The Use of Botanical Extracts for the Control of Meloidogyne incognita (Kofoid and White) in Yellow Pitahaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Characteristics
2.2. Treatments and Experimental Design
2.3. Specific Handling of Experiment
2.3.1. Botanical Extracts
2.3.2. Preparation of Nematode Inoculum
2.4. Variables
2.4.1. Plant Variables
2.4.2. Nematode Variables
2.4.3. Statistical Analysis
3. Results
3.1. Plant Growth Variables
3.1.1. Effects of Botanical Extracts on Growth and Shoot Biomass Variables Before Inoculation
3.1.2. Effects of Botanical Extracts on Shoot Growth and Biomass Variables After Inoculation
3.2. Nematode Variables
3.2.1. Effects of Botanical Extracts on Nematode Variables Prior to Inoculation
3.2.2. Effects of Botanical Extracts on Nematode Variables After Inoculation
4. Discussion
4.1. Plant Growth Variables
4.2. Nematode Variables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verona-Ruiz, A.; Urcia-Cerna, J.; Paucar-Menacho, L.M.; Verona-Ruiz, A.; Urcia-Cerna, J.; Paucar-Menacho, L.M. Pitahaya (Hylocereus spp.): Culture, Physicochemical Characteristics, Nutritional Composition, and Bioactive Compounds. Sci. Agropecu. 2020, 11, 439–453. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Li, X.; Shu, C.; Jiang, W.; Cao, J. Nutrition, Phytochemical Profile, Bioactivities and Applications in Food Industry of Pitaya (Hylocereus spp.) Peels: A Comprehensive Review. Trends Food Sci. Technol. 2021, 116, 199–217. [Google Scholar] [CrossRef]
- Guzmán-Piedrahita, Ó.A.; Zamorano-Montañez, C.; López-Nicora, H.D.; Guzmán-Piedrahita, Ó.A.; Zamorano-Montañez, C.; López-Nicora, H.D. Physiological interactions of plants with plant-parasitic nematodes: A review. Bol. Cient. Cent. Mus. Mus. Hist. Nat. 2020, 24, 190–205. [Google Scholar] [CrossRef]
- Trindade, A.R.; Paiva, P.; Lacerda, V.; Marques, N.; Neto, L.; Duarte, A. Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements. Plants 2023, 12, 3212. [Google Scholar] [CrossRef]
- Vargas Tierras, Y.B.; Pico, J.T.; Díaz, A.; Sotomayor Akopyan, D.A.; Burbano, A.; Caicedo, C.; Paredes Andrade, N.; Congo, C.; Tinoco, L.A.; Bastidas, S.; et al. Manual del Cultivo de Pitahaya para la Amazonía Ecuatoriana; INIAP: La Joya de los Sachas, Ecuador, 2020.
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-Parasitic Nematodes as a Potential Threat to Protected Agriculture: Current Status and Management Options. Crop Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Maqsood, A.; Wu, H.; Kamran, M.; Altaf, H.; Mustafa, A.; Ahmar, S.; Hong, N.T.T.; Tariq, K.; He, Q.; Chen, J.T. Variations in Growth, Physiology, and Antioxidative Defense Responses of Two Tomato (Solanum lycopersicum L.) Cultivars after Co-Infection of Fusarium oxysporum and Meloidogyne incognita. Agronomy 2020, 10, 159. [Google Scholar] [CrossRef]
- Bačić, J.; Lalićević, I.; Širca, S.; Theuerschuh, M.; Susič, N.; Gerič Stare, B. Occurrence and Distribution of Root-Knot Nematodes Meloidogyne spp. in Serbia. Agronomy 2025, 15, 372. [Google Scholar] [CrossRef]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B.A. Phytochemical Perspective on Plant Defense Against Nematodes. Front. Plant Sci. 2020, 11, 602079. [Google Scholar] [CrossRef]
- Rani, K.; Devi, N.; Banakar, P.; Kharb, P.; Kaushik, P. Nematicidal Potential of Green Silver Nanoparticles Synthesized Using Aqueous Root Extract of Glycyrrhiza Glabra. Nanomaterials 2022, 12, 2966. [Google Scholar] [CrossRef]
- Baniya, A.; Zayed, O.; Ardpairin, J.; Seymour, D.; Dillman, A.R. Current Trends and Future Prospects in Controlling the Citrus Nematode: Tylenchulus Semipenetrans. Agronomy 2025, 15, 383. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Chen, Y.; Wu, H. Effective Management of Meloidogyne Enterolobii Using Anaerobic Soil Disinfection Technique. Sci. Hortic. 2024, 332, 113215. [Google Scholar] [CrossRef]
- Yigezu Wendimu, G. Biology, Taxonomy, and Management of the Root-Knot Nematode (Meloidogyne incognita) in Sweet Potato. Adv. Agric. 2021, 2021, 8820211. [Google Scholar] [CrossRef]
- Delgado, A.; Pico, J.T.; Navia, D.; Suárez, C. Nemátodos fitoparásitos asociados al sistema radical del cultivo de pitahaya amarilla en el cantón Palora. In Proceedings of the IV Simposio en Fitopatología, Control Biológico e Interacciones Planta-Patógeno, Quito, Ecuador, 14–16 August 2019; USFQ Press: Galápagos, Ecuador, 2019. [Google Scholar]
- Ravisankar, N.; Ansari, M.A.; Panwar, A.S.; Aulakh, C.S.; Sharma, S.K.; Suganthy, M.; Suja, G.; Jaganathan, D. Organic Farming Research in India: Potential Technologies and Way Forward. Indian J. Agron. 2021, 66, S142–S162. [Google Scholar]
- Singh, Y.; Gupta, A.; Kannojia, P. Tagetes erecta (Marigold)—A Review on Its Phytochemical and Medicinal Properties. Curr. Med. Drug Res. 2020, 4, 201. [Google Scholar] [CrossRef]
- Theofilidou, A.; Argyropoulou, M.D.; Ntalli, N.; Kekelis, P.; Mourouzidou, S.; Zafeiriou, I.; Tsiropoulos, N.G.; Monokrousos, N. Assessing the Role of Melia Azedarach Botanical Nematicide in Enhancing the Structure of the Free-Living Nematode Community. Soil Syst. 2023, 7, 80. [Google Scholar] [CrossRef]
- Buralli, R.J.; Dultra, A.F.; Ribeiro, H. Respiratory and Allergic Effects in Children Exposed to Pesticides—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 2740. [Google Scholar] [CrossRef]
- Mnyambo, N.M.; Rantho, L.P.; Dube, Z.P.; Timana, M. Timing of Plant Extracts Application in the Management of Meloidogyne incognita on Tomato Plants. Int. J. Plant Biol. 2024, 15, 1108–1117. [Google Scholar] [CrossRef]
- Nikolova, M.; Lyubenova, A.; Yankova-Tsvetkova, E.; Georgiev, B.; Gavrilov, G.; Gavrilova, A. Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties. Agronomy 2025, 15, 357. [Google Scholar] [CrossRef]
- Makhubu, F.N.; Khosa, M.C.; McGaw, L.J. South African Plants with Nematicidal Activity against Root-Knot Nematodes: A Review. S. Afr. J. Bot. 2021, 139, 183–191. [Google Scholar] [CrossRef]
- Benttoumi, N.; Colagiero, M.; Sellami, S.; Boureghda, H.; Keddad, A.; Ciancio, A. Diversity of Nematode Microbial Antagonists from Algeria Shows Occurrence of Nematotoxic Trichoderma spp. Plants 2020, 9, 941. [Google Scholar] [CrossRef]
- Susič, N.; Žibrat, U.; Sinkovič, L.; Vončina, A.; Razinger, J.; Knapič, M.; Sedlar, A.; Širca, S.; Gerič Stare, B. From Genome to Field—Observation of the Multimodal Nematicidal and Plant Growth-Promoting Effects of Bacillus firmus I-1582 on Tomatoes Using Hyperspectral Remote Sensing. Plants 2020, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Vargas, Y.; Pico, J.; Manobanda, N.; Garcia, A.; Sanmiguel, J. Biological Nematicides as an Alternative for Control of Meloidogyne incognita Populations in Yellow Pitahaya (Selenicereus megalanthus). Bionatura J. 2024, 9, 4. [Google Scholar] [CrossRef]
- Ledchumanakumar, S.; Aruchchunan, N.; Kandiah, P.; Gunasingham, M. Root-Knot Nematode Management Using Chitin-Rich Fish Industry By-Product in Organic Brinjal Cultivation. Biol. Life Sci. Forum 2021, 3, 57. [Google Scholar] [CrossRef]
- Barros, A.F.; Campos, V.P.; de Paula, L.L.; Oliveira, D.F.; de Silva, F.J.; Terra, W.C.; Silva, G.H.; Salimena, J.P. Nematicidal Screening of Essential Oils and Potent Toxicity of Dysphania ambrosioides Essential Oil Against Meloidogyne Incognita in Vitro and in Vivo. J. Phytopathol. 2019, 167, 380–389. [Google Scholar] [CrossRef]
- Nasiou, E.; Giannakou, I.O. Nematicidal Potential of Thymol Against Meloidogyne javanica (Treub) Chitwood. Plants 2023, 12, 1851. [Google Scholar] [CrossRef] [PubMed]
- Catani, L.; Manachini, B.; Grassi, E.; Guidi, L.; Semprucci, F. Essential Oils as Nematicides in Plant Protection—A Review. Plants 2023, 12, 1418. [Google Scholar] [CrossRef] [PubMed]
- Kirgiafini, D.; Serafim, A.; Menkissoglu-Spiroudi, U.; D’Addabbo, T.; Tsiropoulos, N.; Ntalli, N. Nematicidal Trans-Anethole Blends Paralyzing Meloidogyne incognita. Agriculture 2024, 14, 889. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef]
- Mwamula, A.O.; Kabir, M.F.; Lee, D. A Review of the Potency of Plant Extracts and Compounds from Key Families as an Alternative to Synthetic Nematicides: History, Efficacy, and Current Developments. Plant Pathol. J. 2022, 38, 53–77. [Google Scholar] [CrossRef]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Catani, L.; Grassi, E.; Cocozza di Montanara, A.; Guidi, L.; Sandulli, R.; Manachini, B.; Semprucci, F. Essential Oils and Their Applications in Agriculture and Agricultural Products: A Literature Analysis through VOSviewer. Biocatal. Agric. Biotechnol. 2022, 45, 102502. [Google Scholar] [CrossRef]
- Mwamba, S.; Kihika-Opanda, R.; Murungi, L.K.; Losenge, T.; Beck, J.J.; Torto, B. Identification of Repellents from Four Non-Host Asteraceae Plants for the Root Knot Nematode, Meloidogyne incognita. J. Agric. Food Chem. 2021, 69, 15145–15156. [Google Scholar] [CrossRef] [PubMed]
- Izuogu, N.B.; Bello, O.E.; Bello, O.M. A Review on Borreria verticillata: A Potential Bionematicide, Channeling Its Significant Antimicrobial Activity against Root-Knot Nematodes. Heliyon 2020, 6, e05322. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Rusinque, L.; Cavaco, T.; Nunes, J.C.; Inácio, M.L. Essential Oil Volatiles as Sustainable Antagonists for the Root-Knot Nematode Meloidogyne Ethiopica. Sustainability 2023, 15, 11421. [Google Scholar] [CrossRef]
- Shokoohi, E. Plant Extracts and Their Effects on Plant-Parasitic Nematodes, with Case Studies from Africa. In Sustainability in Plant and Crop Protection; Chaudhary, K.K., Meghvansi, M.K., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 189–216. [Google Scholar]
- Riaz, M.; Ahmad, R.; Rahman, N.U.; Khan, Z.; Dou, D.; Sechel, G.; Manea, R. Traditional Uses, Phyto-Chemistry and Pharmacological Activities of Tagetes patula L. J. Ethnopharmacol. 2020, 255, 112718. [Google Scholar] [CrossRef] [PubMed]
- Climate Data Climate Province of Orellana Temperature, Weather Chart, Climate Table of Province of Orellana. Available online: https://en.climate-data.org/south-america/ecuador/provincia-de-orellana-63/ (accessed on 20 February 2025).
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an Attractive Alternative Crop for Mediterranean Region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Dagni, A.; Codruta Heghes, S.; Suharoschi, R.; Pop, O.L.; Fodor, A.; Vulturar, R.; Cozma, A.; Filali, O.A.; Vodnar, D.C.; Soukri, A.; et al. Essential oils from Dysphania genus: Traditional uses, chemical composition, toxicology, and health benefits. Front. Pharmacol. 2024, 13, 1024274. [Google Scholar] [CrossRef]
- Luna-Florin, A.D.; Nole-Nole, D.A.; Rodríguez-Caballero, E.; Molina-Pardo, J.L.; Giménez-Luque, E. Ecological Characterization of the Flora in Reserva Ecológica Arenillas, Ecuador. Appl. Sci. 2022, 12, 8656. [Google Scholar] [CrossRef]
- Cepero, V.C.; Huamán, L.A.; Soraluz, J.T.; Ventura, R.B.; Amez, S.B.; Aguiar, P.L.D.C.; Lerner, S.H.; Otiniano, A.J. Manual de Malezas Asociadas al Cultivo del Café en la Selva Central del Perú; Universidad Nacional Agraria La Molina: Lima, Peru, 2019. [Google Scholar]
- Monro, A.K.; Rodríguez, A. Three New Species and a Nomenclatural Synopsis of Urera (Urticaceae) from Mesoamerica1. Ann. Mo. Bot. Gard. 2009, 96, 268–285. [Google Scholar] [CrossRef]
- Solera-Steller, P.; Moreira-González, I.; Hernández-López, J.; Solera-Steller, P.; Moreira-González, I.; Hernández-López, J. Botanical descriptors to characterize germplasm of Ricinus communis from different areas of Costa Rica. Rev. Tecnol. Marcha 2015, 28, 37–46. [Google Scholar]
- Avilés Bustamante, H.A. Caracterización Morfológica de las Escoespecies de Plantas de Gordolobo (Lonchocarpus sp.) of the Ventanas Canton Province of Los Ríos. Bachelor’s Thesis, Universidad Técnica Estatatl de Quevedo, Quevedo, Ecuador, 2015. [Google Scholar]
- Hussey, R.S.; Barker, K.R. A Comparison of Methods of Collecting Inocula of Meloidogyne spp., Including a New Technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Hussey, R.; Janssen, G. Root-Knot Nematodes: Meloidogyne Species. In Plant Resistance to Parasitic Nematodes; Star, J.L., Cook, R., Bridge, J., Eds.; Cabi Publishing: Wallingford, UK, 2002; pp. 43–70. [Google Scholar]
- Palacino, J. Interacción Entre Glomus manihotis y Meloidogyne incognita en Pitaya Amarilla y Roja Bajo Condiciones de Vivero. Cenicafé 1990, 41, 80–90. [Google Scholar]
- Chamlaty-Fayad, Y.E. Identificación de Fitonematodos Meloidogyne sp. en Cafetos de La Finca “La Mata” en Coatepec. Rev. Cient. Biol. Agropecu. Tuxpan 2014, 2, 364–369. [Google Scholar] [CrossRef]
- Pinheiro, J.B.; da Silva, G.O.; Pinto, T.J.; Cunha, D.F.; Rafael, F.S.; Santos, L.A.; Florentino, M.L.; Ragassi, C.F.; Carvalho, A.D.; Pereira, A.S. Reaction of Potato Genotypes to the Root-Knot Nematode Meloidogyne spp. in a Naturally Infested Field. Hortic. Bras. 2025, 42, e2535. [Google Scholar] [CrossRef]
- Atolani, O.; Fabiyi, O.A. Plant Parasitic Nematodes Management Through Natural Products: Current Progress and Challenges. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R.A., Rizvi, R., Mahmood, I., Eds.; Springer: Singapore, 2020; pp. 297–315. [Google Scholar]
- Ghareeb, R.Y.; Hafez, E.E.; Ibrahim, D.S.S. Current Management Strategies for Phytoparasitic Nematodes. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R.A., Rizvi, R., Mahmood, I., Eds.; Springer: Singapore, 2020; pp. 339–352. [Google Scholar]
- Ntalli, N.; Bratidou Parlapani, A.; Tzani, K.; Samara, M.; Boutsis, G.; Dimou, M.; Menkissoglu-Spiroudi, U.; Monokrousos, N. Thymus citriodorus (Schreb) Botanical Products as Ecofriendly Nematicides with Bio-Fertilizing Properties. Plants 2020, 9, 202. [Google Scholar] [CrossRef]
- Campos–Montiel, R.G.; Castro-Parra, L.; de Anda, F.R.G.; Velazquez, A.P.Z. Histopathological findings in Anisakidae nematodes exposed to aqueous plant extracts with nematicidal capacity in vitro. Rev. MVZ Córdoba 2024, 29, e3078. [Google Scholar] [CrossRef]
- Walia, S.; Mukhia, S.; Bhatt, V.; Kumar, R. Variability in Chemical Composition and Antimicrobial Activity of Tagetes Minuta L. Essential Oil Collected from Different Locations of Himalaya. Ind. Crops Prod. 2020, 150, 112449. [Google Scholar] [CrossRef]
- Paudel, R.; Waisen, P.; Wang, K.-H. Exploiting the Innate Potential of Sorghum/Sorghum–Sudangrass Cover Crops to Improve Soil Microbial Profile That Can Lead to Suppression of Plant-Parasitic Nematodes. Microorganisms 2021, 9, 1831. [Google Scholar] [CrossRef]
- Monokrousos, N.; Argyropoulou, M.D.; Tzani, K.; Menkissoglou-Spiroudi, U.; Boutsis, G.; D’Addabbo, T.; Ntalli, N. The Effect of Botanicals with Nematicidal Activity on the Structural and Functional Characteristics of the Soil Nematode Community. Agriculture 2021, 11, 326. [Google Scholar] [CrossRef]
- Mukhtar, T.; Hussain, M.A. Pathogenic Potential of Javanese Root-Knot Nematode on Susceptible and Resistant Okra Cultivars. Pak. J. Zool. 2019, 51, 1891–1897. [Google Scholar] [CrossRef]
- Yates, P.; Janiol, J.; Li, C.; Song, B.-H. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. Plants 2024, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.; Behm, C.A.; Mathesius, U. Functions of Flavonoids in Plant–Nematode Interactions. Plants 2018, 7, 85. [Google Scholar] [CrossRef]
- Ogwudire, V.E.; Agu, C.M.; Ewelike, N.C.; Ojiako, F.O.; Cookey, C.O.; Nwokeji, E. Assessment of Jatropha curcas L. as Alternative Nematicide for Root Knot Nematode (Meloidogyne incognita) Management. Aust. J. Sci. Technol. 2022, 6, 65–70. [Google Scholar]
- D’Addabbo, T.; Argentieri, M.P.; Żuchowski, J.; Biazzi, E.; Tava, A.; Oleszek, W.; Avato, P. Activity of Saponins from Medicago Species against Phytoparasitic Nematodes. Plants 2020, 9, 443. [Google Scholar] [CrossRef]
- Hooks, C.R.; Wang, K.-H.; Ploeg, A.; McSorley, R. Using Marigold (Tagetes spp.) as a Cover Crop to Protect Crops from Plant-Parasitic Nematodes. Appl. Soil Ecol. 2010, 46, 307–320. [Google Scholar] [CrossRef]
- Salazar, W.; Guzman, T.J. Nematicidal effect of Quassia amara and Brugmansia suaveolens extracts on Meloidogyne sp. associated with tomato in Nicaragua. Agron. Mesoam. 2014, 25, 111–119. [Google Scholar] [CrossRef]
- Hernández Ochandía, D.; Arias, Y.; Gómez, L.; Peteira, B.; Miranda, I.; Rodríguez, M.G. Elements of the Life Cycle of Cuban Population of Meloidogyne incognita (Kofoid and White) Chitwood on Solanum lycopersicum L. Rev. Protección Veg. 2012, 27, 188–193. [Google Scholar]
- Ahuja, A.; Somvanshi, V.S. Diagnosis of Plant-Parasitic Nematodes Using Loop-Mediated Isothermal Amplification (LAMP): A Review. Crop Prot. 2021, 147, 105459. [Google Scholar] [CrossRef]
- Escobar, C.; Barcala, M.; Cabrera, J.; Fenoll, C. Overview of Root-Knot Nematodes and Giant Cells. In Advances in Botanical Research; Escobar, C., Fenoll, C., Eds.; Academic Press: London, UK, 2015; pp. 1–32. [Google Scholar]
- Kyndt, T.; Fernandez, D.; Gheysen, G. Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annu. Rev. Phytopathol. 2014, 52, 135–153. [Google Scholar] [CrossRef]
- Sivasubramaniam, N.; Hariharan, G.; Zakeel, M.C.M. Sustainable Management of Plant-Parasitic Nematodes: An Overview from Conventional Practices to Modern Techniques. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R.A., Rizvi, R., Mahmood, I., Eds.; Springer: Singapore, 2020; pp. 353–399. [Google Scholar]
- Sikandar, A.; Gao, F.; Mo, Y.; Chen, Q.; Ullah, R.M.K.; Wu, H. Efficacy of Aspergillus tubingensis GX3’ Fermentation against Meloidogyne enterolobii in Tomato (Solanum lycopersicum L.). Plants 2023, 12, 2724. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Avato, P. Chemical Composition and Nematicidal Properties of Sixteen Essential Oils—A Review. Plants 2021, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
Plant Growth Variable | Time of Botanical Extract Application | Botanical Extract | Day of Evaluation | ||
---|---|---|---|---|---|
30 | 60 | 90 | |||
Length (cm) | 7 days before | T. zypaquirensis | 44.00 ± 0.31 a | 62.35 ± 1.22 ab | 76.79 ± 0.43 a |
L. urucu | 37.33 ± 0.33 b | 59.82 ± 0.45 ab | 59.96 ± 0.34 abc | ||
D. ambrosioides | 43.83 ± 0.56 a | 64.97 ± 1.32 ab | 78.58 ± 0.33 a | ||
U. laciniata Juss | 32.00 ± 0.01 bc | 61.79 ± 1.34 ab | 65.89 ± 0.49 ab | ||
R. communis | 26.63 ± 0.44 cd | 57.58 ± 1.23 ab | 65.82 ± 0.84 abc | ||
Inoculated control | 17.90 ± 0.38 ef | 19.47 ± 0.43 ef | 27.46 ± 0.43 e | ||
Absolute control | 36.96 ± 0.67 ab | 69.83 ± 1.54 a | 75.33 ± 0.34 a | ||
7 days after | T. zypaquirensis | 26.36 ± 0.36 cde | 50.58 ± 1.32 bc | 68.64 ± 0.24 ab | |
L. urucu | 17.83 ± 0.12 ef | 29.12 ± 0.32 cd | 56.67 ± 0.12 bc | ||
D. ambrosioides | 23.48 ± 0.43 cde | 51.86 ± 1.42 bc | 72.67 ± 0.37 ab | ||
U. laciniata | 20.69 ± 0.35 def | 39.88 ± 1.77 cd | 46.83 ± 0.53 cd | ||
R. communis | 19.42 ± 0.42 def | 36.61 ± 0.54 cd | 32.75 ± 0.72 de | ||
Inoculated control | 16.08 ± 0.06 f | 12.81 ± 0.43 f | 31.83 ± 0.57 de | ||
Absolute control | 23.25 ± 0.43 def | 60.66 ± 0.43 ab | 79.28 ± 0.38 a | ||
Diameter (cm) | 7 days before | T. zypaquirensis | 5.23 ± 0.03 a | 2.70 ± 0.11 ab | 3.75 ± 0.45 a |
L. urucu | 2.78 ± 0.05 cde | 1.52 ± 1.32 b | 2.45 ± 0.28 c | ||
D. ambrosioides | 4.16 ± 0.07 ab | 2.67 ± 0.34 ab | 3.20 ± 0.18 ab | ||
U. laciniata | 2.98 ± 0.32 cde | 2.30 ± 0.30 bc | 2.40 ± 0.13 c | ||
R. communis | 2.86 ± 0.54 cde | 1.91 ± 0.32 cd | 2.73 ± 0.24 bc | ||
Inoculated control | 2.15 ± 0.08 ef | 1.75 ± 0.44 def | 1.42 ± 0.42 de | ||
Absolute control | 4.16 ± 0.16 ab | 2.63 ± 0.12 ab | 3.23 ± 0.14 ab | ||
7 days after | T. zypaquirensis | 3.05 ± 0.05 cd | 1.93 ± 0.33 cd | 1.23 ± 0.03 e | |
L. urucu | 2.62 ± 0.03 cdef | 1.80 ± 0.38 de | 1.04 ± 0.04 e | ||
D. ambrosioides | 3.11 ± 1.03 c | 1.79 ± 0.40 de | 1.36 ± 0.03 e | ||
U. laciniata | 2.16 ± 0.16 ef | 1.73 ± 0.56 def | 1.02 ± 0.04 e | ||
R. communis | 2.23 ± 0.04 def | 1.49 ± 0.57 ef | 1.04 ± 0.04 e | ||
Inoculated control | 1.87 ± 0.01 f | 1.37 ± 0.37 f | 1.05 ± 0.02 e | ||
Absolute control | 3.10 ± 0.12 c | 2.55 ± 0.54 ab | 2.15 ± 0.25 cd | ||
Fresh weight (g) | 7 days before | T. zypaquirensis | 54.47 ± 0.47 ab | 70.85 ± 1.12 a | 89.95 ± 1.55 abc |
L. urucu | 32.75 ± 1.23 cd | 31.98 ± 1.77 d | 38.88 ± 1.23 ef | ||
D. ambrosioides | 57.23 ± 0.45 ab | 71.18 ± 1.45 a | 92.98 ± 1.34 ab | ||
U. laciniata | 42.67 ± 1.32 b | 57.62 ± 1.67 ab | 49.85 ± 0.77 def | ||
R. communis | 49.93 ± 0.58 b | 56.57 ± 0.54 ab | 33.23 ± 0.33 f | ||
Inoculated control | 17.98 ± 0.32 e | 29.63 ± 0.33 d | 35.37 ± 0.43 ef | ||
Absolute control | 63.15 ± 1.15 a | 73.93 ± 0.46 a | 116.80 ± 1.42 a | ||
7 days after | T. zypaquirensis | 36.00 ± 0.45 c | 46.20 ± 0.51 bc | 61.68 ± 0.29 cde | |
L. urucu | 23.52 ± 0.43 d | 33.32 ± 0.32 cd | 44.83 ± 0.23 def | ||
D. ambrosioides | 34.73 ± 0.73 c | 48.88 ± 1.24 b | 62.53 ± 0.54 cde | ||
U. laciniata | 31.27 ± 0.39 cd | 26.07 ± 0.20 d | 43.03 ± 1.33 def | ||
R. communis | 22.77 ± 0.56 d | 39.00 ± 0.65 bcd | 45.05 ± 0.05 def | ||
Inoculated control | 17.52 ± 0.08 e | 29.64 ± 0.43 d | 31.47 ± 0.32 f | ||
Absolute control | 61.72 ± 0.72 ab | 70.41 ± 0.45 a | 83.30 ± 0.30 bc | ||
Dry weight (g) | 7 days before | T. zypaquirensis | 6.56 ± 1.33 a | 7.56 ± 1.33 a | 8.30 ± 0.30 ab |
L. urucu | 3.39 ± 0.24 cd | 3.39 ± 0.24 cd | 3.42 ± 0.32 de | ||
D. ambrosioides | 6.74 ± 0.34 a | 7.74 ± 0.34 a | 10.16 ± 0.18 a | ||
U. laciniata | 4.55 ± 1.21 b | 6.55 ± 1.21 ab | 4.62 ± 0.44 cd | ||
R. communis | 4.08 ± 0.77 bc | 5.08 ± 0.77 bc | 7.53 ± 0.24 c | ||
Inoculated control | 3.02 ± 0.08 d | 3.02 ± 0.08 d | 2.22 ± 0.22 i | ||
Absolute control | 7.89 ± 1.13 ab | 7.69 ± 1.13 a | 11.99 ± 0.49 a | ||
7 days after | T. zypaquirensis | 5.14 ± 0.33 bc | 5.14 ± 0.33 bc | 6.60 ± 0.30 ef | |
L. urucu | 3.85 ± 0.22 cd | 3.85 ± 0.22 cd | 3.71 ± 0.12 ghi | ||
D. ambrosioides | 5.33 ± 0.12 bc | 5.04 ± 0.12 bc | 6.25 ± 0.25 ef | ||
U. laciniata | 3.05 ± 0.10 d | 3.05 ± 0.10 d | 4.27 ± 0.17 gh | ||
R. communis | 2.61 ± 0.34 d | 2.61 ± 0.34 d | 4.37 ± 0.29 bcd | ||
Inoculated control | 2.89 ± 1.23 | 2.89 ± 1.23 | 2.47 ± 0.44 hi | ||
Absolute control | 7.01 ± 0.32 ab | 7.01 ± 0.32 ab | 8.21 ± 0.23 bcd |
Plant Growth Variable | Times of Botanic Extract Application | Botanical Extract | Day of Evaluation | ||
---|---|---|---|---|---|
30 | 60 | 90 | |||
Root fresh weight (g) | 7 days before | T. zypaquirensis | 144.55 ± 1.88 ab | 90.88 ± 0.77 ab | 40.93 ± 1.23 b |
L. urucu | 108.00 ± 1.77 bcd | 65.83 ± 0.17 cd | 22.67 ± 0.44 d | ||
D. ambrosioides | 142.42 ± 1.87 ab | 87.78 ± 0.19 ab | 42.21 ± 0.21 b | ||
U. laciniata | 124.57 ± 2.34 bc | 58.25 ± 0.27 de | 22.57 ± 1.24 d | ||
R. communis | 124.50 ± 1.43 bc | 82.50 ± 0.45 bc | 24.37 ± 0.27 cd | ||
Inoculated control | 72.21 ± 1.72 e | 32.93 ± 1.43 f | 6.23 ± 1.13 f | ||
Absolute control | 160.55 ± 1.44 a | 105.37 ± 1.44 a | 68.47 ± 1.33 a | ||
7 days after | T. zypaquirensis | 85.98 ± 1.56 cde | 42.97 ± 0.32 ef | 23.87 ± 0.33 c | |
L. urucu | 88.83 ± 1.22 de | 29.34 ± 0.65 f | 19.60 ± 0.44 e | ||
D. ambrosioides | 84.98 ± 1.78 cde | 42.60 ± 0.14 ef | 29.60 ± 0.30 c | ||
U. laciniata | 79.05 ± 1.45 de | 29.77 ± 0.07 f | 10.23 ± 0.17 ef | ||
R. communis | 89.50 ± 1.28 de | 29.45 ± 0.43 f | 6.52 ± 0.32 f | ||
Inoculated control | 61.67 ±1.32 e | 28.19 ± 0.19 f | 9.87 ± 0.18 ef | ||
Absolute control | 155.17 ± 1.34 ab | 98.23 ± 0.55 ab | 63.64 ± 0.54 a | ||
Number of nodules | 7 days before | T. zypaquirensis | 492.00 ± 1.44 b | 75.00 ± 0.32 g | 52.00 ± 0.78 cd |
L. urucu | 650.00 ± 1.56 b | 292.00 ± 0.44 ef | 222.00 ± 1.45 abc | ||
D. ambrosioides | 451.00 ± 0.78 b | 94.00 ± 0.02 g | 80.50 ± 1.32 bcd | ||
U. laciniata | 744.00 ± 1.52 b | 458.00 ± 0.22 bcd | 253.00 ± 1.34 ab | ||
R. communis | 727.00 ± 2.54 b | 227.00 ± 0.34 f | 244.00 ± 1.59 ab | ||
Inoculated control | 1172.00 ± 2.43 a | 399.00 ± 0.44 cde | 32.00 ± 1.45 d | ||
Absolute control | - | - | - | ||
7 days after | T. zypaquirensis | 521.00 ± 1.45 b | 328.00 ± 0.53 def | 22.00 ± 0.56 d | |
L. urucu | 1197.00 ± 1.82 a | 534.00 ± 1.44 ab | 78.00 ± 1.45 bcd | ||
D. ambrosioides | 558.00 ± 1.57 b | 287.00 ± 2.32 ef | 76.00 ± 1.34 bcd | ||
U. laciniata | 689.00 ± 1.79 b | 634.00 ± 1.43 a | 76.00 ± 0.99 bcd | ||
R. communis | 1133.00 ± 2.64 a | 463.00 ± 0.32 bc | 37.00 ± 0.54 cd | ||
Inoculated control | 1197.00 ± 2.96 a | 531.00 ± 1.77 abc | 47.00 ± 0.23 cd | ||
Absolute control | - | - | - | ||
Nematodes in 100 mL of soil | 7 days before | T. zypaquirensis | 57.00 ± 1.32 e | 945.00 ± 1.44 cd | 1709.00 ± 2.72 bc |
L. urucu | 122.00 ± 1.21 cd | 1487.00 ± 1.32 c | 3176.00 ± 1.65 bc | ||
D. ambrosioides | 54.00 ± 0.32 e | 957.00 ± 0.55 cd | 3711.00 ± 2.45 abc | ||
U. laciniata | 105.00 ± 1.23 d | 1961.00 ± 1.67 c | 5967.00 ± 1.77 ab | ||
R. communis | 119.00 ± 0.13 cd | 1650.00 ± 2.32 c | 6186.00 ± 2.34 ab | ||
Inoculated control | 164.00 ± 0.34 a | 4075.00 ± 0.56 b | 6722.00 ± 3.56 ab | ||
Absolute control | - | - | - | ||
7 days after | T. zypaquirensis | 110.00 ± 0.34 cd | 1641.00 ± 1.77 c | 4110.00 ± 2.34 abc | |
L. urucu | 126.00 ± 0.96 cd | 1699.00 ± 1.42 c | 4034.00 ± 1.45 abc | ||
D. ambrosioides | 114.00 ± 1.21 cd | 1907.00 ± 1.44 c | 3160.00 ± 1.44 bc | ||
U. laciniata | 131.00 ± 0.44 bc | 7082.00 ± 0.56 a | 4932.00 ± 2.88 abc | ||
R. communis | 124.00 ± 0.45 cd | 5181.00 ± 0.44 b | 1595.00 ± 1.32 bc | ||
Inoculated control | 152.00 ± 0.12 ab | 4802.00 ± 1.23 b | 6836.00 ± 3.45 ab | ||
Absolute control | - | - | - | ||
Nematodes in 10 g of roots | 7 days before | T. zypaquirensis | 95.00 ± 0.32 fg | 818.00 ± 0.47 | 69.00 ± 1.34 cd |
L. urucu | 341.00 ± 0.44 cde | 1341.00 ± 2.89 de | 169.00 ± 1.04 bcd | ||
D. ambrosioides | 75.00 ± 1.2 g | 960.00 ± 1.03 de | 60.00 ± 0.56 cd | ||
U. laciniata | 218.00 ± 0.31 ef | 1729.00 ± 1.76 de | 434.00 ± 1.58 abcd | ||
R. communis | 318.00 ± 2.12 de | 7914.00 ± 1.44 a | 101.00 ± 1.23 bcd | ||
Inoculated control | 1033.00 ± 1.32 a | 5179.00 ± 2.34 abc | 534.00 ± 2.54 ab | ||
Absolute control | - | - | - | ||
7 days after | T. zypaquirensis | 389.00 ± 0.45 cd | 957.00 ± 0.89 de | 78.00 ± 1.55 cd | |
L. urucu | 574.00 ± 1.23 b | 2790.00 ± 2.44 cde | 493.00 ± 1.78 abc | ||
D. ambrosioides | 398.00 ± 1.44 cd | 1560.00 ± 2.45 de | 194.00 ± 1.39 bcd | ||
U. laciniata | 598.00 ± 2.32 b | 5860.00 ± 1.67 ab | 338.00 ± 1.23 bcd | ||
R. communis | 475.00 ± 1.48 bc | 3784.00 ± 3.31 bcd | 139.00 ± 1.09 bcd | ||
Inoculated control | 1064.00 ± 2.56 a | 6321.00 ± 2.46 ab | 576.00 ± 1.34 ab | ||
Absolute control | - | - | - | ||
Reproductive factor | 7 days before | T. zypaquirensis | 0.13 ± 0.01 g | 1.47 ± 0.12 d | 1.48 ± 0.21 cd |
L. urucu | 0.39 ± 0.02 de | 2.36 ± 0.36 cd | 2.79 ± 0.34 cd | ||
D. ambrosioides | 0.11 ± 0.01 gh | 1.70 ± 0.10 d | 3.14 ± 0.10 bcd | ||
U. laciniata | 0.27 ± 0.01 f | 3.08 ±0.32 c | 5.34 ± 0.34 abc | ||
R. communis | 0.37 ± 0.02 ef | 7.97 ± 0.97 b | 5.24 ± 0.89 abc | ||
Inoculated control | 1.00 ± 0.01 a | 7.71 ± 0.71 b | 7.39 ± 1.32 ab | ||
Absolute control | - | - | - | ||
7 days after | T. zypaquirensis | 0.42 ± 0.02 de | 2.17 ± 0.34 cd | 3.49 ± 0.12 bcd | |
L. urucu | 0.58 ± 0.03 bc | 3.74 ± 1.23 c | 3.78 ± 0.34 abcd | ||
D. ambrosioides | 0.43 ± 0.02 de | 2.39 ± 0.39 cd | 2.79 ± 1.07 cd | ||
U. laciniata | 0.61 ± 0.01 b | 10.79 ± 0.79 a | 4.39 ± 0.54 abc | ||
R. communis | 0.50 ± 0.03 cd | 7.47 ± 1.47 b | 1.77 ± 0.43 cd | ||
Inoculated control | 1.01 ± 0.04 a | 9.27 ± 1.23 ab | 8.07 ± 1.34 a | ||
Absolute control | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, Á.; Ordóñez, Y.F.; Vargas-Tierras, Y.; Sanmiguel, J.; Vásquez-Castillo, W.; Viera-Arroyo, W. The Use of Botanical Extracts for the Control of Meloidogyne incognita (Kofoid and White) in Yellow Pitahaya. Horticulturae 2025, 11, 268. https://doi.org/10.3390/horticulturae11030268
García Á, Ordóñez YF, Vargas-Tierras Y, Sanmiguel J, Vásquez-Castillo W, Viera-Arroyo W. The Use of Botanical Extracts for the Control of Meloidogyne incognita (Kofoid and White) in Yellow Pitahaya. Horticulturae. 2025; 11(3):268. https://doi.org/10.3390/horticulturae11030268
Chicago/Turabian StyleGarcía, Ángel, Yadira F. Ordóñez, Yadira Vargas-Tierras, Jessica Sanmiguel, Wilson Vásquez-Castillo, and Willian Viera-Arroyo. 2025. "The Use of Botanical Extracts for the Control of Meloidogyne incognita (Kofoid and White) in Yellow Pitahaya" Horticulturae 11, no. 3: 268. https://doi.org/10.3390/horticulturae11030268
APA StyleGarcía, Á., Ordóñez, Y. F., Vargas-Tierras, Y., Sanmiguel, J., Vásquez-Castillo, W., & Viera-Arroyo, W. (2025). The Use of Botanical Extracts for the Control of Meloidogyne incognita (Kofoid and White) in Yellow Pitahaya. Horticulturae, 11(3), 268. https://doi.org/10.3390/horticulturae11030268