Application of Bottom Ash Derived from Livestock Manure Combustion-Improved Soil Physicochemical Properties and Nutrient Uptake of Creeping Bentgrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Evaluation of Physicochemical Properties in the Root Zone Blending with BACL
2.3. Growth of Creeping Bentgrass in the Root Zone Blending Sand and BACL
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Root Zone Soil Blended with Sand and BACL
3.2. Growth of Creeping Bentgrass in the Root Zone Soil Blended with Sand and BACL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, K.J.; Cho, M.S. Transition of Korean meat consumption trends after modern times—Focused on beef and pork. Kor. J. Food Culture. 2012, 27, 422–433. [Google Scholar] [CrossRef]
- Oh, T.S.; Kim, C.H. Composting methods for pig sludge and the stabilized investigation of crop cultivation. J. Kor. Grassl. Forage Sci. 2009, 29, 51–62. [Google Scholar]
- Chang, K.W.; Cho, S.H.; Kwak, J.H. Changes of soil physico-chemical properties by repeated application of chicken and pig manure compost. J. Kor. Org. Waste Rec. Cou. 1999, 7, 23–30. [Google Scholar]
- Kim, Y.S.; Kim, B.T. Effect of food-waste and poultry manure compost on the growth of young radish and the change of soil properties. J. Kor. Org. Res. Rec. Ass. 2007, 15, 159–170. [Google Scholar]
- Kwon, S.I.; So, K.H.; Hong, S.G.; Kim, G.Y.; Lee, J.T.; Seong, K.S.; Kim, K.R.; Lee, D.B.; Jung, K.Y. The effect of continuous application of the food waste composts on the paddy field environment. J. Kor. Org. Res. Rec. Ass. 2009, 17, 55–70. [Google Scholar]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geo. Eco. Land. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Park, C.H.; Yoon, T.H.; Kim, J.H. Measurement emission of greenhouse gases form composting process for pig slurry. J. Liv. Hou. Environ. 2001, 7, 111–118. [Google Scholar]
- Choi, M.K.; Yun, S.W.; Yoon, Y.C. Greenhouse gases in compound fertilizer and livestock manure compost for crop cultivation. J. Bio-Environ. Con. 2021, 30, 95–100. [Google Scholar] [CrossRef]
- Park, D.G.; Lee, J.M.; Choi, E.J.; Gwon, H.S. Carbon mineralization in different soils cooperated with barely straw and livestock manure compost biochars. J. Kor. Org. Res. Rec. Ass. 2022, 30, 67–83. [Google Scholar] [CrossRef]
- Jeong, K.H.; Lee, D.J.; Lee, D.H.; Lee, S.H. Combustion characteristic caw manure pellet as a solid fuel source. J. Kor. Org. Res. Rec. Ass. 2019, 27, 31–40. [Google Scholar] [CrossRef]
- Kwon, J.K.; Kang, S.W.; Paek, Y.; Moon, J.P.; Jang, J.K.; Oh, S.S. Effects of local cooling and root pruning on budding and local heating on heating energy consumption in forcing cultivation of strawberry. Prot. Hort. Plant Facto. 2019, 28, 46–54. [Google Scholar] [CrossRef]
- Jang, E.S.; Song, E.; Yoon, J.; Kim, Y.M. Kinetic analysis for the pyrolysis of solid refues fuel using livestock manure. Appl. Chem. Engin. 2020, 31, 443–451. [Google Scholar] [CrossRef]
- Sh, L.; Kim, S.I.; Lim, H.; Lee, B.H.; Kim, S.M.; Jeon, C.H. Experimental investigation into the combustion properties on the co-firing of biomass with coal as a function of particle size blending ratio. Trans. Kor. Soc. Mecha. Engin. B 2016, 40, 31–37. [Google Scholar] [CrossRef]
- Moon, J.H.; Ryu, K.H. Economic and environmental sustainability assessment of livestock manure gasification for fuel gas production. Appl. Chem. Engin. 2023, 34, 291–298. [Google Scholar] [CrossRef]
- Kang, Y.I.; Lee, S.Y.; Kim, H.J.; Chun, H.; Jeong, B.R. Effects of CO2 enrichment concentration and duration on growth of bell pepper (Capsicum ammuum L.). J. Bio-Environ. Con. 2007, 16, 352–357. [Google Scholar]
- Woo, Y.H.; Kim, D.E.; Lee, J.W. The effect of photosynthesis, stomatal conductivity, thermotolerance and growth on foliar fertilization of carbonated water at lettuce hydroponic cultivation. J. Practic. Agric. Fisher. Res. 2019, 21, 115–122. [Google Scholar]
- Kim, K.; Kang, S. Characterization of artificial aggregates of coal bottom ash-red clay system. J. Kor. Crys. Growth Crys. Technol. 2012, 22, 305–311. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, H.Y.; Yang, J.E. Physicochemical effects of bottom ash on the turfgrass growth media of sandy topsoil in golf course. Kor. J. Turfgrass Sci. 2010, 24, 199–204. [Google Scholar]
- Kim, M.K.; Islam, S.M.A.; Yun, M.G.; Kim, J.M.; Cho, J.J.; Kang, T.H.; Yun, H.D. Use of bottom ash of waste coal as an effective microbial carrier. Biosci. Biotechnol. Biochem. 2011, 75, 2264–2268. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.S.; Fellowes, M.D.E. The grass-free lawn: Management and species choice for optimum ground cover and plant diversity. Urban Forest Urban Green 2014, 13, 433–442. [Google Scholar] [CrossRef]
- Ok, C.H.; Anderson, S.H.; Ervin, E.H. Amendment and construction system for improving the performance of sand-based putting greens. Kor. J. Turfgrass Sci. 2004, 18, 149–163. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ham, S.K.; Lim, H.J. Monitoring of soil chemical properties of pond water quality in golf course of after application of SCB liquid fertilizer. Asian J. Turfgrass Sci. 2012, 26, 44–53. [Google Scholar]
- Chong, S.K.; Ok, C.H. Effects of rootzone mixes amended with crumb rubber on the physical properties. Kor. J. Turfgrass Sci. 2006, 20, 83–91. [Google Scholar]
- Kim, T.W.; Kim, Y.S. Enhancing seasonal growth and quality of Kentucky bluegrass (Poa pratensis L.) with trinexapac-ethyl and prohexadione-calcium. Flower Res. J. 2023, 31, 204–210. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, T.S.; Ham, S.K. The change of soil physicochemical properties by mixture ratio of inorganic soil amendment. Kor. J. Turfgrass Sci. 2009, 23, 271–278. [Google Scholar]
- Kim, M.S.; Kim, S.C.; Yun, S.G.; Park, S.J.; Lee, C.H. Change in available phosphate by application of phosphate fertilizer in long-term fertilization experiment for paddy soil. Kor. J. Environ. Agric. 2017, 36, 141–146. [Google Scholar] [CrossRef]
- Cho, K.A.; Ahn, P.K.; Hong, S.G.; Chung, D.O. A study on properties of water quality and degradation rates of organic phosphates in Yong-San river. J. Kor. Environ. Sci. Soc. 1999, 8, 691–697. [Google Scholar]
- Kim, Y.S.; Choi, M.J.; Youn, J.H.; Lee, G.J. Establishment of a standard nitrogen application rate for Zoysia matrella using growth responses to various fertilization level. Korean J. Environ. Agric. 2022, 41, 167–176. [Google Scholar]
- Kim, D.S.; Yoon, Y.H.; Shin, J.C.; Kim, J.K.; Kim, S.D. Varetal difference in relationship between SPAD value and chlorophyll and nitrogen concentration in rice leaf. Kor. J. Crop Sci. 2002, 47, 263–267. [Google Scholar]
- Geng, X.; Guillard, K.; Morris, T.F. Relating turfgrass growth and quality to frequently measured soil nitrate. Crop Sci. 2013, 54, 366–382. [Google Scholar] [CrossRef]
- Kussow, W.R.; Soldat, D.J.; Kreuser, W.C.; Houlihan, S.M. Evidence, regulation, and consequences of nitrogen-driven nutrient demand by turfgrass. Int. Sch. Res. Notice 2012, 2012, 359284. [Google Scholar] [CrossRef]
- Gibberd, M.R.; Gray, J.D.; Cocks, P.S.; Colmer, T.D. Waterlogging tolerance among a diverse range of Trifolium accessing is related to root porosity, lateral root formation and ‘aerotorpic rooting’. Annals Bot. 2001, 88, 579–589. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, S.J. Growth of perennial ryegrass in the root zone blending bottom ash produced after combusting dry livestock manure as soil amendment. Kor. J. Environ. Agric. 2024, 43, 72–81. [Google Scholar] [CrossRef]
- Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. A rhizogenic biostiumlant effect on soil fertility and roots growth of turfgrass. Agronomy 2021, 11, 573. [Google Scholar] [CrossRef]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash management review—Applications of biomass bottom ash. Energies. 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Ku, B.S.; Kim, Y.S.; Choi, M.J.; Bae, E.J.; Lee, G.J. Physicochemical properties of root zone soil based on sand blending with zeolite and perlite. Weed Turf. Sci. 2021, 10, 337–346. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Akbulut, N. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus 2016, 5, 820. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, H.J.; Ham, S.K.; Lee, G.J. Improvement of physicochemical properties and turfgrass growth by root zone mixture of soil amendment ‘Profile’. Weed Turf. Sci. 2017, 6, 262–271. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, T.S.; Cho, S.H.; Lee, G.J. 2018. Application of liquid fertilizer containing humate improving rhizosphere and favoring turfgrass quality. Weed Turf. Sci. 2018, 7, 62–71. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.C.; Park, S.J.; Lee, C.H. Analysis of commercial organic compost manufactured with livestock manure. J. Kor. Org. Res. Rec. Ass. 2018, 26, 21–29. [Google Scholar] [CrossRef]
- Kang, J.M.; Cho, S.M.; Kim, S.K.; Lee, S.S.; Lee, S.K. Contamination analysis of heavy metals in commercial feed for the production of safe-animal products. J. Life Sci. 2010, 20, 717–722. [Google Scholar]
Item | Particle Size (mm) | ||||||
---|---|---|---|---|---|---|---|
>4.00 | 2.00–4.00 | 1.00–2.00 | 0.50–1.00 | 0.25–0.50 | 0.15–0.25 | 0.15–0.053 | |
Sand | 0% | 3.5 ± 0.4% | 5.2 ± 0.4% | 39.1 ± 1.8% | 24.7 ± 2.% | 23.0 ± 1.0% | 4.5 ± 0.3% |
UGSA guideline | 0% | <10% | >60% | >20% | <10% |
Particle Size of BACL | pH | EC | CEC | Bulk Density | T-N | T-P2O5 | T-K2O |
---|---|---|---|---|---|---|---|
(1:5) | (dS∙m−1) | (cmolc∙kg−1) | (g∙cm−3) | (g∙kg−1) | |||
2–4 mm | 10.03 ± 0.03 (1) | 10.12 ± 0.06 | 1.15 ± 0.07 | 0.91 ± 0.03 | 0.14 ± 0.00 | 141 ± 9 | 27.9 ± 0.5 |
Treatments (1) | pH | EC | CEC | Bulk Density | Capillary Porosity | Air-Filled Porosity | Total Porosity | Hydraulic Conductivity |
---|---|---|---|---|---|---|---|---|
(1:5) | (dS∙m−1) | (cmolc∙kg−1) | (g∙cm−3) | (%) | (mm∙h−1) | |||
Control | 7.76 ± 0.14 c (2) | 0.18 ± 0.01 c | 2.04 ± 0.07 a | 1.582 ± 0.007 a | 20.5 ± 0.1 d | 19.8 ± 0.2 c | 40.3 ± 0.3 d | 91.1 ± 9.5 d |
3% BACL | 7.95 ± 0.19 c | 0.18 ± 0.01 c | 2.24 ± 0.02 a | 1.568 ± 0.002 b | 20.9 ± 0.1 c | 20.0 ± 0.1 bc | 40.8 ± 0.1 c | 110.6 ± 11.2 c |
5% BACL | 8.19 ± 0.12 b | 0.20 ± 0.02 c | 2.16 ± 0.25 a | 1.563 ± 0.003 b | 21.0 ± 0.1 c | 20.0 ± 0.1 bc | 41.0 ± 0.1 c | 150.9 ± 11.0 b |
7% BACL | 8.36 ± 0.05 ab | 0.23 ± 0.02 b | 2.05 ± 0.16 a | 1.546 ± 0.009 c | 21.3 ± 0.0 b | 20.3 ± 0.3 b | 41.7 ± 0.3 b | 157.3 ± 7.2 ab |
10% BACL | 8.46 ± 0.01 a | 0.28 ± 0.01 a | 2.20 ± 0.11 a | 1.517 ± 0.002 d | 21.8 ± 0.2 a | 20.9 ± 0.3 a | 42.7 ± 0.1 a | 173.2 ± 1.8 a |
Correlation | 0.9208 ** | 0.8999 ** | 0.1666 NS | −0.9564 ** | 0.9698 ** | 0.8424 ** | 0.9564 ** | 0.9376 ** |
Factors (1) | pH | EC | CEC | BD | CP | AP | TP | HD |
---|---|---|---|---|---|---|---|---|
pH | 1.000 ** | 0.826 ** | 0.037 NS | −0.851 ** | 0.900 ** | 0.706 ** | 0.851 ** | 0.923 ** |
EC | 1.000 ** | 0.053 NS | −0.937 ** | 0.930 ** | 0.848 ** | 0.937 ** | 0.813 ** | |
CEC | 1.000 ** | −0.185 NS | 0.166 NS | 0.187 NS | 0.185 NS | 0.131 NS | ||
BD | 1.000 ** | −0.957 ** | −0.945 ** | −1.000 ** | −0.859 ** | |||
CP | 1.000 ** | 0.810 ** | 0.957 ** | 0.884 ** | ||||
AP | 1.000 ** | 0.945 ** | 0.743 ** | |||||
TP | 1.000 ** | 0.859 ** | ||||||
HD | 1.000 ** |
Treatments (1) | pH | EC | OM | T-N | Av-P2O5 | Ex-K | CEC |
---|---|---|---|---|---|---|---|
(1:5) | (dS∙m−1) | (%) | (mg∙kg−1) | (cmolc∙kg−1) | |||
Before | 7.45 ± 0.06 c (2) | 0.23 ± 0.01 c | 0.60 ± 0.06 a | 0.006 ± 0.001 a | 39 ± 6 e | 0.10 ± 0.00 e | 1.34 ± 0.04 a |
Control | 7.54 ± 0.10 c | 0.24 ± 0.03 bc | 0.55 ± 0.06 a | 0.011 ± 0.002 a | 46 ± 6 e | 0.14 ± 0.01 e | 1.47 ± 0.19 a |
3% BACL | 7.63 ± 0.09 bc | 0.26 ± 0.02 b | 0.57 ± 0.14 a | 0.011 ± 0.001 a | 194 ± 19 d | 0.19 ± 0.01 d | 1.45 ± 0.04 a |
5% BACL | 7.64 ± 0.05 bc | 0.26 ± 0.02 b | 0.60 ± 0.06 a | 0.010 ± 0.001 a | 255 ± 16 c | 0.21 ± 0.01 c | 1.40 ± 0.02 a |
7% BACL | 7.74 ± 0.02 ab | 0.32 ± 0.00 a | 0.59 ± 0.06 a | 0.011 ± 0.001 a | 316 ± 6 b | 0.24 ± 0.00 b | 1.46 ± 0.07 a |
10% BACL | 7.77 ± 0.01 a | 0.33 ± 0.01 a | 0.59 ± 0.11 a | 0.011 ± 0.001 a | 352 ± 41 a | 0.26 ± 0.01 a | 1.43 ± 0.14 a |
Correlation (3) | 0.8252 ** | 0.8705 ** | 0.1598 NS | −0.0560 NS | 0.9544 ** | 0.9846 ** | −0.1052 NS |
Treatments (1) | Turf Color Index (3) | |||||
---|---|---|---|---|---|---|
November | December | January | February | March | Means | |
NF | 6.84 ± 0.07 b (2) | 6.31 ± 0.03 b | 5.71 ± 0.07 b | 5.32 ± 0.08 b | 5.05 ± 0.06 b | 5.84 ± 0.05 b |
Control | 7.06 ± 0.08 a | 7.35 ± 0.02 a | 7.58 ± 0.02 a | 7.54 ± 0.03 a | 7.07 ± 0.05 a | 7.32 ± 0.03 a |
3% BACL | 7.03 ± 0.04 a | 7.34 ± 0.07 a | 7.60 ± 0.02 a | 7.54 ± 0.03 a | 7.17 ± 0.05 a | 7.34 ± 0.01 a |
5% BACL | 7.12 ± 0.09 a | 7.33 ± 0.08 a | 7.58 ± 0.04 a | 7.51 ± 0.02 a | 7.17 ± 0.08 a | 7.34 ± 0.02 a |
7% BACL | 7.03 ± 0.07 a | 7.38 ± 0.05 a | 7.61 ± 0.03 a | 7.53 ± 0.02 a | 7.18 ± 0.07 a | 7.34 ± 0.02 a |
10% BACL | 7.06 ± 0.05 a | 7.37 ± 0.02 a | 7.58 ± 0.04 a | 7.51 ± 0.02 a | 7.12 ± 0.12 a | 7.33 ± 0.03 a |
Correlation (4) | 0.0148 NS | 0.2106 NS | 0.0438 NS | −0.3908 NS | 0.1670 NS | 0.1523 NS |
Treatments (1) | 10 November | 8 December | 12 January | 9 February | 13 March |
---|---|---|---|---|---|
Chlorophyll content (μg∙g−1 in fresh wegiht) | |||||
Control | 1752 ± 48 a (2) | 2114 ± 48 a | 1984 ± 42 a | 1891 ± 42 a | 1730 ± 42 a |
3% BACL | 1787 ± 130 a | 2167 ± 121 a | 1947 ± 55 a | 1832 ± 55 a | 1797 ± 55 a |
5% BACL | 1707 ± 146 a | 2069 ± 146 a | 1968 ± 146 a | 1873 ± 49 a | 1755 ± 49 a |
7% BACL | 1742 ± 63 a | 2105 ± 63 a | 1986 ± 87 a | 1888 ± 63 a | 1724 ± 63 a |
10% BACL | 1738 ± 124 a | 2100 ± 124 a | 1955 ± 114 a | 1867 ± 98 a | 1724 ± 98 a |
Correlation | 0.1989 NS | 0.2120 NS | −0.0524 NS | −0.0062 NS | −0.1173 NS |
Shoot length (cm) | |||||
Control | 4.70 ± 0.04 a | 5.42 ± 0.01 a | 7.32 ± 0.17 a | 8.14 ± 0.16 a | 5.47 ± 0.06 a |
3% BACL | 4.65 ± 0.02 a | 5.57 ± 0.05 a | 7.31 ± 0.02 a | 8.22 ± 0.09 a | 5.52 ± 0.03 a |
5% BACL | 7.71 ± 0.04 a | 5.57 ± 0.04 a | 7.29 ± 0.08 a | 8.20 ± 0.13 a | 5.63 ± 0.15 a |
7% BACL | 4.63 ± 0.11 a | 5.50 ± 0.17 a | 7.37 ± 0.14 a | 8.25 ± 0.13 a | 5.64 ± 0.24 a |
10% BACL | 4.66 ± 0.04 a | 5.52 ± 0.11 a | 7.34 ± 0.04 a | 8.21 ± 0.18 a | 5.51 ± 0.11 a |
Correlation (3) | −0.2263 NS | 0.2249 NS | 0.1266 NS | 0.1849 NS | 0.1985 NS |
Treatments (1) | 10 November | 8 December | 12 January | 9 February | 13 March | Total |
---|---|---|---|---|---|---|
(g∙m−2, Dry Weight) | ||||||
Control | 4.2 ± 0.5 a (2) | 12.2 ± 1.4 a | 44.8 ± 0.5 a | 38.2 ± 0.5 a | 26.3 ± 17.0 a | 125.7 ± 15.2 a |
3% BACL | 3.7 ± 0.5 a | 11.9 ± 0.8 a | 47.9 ± 9.3 a | 38.7 ± 9.3 a | 28.7 ± 14.8 a | 130.9 ± 14.2 a |
5% BACL | 4.2 ± 0.5 a | 12.6 ± 0.9 a | 41.3 ± 2.3 a | 36.9 ± 2.3 a | 30.8 ± 6.4 a | 125.9 ± 5.3 a |
7% BACL | 4.2 ± 0.9 a | 11.8 ± 0.8 a | 42.9 ± 3.3 a | 38.4 ± 3.3 a | 30.3 ± 12.6 a | 127.6 ± 13.5 a |
10% BACL | 4.2 ± 0.5 a | 12.9 ± 1.2 a | 43.7 ± 10.5 a | 37.4 ± 10.8 a | 28.7 ± 10.8 a | 126.9 ± 11.9 a |
Correlation (3) | 0.1141 NS | 0.1394 NS | −0.1516 NS | −0.0252 NS | 0.1889 NS | −0.0027 NS |
Treatments (1) | Dry Weight of Shoot | Dry Weight of Root | T/R Ratio |
---|---|---|---|
(g∙m−2) | (g∙g−1) | ||
Control | 259.6 ± 23.1 a (2) | 325.0 ± 19.6 a | 0.80 ± 0.1 a |
3% BACL | 261.2 ± 12.7 a | 338.4 ± 4.8 a | 0.77 ± 0.0 a |
5% BACL | 286.0 ± 29.2 a | 349.4 ± 3.3 a | 0.82 ± 0.1 a |
7% BACL | 270.7 ± 2.3 a | 353.1 ± 6.3 a | 0.77 ± 0.0 a |
10% BACL | 270.4 ± 17.6 a | 336.3 ± 27.8 a | 0.81 ± 0.0 a |
Correlation (3) | 0.2335 NS | 0.3106 NS | −0.0029 NS |
Treatments (1) | Nutrient Content in the Tissue (%) | Nutrient Uptake (g/m2) | ||||
---|---|---|---|---|---|---|
N | P | K | N | P | K | |
Shoot | ||||||
Control | 3.27 ± 0.20 a (2) | 0.15 ± 0.04 a | 1.09 ± 0.02 a | 12.58 ± 0.07 a | 0.59 ± 0.05 a | 4.20 ± 0.24 a |
3% BACL | 3.38 ± 0.20 a | 0.15 ± 0.02 a | 1.08 ± 0.02 a | 13.27 ± 0.44 a | 0.60 ± 0.10 a | 4.25 ± 0.35 a |
5% BACL | 3.38 ± 0.20 a | 0.16 ± 0.00 a | 1.11 ± 0.04 a | 13.99 ± 0.98 a | 0.68 ± 0.06 a | 4.60 ± 0.42 a |
7% BACL | 3.50 ± 0.35 a | 0.16 ± 0.03 a | 1.13 ± 0.06 a | 13.90 ± 2.41 a | 0.65 ± 0.11 a | 4.50 ± 0.76 a |
10% BACL | 3.38 ± 0.53 a | 0.15 ± 0.02 a | 1.10 ± 0.06 a | 13.51 ± 2.33 a | 0.61 ± 0.10 a | 4.37 ± 0.58 a |
Correlation (3) | 0.1737 NS | 0.0599 NS | 0.2184 NS | 0.2570 NS | 0.1306 NS | 0.2645 NS |
Root | ||||||
Control | 2.22 ± 0.20 a | 0.14 ± 0.02 bc | 1.18 ± 0.17 b | 7.23 ± 0.48 b | 0.46 ± 0.05 bc | 3.85 ± 0.04 c |
3% BACL | 2.45 ± 0.35 a | 0.14 ± 0.02 bc | 1.38 ± 0.13 a | 8.29 ± 0.14 ab | 0.48 ± 0.07 bc | 4.68 ± 0.10 b |
5% BACL | 2.57 ± 0.20 a | 0.17 ± 0.02 ab | 1.54 ± 0.11 a | 8.97 ± 0.34 a | 0.61 ± 0.09 ab | 5.39 ± 0.47 a |
7% BACL | 2.45 ± 0.00 a | 0.19 ± 0.04 ab | 1.57 ± 0.05 a | 8.65 ± 0.80 ab | 0.65 ± 0.22 a | 5.54 ± 0.54 a |
10% BACL | 2.45 ± 0.00 a | 0.20 ± 0.03 a | 1.57 ± 0.04 a | 8.24 ± 0.69 ab | 0.66 ± 0.23 a | 5.55 ± 0.28 a |
Correlation (3) | 0.3413 NS | 0.6751 * | 0.7691 ** | 0.3725 NS | 0.6956 ** | 0.8217 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Lim, S.-J.; Lee, G.-J. Application of Bottom Ash Derived from Livestock Manure Combustion-Improved Soil Physicochemical Properties and Nutrient Uptake of Creeping Bentgrass. Horticulturae 2025, 11, 32. https://doi.org/10.3390/horticulturae11010032
Kim Y-S, Lim S-J, Lee G-J. Application of Bottom Ash Derived from Livestock Manure Combustion-Improved Soil Physicochemical Properties and Nutrient Uptake of Creeping Bentgrass. Horticulturae. 2025; 11(1):32. https://doi.org/10.3390/horticulturae11010032
Chicago/Turabian StyleKim, Young-Sun, Seung-Jae Lim, and Geung-Joo Lee. 2025. "Application of Bottom Ash Derived from Livestock Manure Combustion-Improved Soil Physicochemical Properties and Nutrient Uptake of Creeping Bentgrass" Horticulturae 11, no. 1: 32. https://doi.org/10.3390/horticulturae11010032
APA StyleKim, Y.-S., Lim, S.-J., & Lee, G.-J. (2025). Application of Bottom Ash Derived from Livestock Manure Combustion-Improved Soil Physicochemical Properties and Nutrient Uptake of Creeping Bentgrass. Horticulturae, 11(1), 32. https://doi.org/10.3390/horticulturae11010032