kg−1 DW) |
---|---|---|---|---|
organic | 1.72 ± 0.04 D | 480.90 ± 4.34 C | 51.03 ± 4.65 B | 429.87 ± 7.41 C |
mix-organic | 2.13 ± 0.04 C | 596.77 ± 29.29 BC | 49.70 ± 3.99 B | 547.07 ± 25.79 BC |
conventional | 2.40 ± 0.06 BC | 774.18 ± 37.05 AB | 236.48 ± 30.99 A | 537.70 ± 16.40 BC |
Mix-conventional-a | 2.28 ± 0.07 C | 843.00 ± 54.81 BC | 227.35 ± 47.81 A | 615.65 ± 25.89 B |
Mix-conventional-b | 2.69 ± 0.08 AB | 929.54 ± 32.41 A | 305.12 ± 28.58 A | 624.42 ± 12.87 B |
organic + agro-ecological practices | 2.75 ± 0.05 A | 844.96 ± 56.53 A | 41.57 ± 2.45 B | 803.39 ± 55.72 A |
δ(15N) (‰ vs. AIR) | δ(13C) (‰ vs. V-PDB) | δ(34S) (‰ vs. V-CDT) | Type of Fertilizer |
---|---|---|---|
8.6 | −25.5 | 0.6 | Pelleted animal manure |
5.0 | −22.6 | 4.5 | Vegand |
0.0 | −43.1 | 4.7 | Urea (one month after transplanting) |
0.5 | −16.0 | 1.5 | Urea (at transplanting) |
Function | Eigenvalue | % Variance | % Cumulated Variance | Canonical Correlation |
---|---|---|---|---|
1 | 116.378 | 87.8 | 87.8 | 0.996 |
2 | 11.031 | 8.3 | 96.2 | 0.958 |
3 | 2.897 | 2.2 | 98.4 | 0.862 |
4 | 1.569 | 1.2 | 99.5 | 0.781 |
5 | 0.608 | 0.5 | 100 | 0.615 |
Function | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Plant_fresh_weight | 0.349 | 0.008 | 0.267 | −0.464 | −0.002 |
pH | 0.741 | −0.294 | 0.723 | 0.130 | −0.201 |
total_acidity | 0.591 | −0.101 | 0.784 | 0.067 | −0.345 |
TSS | 1.953 | −0.844 | 0.796 | 0.584 | −0.899 |
L* | 0.819 | −0.388 | 0.288 | −0.327 | 0.029 |
a* | −0.318 | 0.319 | 0.155 | −0.016 | 0.319 |
b* | −1.198 | −0.366 | 0.190 | 0.499 | −0.291 |
consistency | −0.217 | 0.550 | −0.343 | −0.007 | −0.247 |
Total_polyphenols | 0.208 | 0.375 | −0.326 | 0.633 | −0.293 |
ORAC_units | −0.127 | 0.359 | 0.609 | 0.393 | −0.128 |
total_N | −0.941 | 0.264 | −0.330 | 0.734 | 0.525 |
total_inorganic_N | −0.756 | 0.160 | 0.055 | 0.438 | −0.820 |
NO3 | 1.646 | −0.840 | −0.409 | −0.911 | 0.706 |
delta_15N_fennel | 1.596 | 0.011 | −0.168 | 0.304 | 0.350 |
delta_13C_fennel | −0.315 | 0.004 | −0.120 | −0.234 | 0.393 |
delta_34S_fennel | −1.424 | 0.032 | 0.303 | 0.990 | 0.493 |
delta_15N_soil | −0.165 | 0.888 | 0.017 | −0.805 | 1.084 |
delta_34S_soil | −0.020 | −0.316 | −0.367 | 0.451 | 0.611 |
delta_15N_leaves | 1.384 | −0.079 | −0.694 | −0.251 | −0.383 |
delta_13C_leaves | 0.097 | 0.580 | −0.226 | 0.649 | 0.041 |
delta_34S_leaves | 0.236 | 0.660 | −0.865 | −1.957 | −0.041 |
Thesis | Predicted Group Membership | Tot. | |||||||
---|---|---|---|---|---|---|---|---|---|
Organic | Mix-Organic | Conventional | Mix-Conventional-a | Mix-Conventional-b | Organic + AEP | ||||
Original | Count | Organic | 8 | 0 | 0 | 0 | 0 | 0 | 8 |
Mix-Organic | 0 | 8 | 0 | 0 | 0 | 0 | 8 | ||
Conventional | 0 | 0 | 8 | 0 | 0 | 0 | 8 | ||
Mix-Conventional-a | 0 | 0 | 0 | 8 | 0 | 0 | 8 | ||
Mix-Conventional-b | 0 | 0 | 0 | 0 | 8 | 0 | 8 | ||
Organic + AEP | 0 | 0 | 0 | 0 | 0 | 8 | 8 | ||
% | Organic | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
Mix-Organic | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | ||
Conventional | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | ||
Mix-Conventional-a | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | ||
Mix-Conventional-b | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 | ||
Organic + AEP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 | ||
Cross-validated a | Count | Organic | 8 | 0 | 0 | 0 | 0 | 0 | 8 |
Mix-Organic | 0 | 5 | 0 | 3 | 0 | 0 | 8 | ||
Conventional | 0 | 0 | 6 | 1 | 1 | 0 | 8 | ||
Mix-Conventional-a | 0 | 0 | 2 | 5 | 1 | 0 | 8 | ||
Mix-Conventional-b | 0 | 0 | 3 | 0 | 5 | 0 | 8 | ||
Organic + AEP | 0 | 0 | 0 | 0 | 0 | 8 | 8 | ||
% | Organic | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
Mix-Organic | 0.0 | 62.5 | 0.0 | 37.5 | 0.0 | 0.0 | 100.0 | ||
Conventional | 0.0 | 0.0 | 75.0 | 12.5 | 12.5 | 0.0 | 100.0 | ||
Mix-Conventional-a | 0.0 | 0.0 | 25.0 | 62.5 | 12.5 | 0.0 | 100.0 | ||
Mix-Conventional-b | 0.0 | 0.0 | 37.5 | 0.0 | 62.5 | 0.0 | 100.0 | ||
Organic + AEP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montemurro, F.; Diacono, M.; Fiore, A.; Bontempo, L.; Roncone, A.; Amenta, M.; Ballistreri, G.; Timpanaro, N.; Torrisi, B.; Fabroni, S. Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Fennel Case Study. Horticulturae 2025, 11, 329. https://doi.org/10.3390/horticulturae11030329
Montemurro F, Diacono M, Fiore A, Bontempo L, Roncone A, Amenta M, Ballistreri G, Timpanaro N, Torrisi B, Fabroni S. Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Fennel Case Study. Horticulturae. 2025; 11(3):329. https://doi.org/10.3390/horticulturae11030329
Chicago/Turabian StyleMontemurro, Francesco, Mariangela Diacono, Angelo Fiore, Luana Bontempo, Alberto Roncone, Margherita Amenta, Gabriele Ballistreri, Nicolina Timpanaro, Biagio Torrisi, and Simona Fabroni. 2025. "Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Fennel Case Study" Horticulturae 11, no. 3: 329. https://doi.org/10.3390/horticulturae11030329
APA StyleMontemurro, F., Diacono, M., Fiore, A., Bontempo, L., Roncone, A., Amenta, M., Ballistreri, G., Timpanaro, N., Torrisi, B., & Fabroni, S. (2025). Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Fennel Case Study. Horticulturae, 11(3), 329. https://doi.org/10.3390/horticulturae11030329